xref: /llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp (revision 39ec2e95ae6bb24940a1aecdf51d4a096cc0c9de)
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect the sequence of machine instructions for a basic block.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/CodeGen/LiveVariables.h"
18 #include "llvm/CodeGen/MachineDominators.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SlotIndexes.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/MC/MCAsmInfo.h"
32 #include "llvm/MC/MCContext.h"
33 #include "llvm/Support/DataTypes.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include <algorithm>
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "codegen"
41 
42 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
43     : BB(B), Number(-1), xParent(&MF) {
44   Insts.Parent = this;
45   if (B)
46     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
47 }
48 
49 MachineBasicBlock::~MachineBasicBlock() {
50 }
51 
52 /// Return the MCSymbol for this basic block.
53 MCSymbol *MachineBasicBlock::getSymbol() const {
54   if (!CachedMCSymbol) {
55     const MachineFunction *MF = getParent();
56     MCContext &Ctx = MF->getContext();
57     auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
58     assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
59     CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
60                                            Twine(MF->getFunctionNumber()) +
61                                            "_" + Twine(getNumber()));
62   }
63 
64   return CachedMCSymbol;
65 }
66 
67 
68 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
69   MBB.print(OS);
70   return OS;
71 }
72 
73 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
74   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
75 }
76 
77 /// When an MBB is added to an MF, we need to update the parent pointer of the
78 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
79 /// operand list for registers.
80 ///
81 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
82 /// gets the next available unique MBB number. If it is removed from a
83 /// MachineFunction, it goes back to being #-1.
84 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
85     MachineBasicBlock *N) {
86   MachineFunction &MF = *N->getParent();
87   N->Number = MF.addToMBBNumbering(N);
88 
89   // Make sure the instructions have their operands in the reginfo lists.
90   MachineRegisterInfo &RegInfo = MF.getRegInfo();
91   for (MachineBasicBlock::instr_iterator
92          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
93     I->AddRegOperandsToUseLists(RegInfo);
94 }
95 
96 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
97     MachineBasicBlock *N) {
98   N->getParent()->removeFromMBBNumbering(N->Number);
99   N->Number = -1;
100 }
101 
102 /// When we add an instruction to a basic block list, we update its parent
103 /// pointer and add its operands from reg use/def lists if appropriate.
104 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
105   assert(!N->getParent() && "machine instruction already in a basic block");
106   N->setParent(Parent);
107 
108   // Add the instruction's register operands to their corresponding
109   // use/def lists.
110   MachineFunction *MF = Parent->getParent();
111   N->AddRegOperandsToUseLists(MF->getRegInfo());
112 }
113 
114 /// When we remove an instruction from a basic block list, we update its parent
115 /// pointer and remove its operands from reg use/def lists if appropriate.
116 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
117   assert(N->getParent() && "machine instruction not in a basic block");
118 
119   // Remove from the use/def lists.
120   if (MachineFunction *MF = N->getMF())
121     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
122 
123   N->setParent(nullptr);
124 }
125 
126 /// When moving a range of instructions from one MBB list to another, we need to
127 /// update the parent pointers and the use/def lists.
128 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
129                                                        instr_iterator First,
130                                                        instr_iterator Last) {
131   assert(Parent->getParent() == FromList.Parent->getParent() &&
132         "MachineInstr parent mismatch!");
133   assert(this != &FromList && "Called without a real transfer...");
134   assert(Parent != FromList.Parent && "Two lists have the same parent?");
135 
136   // If splicing between two blocks within the same function, just update the
137   // parent pointers.
138   for (; First != Last; ++First)
139     First->setParent(Parent);
140 }
141 
142 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
143   assert(!MI->getParent() && "MI is still in a block!");
144   Parent->getParent()->DeleteMachineInstr(MI);
145 }
146 
147 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
148   instr_iterator I = instr_begin(), E = instr_end();
149   while (I != E && I->isPHI())
150     ++I;
151   assert((I == E || !I->isInsideBundle()) &&
152          "First non-phi MI cannot be inside a bundle!");
153   return I;
154 }
155 
156 MachineBasicBlock::iterator
157 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
158   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
159 
160   iterator E = end();
161   while (I != E && (I->isPHI() || I->isPosition() ||
162                     TII->isBasicBlockPrologue(*I)))
163     ++I;
164   // FIXME: This needs to change if we wish to bundle labels
165   // inside the bundle.
166   assert((I == E || !I->isInsideBundle()) &&
167          "First non-phi / non-label instruction is inside a bundle!");
168   return I;
169 }
170 
171 MachineBasicBlock::iterator
172 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) {
173   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
174 
175   iterator E = end();
176   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue() ||
177                     TII->isBasicBlockPrologue(*I)))
178     ++I;
179   // FIXME: This needs to change if we wish to bundle labels / dbg_values
180   // inside the bundle.
181   assert((I == E || !I->isInsideBundle()) &&
182          "First non-phi / non-label / non-debug "
183          "instruction is inside a bundle!");
184   return I;
185 }
186 
187 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
188   iterator B = begin(), E = end(), I = E;
189   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
190     ; /*noop */
191   while (I != E && !I->isTerminator())
192     ++I;
193   return I;
194 }
195 
196 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
197   instr_iterator B = instr_begin(), E = instr_end(), I = E;
198   while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
199     ; /*noop */
200   while (I != E && !I->isTerminator())
201     ++I;
202   return I;
203 }
204 
205 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
206   // Skip over begin-of-block dbg_value instructions.
207   return skipDebugInstructionsForward(begin(), end());
208 }
209 
210 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
211   // Skip over end-of-block dbg_value instructions.
