1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect the sequence of machine instructions for a basic block. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineBasicBlock.h" 14 #include "llvm/CodeGen/LiveIntervals.h" 15 #include "llvm/CodeGen/LivePhysRegs.h" 16 #include "llvm/CodeGen/LiveVariables.h" 17 #include "llvm/CodeGen/MachineDominators.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SlotIndexes.h" 23 #include "llvm/CodeGen/TargetInstrInfo.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetRegisterInfo.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/Config/llvm-config.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/ModuleSlotTracker.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 #define DEBUG_TYPE "codegen" 40 41 static cl::opt<bool> PrintSlotIndexes( 42 "print-slotindexes", 43 cl::desc("When printing machine IR, annotate instructions and blocks with " 44 "SlotIndexes when available"), 45 cl::init(true), cl::Hidden); 46 47 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 48 : BB(B), Number(-1), xParent(&MF) { 49 Insts.Parent = this; 50 if (B) 51 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); 52 } 53 54 MachineBasicBlock::~MachineBasicBlock() = default; 55 56 /// Return the MCSymbol for this basic block. 57 MCSymbol *MachineBasicBlock::getSymbol() const { 58 if (!CachedMCSymbol) { 59 const MachineFunction *MF = getParent(); 60 MCContext &Ctx = MF->getContext(); 61 62 // We emit a non-temporary symbol -- with a descriptive name -- if it begins 63 // a section (with basic block sections). Otherwise we fall back to use temp 64 // label. 65 if (MF->hasBBSections() && isBeginSection()) { 66 SmallString<5> Suffix; 67 if (SectionID == MBBSectionID::ColdSectionID) { 68 Suffix += ".cold"; 69 } else if (SectionID == MBBSectionID::ExceptionSectionID) { 70 Suffix += ".eh"; 71 } else { 72 // For symbols that represent basic block sections, we add ".__part." to 73 // allow tools like symbolizers to know that this represents a part of 74 // the original function. 75 Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str(); 76 } 77 CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix); 78 } else { 79 const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 80 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 81 Twine(MF->getFunctionNumber()) + 82 "_" + Twine(getNumber())); 83 } 84 } 85 return CachedMCSymbol; 86 } 87 88 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const { 89 if (!CachedEHCatchretMCSymbol) { 90 const MachineFunction *MF = getParent(); 91 SmallString<128> SymbolName; 92 raw_svector_ostream(SymbolName) 93 << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber(); 94 CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName); 95 } 96 return CachedEHCatchretMCSymbol; 97 } 98 99 MCSymbol *MachineBasicBlock::getEndSymbol() const { 100 if (!CachedEndMCSymbol) { 101 const MachineFunction *MF = getParent(); 102 MCContext &Ctx = MF->getContext(); 103 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 104 CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" + 105 Twine(MF->getFunctionNumber()) + 106 "_" + Twine(getNumber())); 107 } 108 return CachedEndMCSymbol; 109 } 110 111 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 112 MBB.print(OS); 113 return OS; 114 } 115 116 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { 117 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); 118 } 119 120 /// When an MBB is added to an MF, we need to update the parent pointer of the 121 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 122 /// operand list for registers. 123 /// 124 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 125 /// gets the next available unique MBB number. If it is removed from a 126 /// MachineFunction, it goes back to being #-1. 127 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 128 MachineBasicBlock *N) { 129 MachineFunction &MF = *N->getParent(); 130 N->Number = MF.addToMBBNumbering(N); 131 132 // Make sure the instructions have their operands in the reginfo lists. 133 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 134 for (MachineInstr &MI : N->instrs()) 135 MI.addRegOperandsToUseLists(RegInfo); 136 } 137 138 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 139 MachineBasicBlock *N) { 140 N->getParent()->removeFromMBBNumbering(N->Number); 141 N->Number = -1; 142 } 143 144 /// When we add an instruction to a basic block list, we update its parent 145 /// pointer and add its operands from reg use/def lists if appropriate. 