212   instr_iterator B = instr_begin(), I = instr_end();
213   while (I != B) {
214     --I;
215     // Return instruction that starts a bundle.
216     if (I->isDebugValue() || I->isInsideBundle())
217       continue;
218     return I;
219   }
220   // The block is all debug values.
221   return end();
222 }
223 
224 bool MachineBasicBlock::hasEHPadSuccessor() const {
225   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
226     if ((*I)->isEHPad())
227       return true;
228   return false;
229 }
230 
231 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
232 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
233   print(dbgs());
234 }
235 #endif
236 
237 bool MachineBasicBlock::isLegalToHoistInto() const {
238   if (isReturnBlock() || hasEHPadSuccessor())
239     return false;
240   return true;
241 }
242 
243 StringRef MachineBasicBlock::getName() const {
244   if (const BasicBlock *LBB = getBasicBlock())
245     return LBB->getName();
246   else
247     return StringRef("", 0);
248 }
249 
250 /// Return a hopefully unique identifier for this block.
251 std::string MachineBasicBlock::getFullName() const {
252   std::string Name;
253   if (getParent())
254     Name = (getParent()->getName() + ":").str();
255   if (getBasicBlock())
256     Name += getBasicBlock()->getName();
257   else
258     Name += ("BB" + Twine(getNumber())).str();
259   return Name;
260 }
261 
262 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
263                               bool IsStandalone) const {
264   const MachineFunction *MF = getParent();
265   if (!MF) {
266     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
267        << " is null\n";
268     return;
269   }
270   const Function &F = MF->getFunction();
271   const Module *M = F.getParent();
272   ModuleSlotTracker MST(M);
273   MST.incorporateFunction(F);
274   print(OS, MST, Indexes, IsStandalone);
275 }
276 
277 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
278                               const SlotIndexes *Indexes,
279                               bool IsStandalone) const {
280   const MachineFunction *MF = getParent();
281   if (!MF) {
282     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
283        << " is null\n";
284     return;
285   }
286 
287   if (Indexes)
288     OS << Indexes->getMBBStartIdx(this) << '\t';
289 
290   OS << "bb." << getNumber();
291   bool HasAttributes = false;
292   if (const auto *BB = getBasicBlock()) {
293     if (BB->hasName()) {
294       OS << "." << BB->getName();
295     } else {
296       HasAttributes = true;
297       OS << " (";
298       int Slot = MST.getLocalSlot(BB);
299       if (Slot == -1)
300         OS << "<ir-block badref>";
301       else
302         OS << (Twine("%ir-block.") + Twine(Slot)).str();
303     }
304   }
305 
306   if (hasAddressTaken()) {
307     OS << (HasAttributes ? ", " : " (");
308     OS << "address-taken";
309     HasAttributes = true;
310   }
311   if (isEHPad()) {
312     OS << (HasAttributes ? ", " : " (");
313     OS << "landing-pad";
314     HasAttributes = true;
315   }
316   if (getAlignment()) {
317     OS << (HasAttributes ? ", " : " (");
318     OS << "align " << getAlignment();
319     HasAttributes = true;
320   }
321   if (HasAttributes)
322     OS << ")";
323   OS << ":\n";
324 
325   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
326   if (!livein_empty()) {
327     if (Indexes) OS << '\t';
328     OS << "    Live Ins:";
329     for (const auto &LI : LiveIns) {
330       OS << ' ' << printReg(LI.PhysReg, TRI);
331       if (!LI.LaneMask.all())
332         OS << ':' << PrintLaneMask(LI.LaneMask);
333     }
334     OS << '\n';
335   }
336 
337   // Print the successors
338   OS.indent(2) << "successors: ";
339   for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
340     if (I != succ_begin())
341       OS << ", ";
342     OS << printMBBReference(**I);
343     OS << '(' << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
344        << ')';
345   }
346   // Print human readable probabilities as comments.
347   OS << "; ";
348   for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
349     const BranchProbability &BP = *getProbabilityIterator(I);
350     if (I != succ_begin())
351       OS << ", ";
352     OS << printMBBReference(**I) << '('
353        << format("%.2f%%",
354                  rint(((double)BP.getNumerator() / BP.getDenominator()) *
355                       100.0 * 100.0) /
356                      100.0)
357        << ')';
358   }
359 
360   // Print the preds of this block according to the CFG.
361   if (!pred_empty()) {
362     if (Indexes) OS << '\t';
363     OS << "    Predecessors according to CFG:";
364     for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI)
365       OS << " " << printMBBReference(*(*PI));
366     OS << '\n';
367   }
368 
369   for (auto &I : instrs()) {
370     if (Indexes) {
371       if (Indexes->hasIndex(I))
372         OS << Indexes->getInstructionIndex(I);
373       OS << '\t';
374     }
375     OS << '\t';
376     if (I.isInsideBundle())
377       OS << "  * ";
378     I.print(OS, MST, IsStandalone);
379     OS << '\n';
380   }
381 
382   if (IrrLoopHeaderWeight) {
383     if (Indexes) OS << '\t';
384     OS << "    Irreducible loop header weight: "
385        << IrrLoopHeaderWeight.getValue();
386     OS << '\n';
387   }
388 }
389 
390 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
391                                        bool /*PrintType*/) const {
392   OS << "%bb." << getNumber();
393 }
394 
395 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
396   LiveInVector::iterator I = find_if(
397       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
398   if (I == LiveIns.end())
399     return;
400 
401   I->LaneMask &= ~LaneMask;
402   if (I->LaneMask.none())
403     LiveIns.erase(I);
404 }
405 
406 MachineBasicBlock::livein_iterator
407 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
408   // Get non-const version of iterator.
409   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
410   return LiveIns.erase(LI);
411 }
412 
413 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
414   livein_iterator I = find_if(
415       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
416   return I != livein_end() && (I->LaneMask & LaneMask).any();
417 }
418 
419 void MachineBasicBlock::sortUniqueLiveIns() {
420   std::sort(LiveIns.begin(), LiveIns.end(),
421             [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
422               return LI0.PhysReg < LI1.PhysReg;
423             });
424   // Liveins are sorted by physreg now we can merge their lanemasks.
425   LiveInVector::const_iterator I = LiveIns.begin();
426   LiveInVector::const_iterator J;
427   LiveInVector::iterator Out = LiveIns.begin();
428   for (; I != LiveIns.end(); ++Out, I = J) {
429     unsigned PhysReg = I->PhysReg;
430     LaneBitmask LaneMask = I->LaneMask;
431     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
432       LaneMask |= J->LaneMask;
433     Out->PhysReg = PhysReg;
434     Out->LaneMask = LaneMask;
435   }
436   LiveIns.erase(Out, LiveIns.end());
437 }
438 
439 unsigned
440 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) {
441   assert(getParent() && "MBB must be inserted in function");
442   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
443   assert(RC && "Register class is required");
444   assert((isEHPad() || this == &getParent()->front()) &&
445          "Only the entry block and landing pads can have physreg live ins");
446 
447   bool LiveIn = isLiveIn(PhysReg);
448   iterator I = SkipPHIsAndLabels(begin()), E = end();
449   MachineRegisterInfo &MRI = getParent()->getRegInfo();
450   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
451 
452   // Look for an existing copy.
453   if (LiveIn)
454     for (;I != E && I->isCopy(); ++I)
455       if (I->getOperand(1).getReg() == PhysReg) {
456         unsigned VirtReg = I->getOperand(0).getReg();
457         if (!MRI.constrainRegClass(VirtReg, RC))
458           llvm_unreachable("Incompatible live-in register class.");
459         return VirtReg;
460       }
461 
462   // No luck, create a virtual register.
463   unsigned VirtReg = MRI.createVirtualRegister(RC);
464   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
465     .addReg(PhysReg, RegState::Kill);
466   if (!LiveIn)
467     addLiveIn(PhysReg);
468   return VirtReg;
469 }
470 
471 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
472   getParent()->splice(NewAfter->getIterator(), getIterator());
473 }
474 
475 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
476   getParent()->splice(++NewBefore->getIterator(), getIterator());
477 }
478 
479 void MachineBasicBlock::updateTerminator() {
480   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
481   // A block with no successors has no concerns with fall-through edges.
482   if (this->succ_empty())
483     return;
484 
485   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
486   SmallVector<MachineOperand, 4> Cond;
487   DebugLoc DL = findBranchDebugLoc();
488   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
489   (void) B;
490   assert(!B && "UpdateTerminators requires analyzable predecessors!");
491   if (Cond.empty()) {
492     if (TBB) {
493       // The block has an unconditional branch. If its successor is now its
494       // layout successor, delete the branch.
495       if (isLayoutSuccessor(TBB))
496         TII->removeBranch(*this);
497     } else {
498       // The block has an unconditional fallthrough. If its successor is not its
499       // layout successor, insert a branch. First we have to locate the only
500       // non-landing-pad successor, as that is the fallthrough block.
501       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
502         if ((*SI)->isEHPad())
503           continue;
504         assert(!TBB && "Found more than one non-landing-pad successor!");
505         TBB = *SI;
506       }
507 
508       // If there is no non-landing-pad successor, the block has no fall-through
509       // edges to be concerned with.
510       if (!TBB)
511         return;
512 
513       // Finally update the unconditional successor to be reached via a branch
514       // if it would not be reached by fallthrough.
515       if (!isLayoutSuccessor(TBB))
516         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
517     }
518     return;
519   }
520 
521   if (FBB) {
522     // The block has a non-fallthrough conditional branch. If one of its
523     // successors is its layout successor, rewrite it to a fallthrough
524     // conditional branch.
525     if (isLayoutSuccessor(TBB)) {
526       if (TII->reverseBranchCondition(Cond))
527         return;
528       TII->removeBranch(*this);
529       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
530     } else if (isLayoutSuccessor(FBB)) {
531       TII->removeBranch(*this);
532       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
533     }
534     return;
535   }
536 
537   // Walk through the successors and find the successor which is not a landing
538   // pad and is not the conditional branch destination (in TBB) as the
539   // fallthrough successor.
540   MachineBasicBlock *FallthroughBB = nullptr;
541   for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
542     if ((*SI)->isEHPad() || *SI == TBB)
543       continue;
544     assert(!FallthroughBB && "Found more than one fallthrough successor.");
545     FallthroughBB = *SI;
546   }
547 
548   if (!FallthroughBB) {
549     if (canFallThrough()) {
550       // We fallthrough to the same basic block as the conditional jump targets.
551       // Remove the conditional jump, leaving unconditional fallthrough.
552       // FIXME: This does not seem like a reasonable pattern to support, but it
553       // has been seen in the wild coming out of degenerate ARM test cases.
554       TII->removeBranch(*this);
555 
556       // Finally update the unconditional successor to be reached via a branch if
557       // it would not be reached by fallthrough.
558       if (!isLayoutSuccessor(TBB))
559         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
560       return;
561     }
562 
563     // We enter here iff exactly one successor is TBB which cannot fallthrough
564     // and the rest successors if any are EHPads.  In this case, we need to
565     // change the conditional branch into unconditional branch.