146 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 147 assert(!N->getParent() && "machine instruction already in a basic block"); 148 N->setParent(Parent); 149 150 // Add the instruction's register operands to their corresponding 151 // use/def lists. 152 MachineFunction *MF = Parent->getParent(); 153 N->addRegOperandsToUseLists(MF->getRegInfo()); 154 MF->handleInsertion(*N); 155 } 156 157 /// When we remove an instruction from a basic block list, we update its parent 158 /// pointer and remove its operands from reg use/def lists if appropriate. 159 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 160 assert(N->getParent() && "machine instruction not in a basic block"); 161 162 // Remove from the use/def lists. 163 if (MachineFunction *MF = N->getMF()) { 164 MF->handleRemoval(*N); 165 N->removeRegOperandsFromUseLists(MF->getRegInfo()); 166 } 167 168 N->setParent(nullptr); 169 } 170 171 /// When moving a range of instructions from one MBB list to another, we need to 172 /// update the parent pointers and the use/def lists. 173 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 174 instr_iterator First, 175 instr_iterator Last) { 176 assert(Parent->getParent() == FromList.Parent->getParent() && 177 "cannot transfer MachineInstrs between MachineFunctions"); 178 179 // If it's within the same BB, there's nothing to do. 180 if (this == &FromList) 181 return; 182 183 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 184 185 // If splicing between two blocks within the same function, just update the 186 // parent pointers. 187 for (; First != Last; ++First) 188 First->setParent(Parent); 189 } 190 191 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 192 assert(!MI->getParent() && "MI is still in a block!"); 193 Parent->getParent()->deleteMachineInstr(MI); 194 } 195 196 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 197 instr_iterator I = instr_begin(), E = instr_end(); 198 while (I != E && I->isPHI()) 199 ++I; 200 assert((I == E || !I->isInsideBundle()) && 201 "First non-phi MI cannot be inside a bundle!"); 202 return I; 203 } 204 205 MachineBasicBlock::iterator 206 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 207 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 208 209 iterator E = end(); 210 while (I != E && (I->isPHI() || I->isPosition() || 211 TII->isBasicBlockPrologue(*I))) 212 ++I; 213 // FIXME: This needs to change if we wish to bundle labels 214 // inside the bundle. 215 assert((I == E || !I->isInsideBundle()) && 216 "First non-phi / non-label instruction is inside a bundle!"); 217 return I; 218 } 219 220 MachineBasicBlock::iterator 221 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I, 222 bool SkipPseudoOp) { 223 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 224 225 iterator E = end(); 226 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() || 227 (SkipPseudoOp && I->isPseudoProbe()) || 228 TII->isBasicBlockPrologue(*I))) 229 ++I; 230 // FIXME: This needs to change if we wish to bundle labels / dbg_values 231 // inside the bundle. 232 assert((I == E || !I->isInsideBundle()) && 233 "First non-phi / non-label / non-debug " 234 "instruction is inside a bundle!"); 235 return I; 236 } 237 238 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 239 iterator B = begin(), E = end(), I = E; 240 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 241 ; /*noop */ 242 while (I != E && !I->isTerminator()) 243 ++I; 244 return I; 245 } 246 247 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 248 instr_iterator B = instr_begin(), E = instr_end(), I = E; 249 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 250 ; /*noop */ 251 while (I != E && !I->isTerminator()) 252 ++I; 253 return I; 254 } 255 256 MachineBasicBlock::iterator 257 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) { 258 // Skip over begin-of-block dbg_value instructions. 259 return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp); 260 } 261 262 MachineBasicBlock::iterator 263 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) { 264 // Skip over end-of-block dbg_value instructions. 265 instr_iterator B = instr_begin(), I = instr_end(); 266 while (I != B) { 267 --I; 268 // Return instruction that starts a bundle. 