566     TII->removeBranch(*this);
567     Cond.clear();
568     TII->insertBranch(*this, TBB, nullptr, Cond, DL);
569     return;
570   }
571 
572   // The block has a fallthrough conditional branch.
573   if (isLayoutSuccessor(TBB)) {
574     if (TII->reverseBranchCondition(Cond)) {
575       // We can't reverse the condition, add an unconditional branch.
576       Cond.clear();
577       TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
578       return;
579     }
580     TII->removeBranch(*this);
581     TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
582   } else if (!isLayoutSuccessor(FallthroughBB)) {
583     TII->removeBranch(*this);
584     TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL);
585   }
586 }
587 
588 void MachineBasicBlock::validateSuccProbs() const {
589 #ifndef NDEBUG
590   int64_t Sum = 0;
591   for (auto Prob : Probs)
592     Sum += Prob.getNumerator();
593   // Due to precision issue, we assume that the sum of probabilities is one if
594   // the difference between the sum of their numerators and the denominator is
595   // no greater than the number of successors.
596   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
597              Probs.size() &&
598          "The sum of successors's probabilities exceeds one.");
599 #endif // NDEBUG
600 }
601 
602 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
603                                      BranchProbability Prob) {
604   // Probability list is either empty (if successor list isn't empty, this means
605   // disabled optimization) or has the same size as successor list.
606   if (!(Probs.empty() && !Successors.empty()))
607     Probs.push_back(Prob);
608   Successors.push_back(Succ);
609   Succ->addPredecessor(this);
610 }
611 
612 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
613   // We need to make sure probability list is either empty or has the same size
614   // of successor list. When this function is called, we can safely delete all
615   // probability in the list.
616   Probs.clear();
617   Successors.push_back(Succ);
618   Succ->addPredecessor(this);
619 }
620 
621 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
622                                         bool NormalizeSuccProbs) {
623   succ_iterator I = find(Successors, Succ);
624   removeSuccessor(I, NormalizeSuccProbs);
625 }
626 
627 MachineBasicBlock::succ_iterator
628 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
629   assert(I != Successors.end() && "Not a current successor!");
630 
631   // If probability list is empty it means we don't use it (disabled
632   // optimization).
633   if (!Probs.empty()) {
634     probability_iterator WI = getProbabilityIterator(I);
635     Probs.erase(WI);
636     if (NormalizeSuccProbs)
637       normalizeSuccProbs();
638   }
639 
640   (*I)->removePredecessor(this);
641   return Successors.erase(I);
642 }
643 
644 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
645                                          MachineBasicBlock *New) {
646   if (Old == New)
647     return;
648 
649   succ_iterator E = succ_end();
650   succ_iterator NewI = E;
651   succ_iterator OldI = E;
652   for (succ_iterator I = succ_begin(); I != E; ++I) {
653     if (*I == Old) {
654       OldI = I;
655       if (NewI != E)
656         break;
657     }
658     if (*I == New) {
659       NewI = I;
660       if (OldI != E)
661         break;
662     }
663   }
664   assert(OldI != E && "Old is not a successor of this block");
665 
666   // If New isn't already a successor, let it take Old's place.
667   if (NewI == E) {
668     Old->removePredecessor(this);
669     New->addPredecessor(this);
670     *OldI = New;
671     return;
672   }
673 
674   // New is already a successor.
675   // Update its probability instead of adding a duplicate edge.
676   if (!Probs.empty()) {
677     auto ProbIter = getProbabilityIterator(NewI);
678     if (!ProbIter->isUnknown())
679       *ProbIter += *getProbabilityIterator(OldI);
680   }
681   removeSuccessor(OldI);
682 }
683 
684 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
685   Predecessors.push_back(Pred);
686 }
687 
688 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
689   pred_iterator I = find(Predecessors, Pred);
690   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
691   Predecessors.erase(I);
692 }
693 
694 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
695   if (this == FromMBB)
696     return;
697 
698   while (!FromMBB->succ_empty()) {
699     MachineBasicBlock *Succ = *FromMBB->succ_begin();
700 
701     // If probability list is empty it means we don't use it (disabled optimization).
702     if (!FromMBB->Probs.empty()) {
703       auto Prob = *FromMBB->Probs.begin();
704       addSuccessor(Succ, Prob);
705     } else
706       addSuccessorWithoutProb(Succ);
707 
708     FromMBB->removeSuccessor(Succ);
709   }
710 }
711 
712 void
713 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
714   if (this == FromMBB)
715     return;
716 
717   while (!FromMBB->succ_empty()) {
718     MachineBasicBlock *Succ = *FromMBB->succ_begin();
719     if (!FromMBB->Probs.empty()) {
720       auto Prob = *FromMBB->Probs.begin();
721       addSuccessor(Succ, Prob);
722     } else
723       addSuccessorWithoutProb(Succ);
724     FromMBB->removeSuccessor(Succ);
725 
726     // Fix up any PHI nodes in the successor.
727     for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
728            ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
729       for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
730         MachineOperand &MO = MI->getOperand(i);
731         if (MO.getMBB() == FromMBB)
732           MO.setMBB(this);
733       }
734   }
735   normalizeSuccProbs();
736 }
737 
738 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
739   return is_contained(predecessors(), MBB);
740 }
741 
742 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
743   return is_contained(successors(), MBB);
744 }
745 
746 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
747   MachineFunction::const_iterator I(this);
748   return std::next(I) == MachineFunction::const_iterator(MBB);
749 }
750 
751 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
752   MachineFunction::iterator Fallthrough = getIterator();
753   ++Fallthrough;
754   // If FallthroughBlock is off the end of the function, it can't fall through.
755   if (Fallthrough == getParent()->end())
756     return nullptr;
757 
758   // If FallthroughBlock isn't a successor, no fallthrough is possible.
759   if (!isSuccessor(&*Fallthrough))
760     return nullptr;
761 
762   // Analyze the branches, if any, at the end of the block.
763   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
764   SmallVector<MachineOperand, 4> Cond;
765   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
766   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
767     // If we couldn't analyze the branch, examine the last instruction.
768     // If the block doesn't end in a known control barrier, assume fallthrough
769     // is possible. The isPredicated check is needed because this code can be
770     // called during IfConversion, where an instruction which is normally a
771     // Barrier is predicated and thus no longer an actual control barrier.
772     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
773                ? &*Fallthrough
774                : nullptr;
775   }
776 
777   // If there is no branch, control always falls through.
778   if (!TBB) return &*Fallthrough;
779 
780   // If there is some explicit branch to the fallthrough block, it can obviously
781   // reach, even though the branch should get folded to fall through implicitly.
782   if (MachineFunction::iterator(TBB) == Fallthrough ||
783       MachineFunction::iterator(FBB) == Fallthrough)
784     return &*Fallthrough;
785 
786   // If it's an unconditional branch to some block not the fall through, it
787   // doesn't fall through.
788   if (Cond.empty()) return nullptr;
789 
790   // Otherwise, if it is conditional and has no explicit false block, it falls
791   // through.
792   return (FBB == nullptr) ? &*Fallthrough : nullptr;
793 }
794 
795 bool MachineBasicBlock::canFallThrough() {
796   return getFallThrough() != nullptr;
797 }
798 
799 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ,
800                                                         Pass &P) {
801   if (!canSplitCriticalEdge(Succ))
802     return nullptr;
803 
804   MachineFunction *MF = getParent();
805   DebugLoc DL;  // FIXME: this is nowhere
806 
807   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
808   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
809   DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
810                << " -- " << printMBBReference(*NMBB) << " -- "
811                << printMBBReference(*Succ) << '\n');
812 
813   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
814   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
815   if (LIS)
816     LIS->insertMBBInMaps(NMBB);
817   else if (Indexes)
818     Indexes->insertMBBInMaps(NMBB);
819 
820   // On some targets like Mips, branches may kill virtual registers. Make sure
821   // that LiveVariables is properly updated after updateTerminator replaces the
822   // terminators.
823   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
824 
825   // Collect a list of virtual registers killed by the terminators.
826   SmallVector<unsigned, 4> KilledRegs;
827   if (LV)
828     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
829          I != E; ++I) {
830       MachineInstr *MI = &*I;
831       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
832            OE = MI->operands_end(); OI != OE; ++OI) {
833         if (!OI->isReg() || OI->getReg() == 0 ||
834             !OI->isUse() || !OI->isKill() || OI->isUndef())
835           continue;
836         unsigned Reg = OI->getReg();
837         if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
838             LV->getVarInfo(Reg).removeKill(*MI)) {
839           KilledRegs.push_back(Reg);
840           DEBUG(dbgs() << "Removing terminator kill: " << *MI);
841           OI->setIsKill(false);
842         }
843       }
844     }
845 
846   SmallVector<unsigned, 4> UsedRegs;
847   if (LIS) {
848     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
849          I != E; ++I) {
850       MachineInstr *MI = &*I;
851 
852       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
853            OE = MI->operands_end(); OI != OE; ++OI) {
854         if (!OI->isReg() || OI->getReg() == 0)
855           continue;
856 
857         unsigned Reg = OI->getReg();
858         if (!is_contained(UsedRegs, Reg))
859           UsedRegs.push_back(Reg);
860       }
861     }
862   }
863 
864   ReplaceUsesOfBlockWith(Succ, NMBB);
865 
866   // If updateTerminator() removes instructions, we need to remove them from
867   // SlotIndexes.
868   SmallVector<MachineInstr*, 4> Terminators;
869   if (Indexes) {
870     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
871          I != E; ++I)
872       Terminators.push_back(&*I);
873   }
874 
875   updateTerminator();
876 
877   if (Indexes) {
878     SmallVector<MachineInstr*, 4> NewTerminators;
879     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
880          I != E; ++I)
881       NewTerminators.push_back(&*I);
882 
883     for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
884         E = Terminators.end(); I != E; ++I) {
885       if (!is_contained(NewTerminators, *I))
886         Indexes->removeMachineInstrFromMaps(**I);
887     }
888   }
889 
890   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
891   NMBB->addSuccessor(Succ);
892   if (!NMBB->isLayoutSuccessor(Succ)) {
893     SmallVector<MachineOperand, 4> Cond;
894     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
895     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
896 
897     if (Indexes) {
898       for (MachineInstr &MI : NMBB->instrs()) {
899         // Some instructions may have been moved to NMBB by updateTerminator(),
900         // so we first remove any instruction that already has an index.
901         if (Indexes->hasIndex(MI))
902           Indexes->removeMachineInstrFromMaps(MI);
903         Indexes->insertMachineInstrInMaps(MI);
904       }
905     }
906   }
907 
908   // Fix PHI nodes in Succ so they refer to NMBB instead of this
909   for (MachineBasicBlock::instr_iterator
910          i = Succ->instr_begin(),e = Succ->instr_end();
911        i != e && i->isPHI(); ++i)
912     for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
913       if (i->getOperand(ni+1).getMBB() == this)
914         i->getOperand(ni+1).setMBB(NMBB);
915 
916   // Inherit live-ins from the successor
917   for (const auto &LI : Succ->liveins())
918     NMBB->addLiveIn(LI);
919 
920   // Update LiveVariables.