269 if (I->isDebugInstr() || I->isInsideBundle()) 270 continue; 271 if (SkipPseudoOp && I->isPseudoProbe()) 272 continue; 273 return I; 274 } 275 // The block is all debug values. 276 return end(); 277 } 278 279 bool MachineBasicBlock::hasEHPadSuccessor() const { 280 for (const MachineBasicBlock *Succ : successors()) 281 if (Succ->isEHPad()) 282 return true; 283 return false; 284 } 285 286 bool MachineBasicBlock::isEntryBlock() const { 287 return getParent()->begin() == getIterator(); 288 } 289 290 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 291 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 292 print(dbgs()); 293 } 294 #endif 295 296 bool MachineBasicBlock::mayHaveInlineAsmBr() const { 297 for (const MachineBasicBlock *Succ : successors()) { 298 if (Succ->isInlineAsmBrIndirectTarget()) 299 return true; 300 } 301 return false; 302 } 303 304 bool MachineBasicBlock::isLegalToHoistInto() const { 305 if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr()) 306 return false; 307 return true; 308 } 309 310 StringRef MachineBasicBlock::getName() const { 311 if (const BasicBlock *LBB = getBasicBlock()) 312 return LBB->getName(); 313 else 314 return StringRef("", 0); 315 } 316 317 /// Return a hopefully unique identifier for this block. 318 std::string MachineBasicBlock::getFullName() const { 319 std::string Name; 320 if (getParent()) 321 Name = (getParent()->getName() + ":").str(); 322 if (getBasicBlock()) 323 Name += getBasicBlock()->getName(); 324 else 325 Name += ("BB" + Twine(getNumber())).str(); 326 return Name; 327 } 328 329 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, 330 bool IsStandalone) const { 331 const MachineFunction *MF = getParent(); 332 if (!MF) { 333 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 334 << " is null\n"; 335 return; 336 } 337 const Function &F = MF->getFunction(); 338 const Module *M = F.getParent(); 339 ModuleSlotTracker MST(M); 340 MST.incorporateFunction(F); 341 print(OS, MST, Indexes, IsStandalone); 342 } 343 344 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 345 const SlotIndexes *Indexes, 346 bool IsStandalone) const { 347 const MachineFunction *MF = getParent(); 348 if (!MF) { 349 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 350 << " is null\n"; 351 return; 352 } 353 354 if (Indexes && PrintSlotIndexes) 355 OS << Indexes->getMBBStartIdx(this) << '\t'; 356 357 printName(OS, PrintNameIr | PrintNameAttributes, &MST); 358 OS << ":\n"; 359 360 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 361 const MachineRegisterInfo &MRI = MF->getRegInfo(); 362 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 363 bool HasLineAttributes = false; 364 365 // Print the preds of this block according to the CFG. 366 if (!pred_empty() && IsStandalone) { 367 if (Indexes) OS << '\t'; 368 // Don't indent(2), align with previous line attributes. 369 OS << "; predecessors: "; 370 ListSeparator LS; 371 for (auto *Pred : predecessors()) 372 OS << LS << printMBBReference(*Pred); 373 OS << '\n'; 374 HasLineAttributes = true; 375 } 376 377 if (!succ_empty()) { 378 if (Indexes) OS << '\t'; 379 // Print the successors 380 OS.indent(2) << "successors: "; 381 ListSeparator LS; 382 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 383 OS << LS << printMBBReference(**I); 384 if (!Probs.empty()) 385 OS << '(' 386 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator()) 387 << ')'; 388 } 389 if (!Probs.empty() && IsStandalone) { 390 // Print human readable probabilities as comments. 391 OS << "; "; 392 ListSeparator LS; 393 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 394 const BranchProbability &BP = getSuccProbability(I); 395 OS << LS << printMBBReference(**I) << '(' 396 << format("%.2f%%", 397 rint(((double)BP.getNumerator() / BP.getDenominator()) * 398 100.0 * 100.0) / 399 100.0) 400 << ')'; 401 } 402 } 403 404 OS << '\n'; 405 HasLineAttributes = true; 406 } 407 408 if (!livein_empty() && MRI.tracksLiveness()) { 409 if (Indexes) OS << '\t'; 410 OS.indent(2) << "liveins: "; 411 412 ListSeparator LS; 413 for (const auto &LI : liveins()) { 414 OS << LS << printReg(LI.PhysReg, TRI); 415 if (!LI.LaneMask.all()) 416 OS << ":0x" << PrintLaneMask(LI.LaneMask); 417 } 418 HasLineAttributes = true; 419 } 420 421 if (HasLineAttributes) 422 OS << '\n'; 423 424 bool IsInBundle = false; 425 for (const MachineInstr &MI : instrs()) { 426 if (Indexes && PrintSlotIndexes) { 427 if (Indexes->hasIndex(MI)) 428 OS << Indexes->getInstructionIndex(MI); 429 OS << '\t'; 430 } 431 432 if (IsInBundle && !MI.isInsideBundle()) { 433 OS.indent(2) << "}\n"; 434 IsInBundle = false; 435 } 436 437 OS.indent(IsInBundle ? 