921   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
922   if (LV) {
923     // Restore kills of virtual registers that were killed by the terminators.
924     while (!KilledRegs.empty()) {
925       unsigned Reg = KilledRegs.pop_back_val();
926       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
927         if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
928           continue;
929         if (TargetRegisterInfo::isVirtualRegister(Reg))
930           LV->getVarInfo(Reg).Kills.push_back(&*I);
931         DEBUG(dbgs() << "Restored terminator kill: " << *I);
932         break;
933       }
934     }
935     // Update relevant live-through information.
936     LV->addNewBlock(NMBB, this, Succ);
937   }
938 
939   if (LIS) {
940     // After splitting the edge and updating SlotIndexes, live intervals may be
941     // in one of two situations, depending on whether this block was the last in
942     // the function. If the original block was the last in the function, all
943     // live intervals will end prior to the beginning of the new split block. If
944     // the original block was not at the end of the function, all live intervals
945     // will extend to the end of the new split block.
946 
947     bool isLastMBB =
948       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
949 
950     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
951     SlotIndex PrevIndex = StartIndex.getPrevSlot();
952     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
953 
954     // Find the registers used from NMBB in PHIs in Succ.
955     SmallSet<unsigned, 8> PHISrcRegs;
956     for (MachineBasicBlock::instr_iterator
957          I = Succ->instr_begin(), E = Succ->instr_end();
958          I != E && I->isPHI(); ++I) {
959       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
960         if (I->getOperand(ni+1).getMBB() == NMBB) {
961           MachineOperand &MO = I->getOperand(ni);
962           unsigned Reg = MO.getReg();
963           PHISrcRegs.insert(Reg);
964           if (MO.isUndef())
965             continue;
966 
967           LiveInterval &LI = LIS->getInterval(Reg);
968           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
969           assert(VNI &&
970                  "PHI sources should be live out of their predecessors.");
971           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
972         }
973       }
974     }
975 
976     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
977     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
978       unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
979       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
980         continue;
981 
982       LiveInterval &LI = LIS->getInterval(Reg);
983       if (!LI.liveAt(PrevIndex))
984         continue;
985 
986       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
987       if (isLiveOut && isLastMBB) {
988         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
989         assert(VNI && "LiveInterval should have VNInfo where it is live.");
990         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
991       } else if (!isLiveOut && !isLastMBB) {
992         LI.removeSegment(StartIndex, EndIndex);
993       }
994     }
995 
996     // Update all intervals for registers whose uses may have been modified by
997     // updateTerminator().
998     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
999   }
1000 
1001   if (MachineDominatorTree *MDT =
1002           P.getAnalysisIfAvailable<MachineDominatorTree>())
1003     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1004 
1005   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1006     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1007       // If one or the other blocks were not in a loop, the new block is not
1008       // either, and thus LI doesn't need to be updated.
1009       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1010         if (TIL == DestLoop) {
1011           // Both in the same loop, the NMBB joins loop.
1012           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1013         } else if (TIL->contains(DestLoop)) {
1014           // Edge from an outer loop to an inner loop.  Add to the outer loop.
1015           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1016         } else if (DestLoop->contains(TIL)) {
1017           // Edge from an inner loop to an outer loop.  Add to the outer loop.
1018           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1019         } else {
1020           // Edge from two loops with no containment relation.  Because these
1021           // are natural loops, we know that the destination block must be the
1022           // header of its loop (adding a branch into a loop elsewhere would
1023           // create an irreducible loop).
1024           assert(DestLoop->getHeader() == Succ &&
1025                  "Should not create irreducible loops!");
1026           if (MachineLoop *P = DestLoop->getParentLoop())
1027             P->addBasicBlockToLoop(NMBB, MLI->getBase());
1028         }
1029       }
1030     }
1031 
1032   return NMBB;
1033 }
1034 
1035 bool MachineBasicBlock::canSplitCriticalEdge(
1036     const MachineBasicBlock *Succ) const {
1037   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1038   // it in this generic function.
1039   if (Succ->isEHPad())
1040     return false;
1041 
1042   const MachineFunction *MF = getParent();
1043 
1044   // Performance might be harmed on HW that implements branching using exec mask
1045   // where both sides of the branches are always executed.
1046   if (MF->getTarget().requiresStructuredCFG())
1047     return false;
1048 
1049   // We may need to update this's terminator, but we can't do that if
1050   // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
1051   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1052   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1053   SmallVector<MachineOperand, 4> Cond;
1054   // AnalyzeBanch should modify this, since we did not allow modification.
1055   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1056                          /*AllowModify*/ false))
1057     return false;
1058 
1059   // Avoid bugpoint weirdness: A block may end with a conditional branch but
1060   // jumps to the same MBB is either case. We have duplicate CFG edges in that
1061   // case that we can't handle. Since this never happens in properly optimized
1062   // code, just skip those edges.
1063   if (TBB && TBB == FBB) {
1064     DEBUG(dbgs() << "Won't split critical edge after degenerate "
1065                  << printMBBReference(*this) << '\n');
1066     return false;
1067   }
1068   return true;
1069 }
1070 
1071 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1072 /// neighboring instructions so the bundle won't be broken by removing MI.
1073 static void unbundleSingleMI(MachineInstr *MI) {
1074   // Removing the first instruction in a bundle.