4 : 2); 438 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false, 439 /*AddNewLine=*/false, &TII); 440 441 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) { 442 OS << " {"; 443 IsInBundle = true; 444 } 445 OS << '\n'; 446 } 447 448 if (IsInBundle) 449 OS.indent(2) << "}\n"; 450 451 if (IrrLoopHeaderWeight && IsStandalone) { 452 if (Indexes) OS << '\t'; 453 OS.indent(2) << "; Irreducible loop header weight: " 454 << IrrLoopHeaderWeight.getValue() << '\n'; 455 } 456 } 457 458 /// Print the basic block's name as: 459 /// 460 /// bb.{number}[.{ir-name}] [(attributes...)] 461 /// 462 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed 463 /// (which is the default). If the IR block has no name, it is identified 464 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})". 465 /// 466 /// When the \ref PrintNameAttributes flag is passed, additional attributes 467 /// of the block are printed when set. 468 /// 469 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating 470 /// the parts to print. 471 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will 472 /// incorporate its own tracker when necessary to 473 /// determine the block's IR name. 474 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags, 475 ModuleSlotTracker *moduleSlotTracker) const { 476 os << "bb." << getNumber(); 477 bool hasAttributes = false; 478 479 if (printNameFlags & PrintNameIr) { 480 if (const auto *bb = getBasicBlock()) { 481 if (bb->hasName()) { 482 os << '.' << bb->getName(); 483 } else { 484 hasAttributes = true; 485 os << " ("; 486 487 int slot = -1; 488 489 if (moduleSlotTracker) { 490 slot = moduleSlotTracker->getLocalSlot(bb); 491 } else if (bb->getParent()) { 492 ModuleSlotTracker tmpTracker(bb->getModule(), false); 493 tmpTracker.incorporateFunction(*bb->getParent()); 494 slot = tmpTracker.getLocalSlot(bb); 495 } 496 497 if (slot == -1) 498 os << "<ir-block badref>"; 499 else 500 os << (Twine("%ir-block.") + Twine(slot)).str(); 501 } 502 } 503 } 504 505 if (printNameFlags & PrintNameAttributes) { 506 if (hasAddressTaken()) { 507 os << (hasAttributes ? ", " : " ("); 508 os << "address-taken"; 509 hasAttributes = true; 510 } 511 if (isEHPad()) { 512 os << (hasAttributes ? ", " : " ("); 513 os << "landing-pad"; 514 hasAttributes = true; 515 } 516 if (isInlineAsmBrIndirectTarget()) { 517 os << (hasAttributes ? ", " : " ("); 518 os << "inlineasm-br-indirect-target"; 519 hasAttributes = true; 520 } 521 if (isEHFuncletEntry()) { 522 os << (hasAttributes ? ", " : " ("); 523 os << "ehfunclet-entry"; 524 hasAttributes = true; 525 } 526 if (getAlignment() != Align(1)) { 527 os << (hasAttributes ? ", " : " ("); 528 os << "align " << getAlignment().value(); 529 hasAttributes = true; 530 } 531 if (getSectionID() != MBBSectionID(0)) { 532 os << (hasAttributes ? ", " : " ("); 533 os << "bbsections "; 534 switch (getSectionID().Type) { 535 case MBBSectionID::SectionType::Exception: 536 os << "Exception"; 537 break; 538 case MBBSectionID::SectionType::Cold: 539 os << "Cold"; 540 break; 541 default: 542 os << getSectionID().Number; 543 } 544 hasAttributes = true; 545 } 546 } 547 548 if (hasAttributes) 549 os << ')'; 550 } 551 552 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 553 bool /*PrintType*/) const { 554 OS << '%'; 555 printName(OS, 0); 556 } 557 558 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 559 LiveInVector::iterator I = find_if( 560 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 561 if (I == LiveIns.end()) 562 return; 563 564 I->LaneMask &= ~LaneMask; 565 if (I->LaneMask.none()) 566 LiveIns.erase(I); 567 } 568 569 MachineBasicBlock::livein_iterator 570 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 571 // Get non-const version of iterator. 572 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 573 return LiveIns.erase(LI); 574 } 575 576 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 577 livein_iterator I = find_if( 578 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 579 return I != livein_end() && (I->LaneMask & LaneMask).any(); 580 } 581 582 void MachineBasicBlock::sortUniqueLiveIns() { 583 llvm::sort(LiveIns, 584 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 585 return LI0.PhysReg < LI1.PhysReg; 586 }); 587 // Liveins are sorted by physreg now we can merge their lanemasks. 