1075   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1076     MI->unbundleFromSucc();
1077   // Removing the last instruction in a bundle.
1078   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1079     MI->unbundleFromPred();
1080   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1081   // are already fine.
1082 }
1083 
1084 MachineBasicBlock::instr_iterator
1085 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1086   unbundleSingleMI(&*I);
1087   return Insts.erase(I);
1088 }
1089 
1090 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1091   unbundleSingleMI(MI);
1092   MI->clearFlag(MachineInstr::BundledPred);
1093   MI->clearFlag(MachineInstr::BundledSucc);
1094   return Insts.remove(MI);
1095 }
1096 
1097 MachineBasicBlock::instr_iterator
1098 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1099   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1100          "Cannot insert instruction with bundle flags");
1101   // Set the bundle flags when inserting inside a bundle.
1102   if (I != instr_end() && I->isBundledWithPred()) {
1103     MI->setFlag(MachineInstr::BundledPred);
1104     MI->setFlag(MachineInstr::BundledSucc);
1105   }
1106   return Insts.insert(I, MI);
1107 }
1108 
1109 /// This method unlinks 'this' from the containing function, and returns it, but
1110 /// does not delete it.
1111 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1112   assert(getParent() && "Not embedded in a function!");
1113   getParent()->remove(this);
1114   return this;
1115 }
1116 
1117 /// This method unlinks 'this' from the containing function, and deletes it.
1118 void MachineBasicBlock::eraseFromParent() {
1119   assert(getParent() && "Not embedded in a function!");
1120   getParent()->erase(this);
1121 }
1122 
1123 /// Given a machine basic block that branched to 'Old', change the code and CFG
1124 /// so that it branches to 'New' instead.
1125 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1126                                                MachineBasicBlock *New) {
1127   assert(Old != New && "Cannot replace self with self!");
1128 
1129   MachineBasicBlock::instr_iterator I = instr_end();
1130   while (I != instr_begin()) {
1131     --I;
1132     if (!I->isTerminator()) break;
1133 
1134     // Scan the operands of this machine instruction, replacing any uses of Old
1135     // with New.
1136     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1137       if (I->getOperand(i).isMBB() &&
1138           I->getOperand(i).getMBB() == Old)
1139         I->getOperand(i).setMBB(New);
1140   }
1141 
1142   // Update the successor information.
1143   replaceSuccessor(Old, New);
1144 }
1145 
1146 /// Various pieces of code can cause excess edges in the CFG to be inserted.  If
1147 /// we have proven that MBB can only branch to DestA and DestB, remove any other
1148 /// MBB successors from the CFG.  DestA and DestB can be null.
1149 ///
1150 /// Besides DestA and DestB, retain other edges leading to LandingPads
1151 /// (currently there can be only one; we don't check or require that here).
1152 /// Note it is possible that DestA and/or DestB are LandingPads.
1153 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1154                                              MachineBasicBlock *DestB,
1155                                              bool IsCond) {
1156   // The values of DestA and DestB frequently come from a call to the
1157   // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1158   // values from there.
1159   //
1160   // 1. If both DestA and DestB are null, then the block ends with no branches
1161   //    (it falls through to its successor).
1162   // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends
1163   //    with only an unconditional branch.
1164   // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends
1165   //    with a conditional branch that falls through to a successor (DestB).
1166   // 4. If DestA and DestB is set and IsCond is true, then the block ends with a
1167   //    conditional branch followed by an unconditional branch. DestA is the
1168   //    'true' destination and DestB is the 'false' destination.
1169 
1170   bool Changed = false;
1171 
1172   MachineBasicBlock *FallThru = getNextNode();
1173 
1174   if (!DestA && !DestB) {
1175     // Block falls through to successor.
1176     DestA = FallThru;
1177     DestB = FallThru;
1178   } else if (DestA && !DestB) {
1179     if (IsCond)
1180       // Block ends in conditional jump that falls through to successor.
1181       DestB = FallThru;
1182   } else {
1183     assert(DestA && DestB && IsCond &&
1184            "CFG in a bad state. Cannot correct CFG edges");
1185   }
1186 
1187   // Remove superfluous edges. I.e., those which aren't destinations of this
1188   // basic block, duplicate edges, or landing pads.
1189   SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1190   MachineBasicBlock::succ_iterator SI = succ_begin();
1191   while (SI != succ_end()) {
1192     const MachineBasicBlock *MBB = *SI;
1193     if (!SeenMBBs.insert(MBB).second ||
1194         (MBB != DestA && MBB != DestB && !MBB->isEHPad())) {
1195       // This is a superfluous edge, remove it.
1196       SI = removeSuccessor(SI);
1197       Changed = true;
1198     } else {
1199       ++SI;
1200     }
1201   }
1202 
1203   if (Changed)
1204     normalizeSuccProbs();
1205   return Changed;
1206 }
1207 
1208 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1209 /// instructions.  Return UnknownLoc if there is none.
1210 DebugLoc
1211 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1212   // Skip debug declarations, we don't want a DebugLoc from them.
1213   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1214   if (MBBI != instr_end())
1215     return MBBI->getDebugLoc();
1216   return {};
1217 }
1218 
1219 /// Find and return the merged DebugLoc of the branch instructions of the block.
1220 /// Return UnknownLoc if there is none.
1221 DebugLoc
1222 MachineBasicBlock::findBranchDebugLoc() {
1223   DebugLoc DL;
1224   auto TI = getFirstTerminator();
1225   while (TI != end() && !TI->isBranch())
1226     ++TI;
1227 
1228   if (TI != end()) {
1229     DL = TI->getDebugLoc();
1230     for (++TI ; TI != end() ; ++TI)
1231       if (TI->isBranch())
1232         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1233   }
1234   return DL;
1235 }
1236 
1237 /// Return probability of the edge from this block to MBB.
1238 BranchProbability
1239 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1240   if (Probs.empty())
1241     return BranchProbability(1, succ_size());
1242 
1243   const auto &Prob = *getProbabilityIterator(Succ);
1244   if (Prob.isUnknown()) {
1245     // For unknown probabilities, collect the sum of all known ones, and evenly
1246     // ditribute the complemental of the sum to each unknown probability.
1247     unsigned KnownProbNum = 0;
1248     auto Sum = BranchProbability::getZero();
1249     for (auto &P : Probs) {
1250       if (!P.isUnknown()) {
1251         Sum += P;
1252         KnownProbNum++;
1253       }
1254     }
1255     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1256   } else
1257     return Prob;
1258 }
1259 
1260 /// Set successor probability of a given iterator.
1261 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1262                                            BranchProbability Prob) {
1263   assert(!Prob.isUnknown());
1264   if (Probs.empty())
1265     return;
1266   *getProbabilityIterator(I) = Prob;
1267 }
1268 
1269 /// Return probability iterator corresonding to the I successor iterator
1270 MachineBasicBlock::const_probability_iterator
1271 MachineBasicBlock::getProbabilityIterator(
1272     MachineBasicBlock::const_succ_iterator I) const {
1273   assert(Probs.size() == Successors.size() && "Async probability list!");
1274   const size_t index = std::distance(Successors.begin(), I);
1275   assert(index < Probs.size() && "Not a current successor!");
1276   return Probs.begin() + index;
1277 }
1278 
1279 /// Return probability iterator corresonding to the I successor iterator.
1280 MachineBasicBlock::probability_iterator
1281 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1282   assert(Probs.size() == Successors.size() && "Async probability list!");
1283   const size_t index = std::distance(Successors.begin(), I);
1284   assert(index < Probs.size() && "Not a current successor!");
1285   return Probs.begin() + index;
1286 }
1287 
1288 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1289 /// as of just before "MI".
1290 ///
1291 /// Search is localised to a neighborhood of
1292 /// Neighborhood instructions before (searching for defs or kills) and N
1293 /// instructions after (searching just for defs) MI.
1294 MachineBasicBlock::LivenessQueryResult
1295 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1296                                            unsigned Reg, const_iterator Before,
1297                                            unsigned Neighborhood) const {
1298   unsigned N = Neighborhood;
1299 
1300   // Start by searching backwards from Before, looking for kills, reads or defs.
1301   const_iterator I(Before);
1302   // If this is the first insn in the block, don't search backwards.
1303   if (I != begin()) {
1304     do {
1305       --I;
1306 
1307       MachineOperandIteratorBase::PhysRegInfo Info =
1308           ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1309 
1310       // Defs happen after uses so they take precedence if both are present.
1311 
1312       // Register is dead after a dead def of the full register.
1313       if (Info.DeadDef)
1314         return LQR_Dead;
1315       // Register is (at least partially) live after a def.
1316       if (Info.Defined) {
1317         if (!Info.PartialDeadDef)
1318           return LQR_Live;
1319         // As soon as we saw a partial definition (dead or not),
1320         // we cannot tell if the value is partial live without
1321         // tracking the lanemasks. We are not going to do this,
1322         // so fall back on the remaining of the analysis.
1323         break;
1324       }
1325       // Register is dead after a full kill or clobber and no def.
1326       if (Info.Killed || Info.Clobbered)
1327         return LQR_Dead;
1328       // Register must be live if we read it.
1329       if (Info.Read)
1330         return LQR_Live;
1331     } while (I != begin() && --N > 0);
1332   }
1333 
1334   // Did we get to the start of the block?
1335   if (I == begin()) {
1336     // If so, the register's state is definitely defined by the live-in state.
1337     for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid();
1338          ++RAI)
1339       if (isLiveIn(*RAI))
1340         return LQR_Live;
1341 
1342     return LQR_Dead;
1343   }
1344 
1345   N = Neighborhood;
1346 
1347   // Try searching forwards from Before, looking for reads or defs.
1348   I = const_iterator(Before);
1349   // If this is the last insn in the block, don't search forwards.
1350   if (I != end()) {
1351     for (++I; I != end() && N > 0; ++I, --N) {
1352       MachineOperandIteratorBase::PhysRegInfo Info =
1353           ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1354 
1355       // Register is live when we read it here.
1356       if (Info.Read)
1357         return LQR_Live;
1358       // Register is dead if we can fully overwrite or clobber it here.
1359       if (Info.FullyDefined || Info.Clobbered)
1360         return LQR_Dead;
1361     }
1362   }
1363 
1364   // At this point we have no idea of the liveness of the register.
1365   return LQR_Unknown;
1366 }
1367 
1368 const uint32_t *
1369 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1370   // EH funclet entry does not preserve any registers.
1371   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1372 }
1373 
1374 const uint32_t *
1375 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1376   // If we see a return block with successors, this must be a funclet return,
1377   // which does not preserve any registers. If there are no successors, we don't
1378   // care what kind of return it is, putting a mask after it is a no-op.
1379   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1380 }
1381 
1382 void MachineBasicBlock::clearLiveIns() {
1383   LiveIns.clear();
1384 }
1385 
1386 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1387   assert(getParent()->getProperties().hasProperty(
1388       MachineFunctionProperties::Property::TracksLiveness) &&
1389       "Liveness information is accurate");
1390   return LiveIns.begin();
1391 }
1392