588 LiveInVector::const_iterator I = LiveIns.begin(); 589 LiveInVector::const_iterator J; 590 LiveInVector::iterator Out = LiveIns.begin(); 591 for (; I != LiveIns.end(); ++Out, I = J) { 592 MCRegister PhysReg = I->PhysReg; 593 LaneBitmask LaneMask = I->LaneMask; 594 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 595 LaneMask |= J->LaneMask; 596 Out->PhysReg = PhysReg; 597 Out->LaneMask = LaneMask; 598 } 599 LiveIns.erase(Out, LiveIns.end()); 600 } 601 602 Register 603 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) { 604 assert(getParent() && "MBB must be inserted in function"); 605 assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg"); 606 assert(RC && "Register class is required"); 607 assert((isEHPad() || this == &getParent()->front()) && 608 "Only the entry block and landing pads can have physreg live ins"); 609 610 bool LiveIn = isLiveIn(PhysReg); 611 iterator I = SkipPHIsAndLabels(begin()), E = end(); 612 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 613 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 614 615 // Look for an existing copy. 616 if (LiveIn) 617 for (;I != E && I->isCopy(); ++I) 618 if (I->getOperand(1).getReg() == PhysReg) { 619 Register VirtReg = I->getOperand(0).getReg(); 620 if (!MRI.constrainRegClass(VirtReg, RC)) 621 llvm_unreachable("Incompatible live-in register class."); 622 return VirtReg; 623 } 624 625 // No luck, create a virtual register. 626 Register VirtReg = MRI.createVirtualRegister(RC); 627 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 628 .addReg(PhysReg, RegState::Kill); 629 if (!LiveIn) 630 addLiveIn(PhysReg); 631 return VirtReg; 632 } 633 634 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 635 getParent()->splice(NewAfter->getIterator(), getIterator()); 636 } 637 638 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 639 getParent()->splice(++NewBefore->getIterator(), getIterator()); 640 } 641 642 void MachineBasicBlock::updateTerminator( 643 MachineBasicBlock *PreviousLayoutSuccessor) { 644 LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this) 645 << "\n"); 646 647 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 648 // A block with no successors has no concerns with fall-through edges. 649 if (this->succ_empty()) 650 return; 651 652 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 653 SmallVector<MachineOperand, 4> Cond; 654 DebugLoc DL = findBranchDebugLoc(); 655 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 656 (void) B; 657 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 658 if (Cond.empty()) { 659 if (TBB) { 660 // The block has an unconditional branch. If its successor is now its 661 // layout successor, delete the branch. 662 if (isLayoutSuccessor(TBB)) 663 TII->removeBranch(*this); 664 } else { 665 // The block has an unconditional fallthrough, or the end of the block is 666 // unreachable. 667 668 // Unfortunately, whether the end of the block is unreachable is not 669 // immediately obvious; we must fall back to checking the successor list, 670 // and assuming that if the passed in block is in the succesor list and 671 // not an EHPad, it must be the intended target. 672 if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) || 673 PreviousLayoutSuccessor->isEHPad()) 674 return; 675 676 // If the unconditional successor block is not the current layout 677 // successor, insert a branch to jump to it. 678 if (!isLayoutSuccessor(PreviousLayoutSuccessor)) 679 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 680 } 681 return; 682 } 683 684 if (FBB) { 685 // The block has a non-fallthrough conditional branch. If one of its 686 // successors is its layout successor, rewrite it to a fallthrough 687 // conditional branch. 688 if (isLayoutSuccessor(TBB)) { 689 if (TII->reverseBranchCondition(Cond)) 690 return; 691 TII->removeBranch(*this); 692 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 693 } else if (isLayoutSuccessor(FBB)) { 694 TII->removeBranch(*this); 695 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 696 } 697 return; 698 } 699 700 // We now know we're going to fallthrough to PreviousLayoutSuccessor. 701 assert(PreviousLayoutSuccessor); 702 assert(!PreviousLayoutSuccessor->isEHPad()); 703 assert(isSuccessor(PreviousLayoutSuccessor)); 704 705 if (PreviousLayoutSuccessor == TBB) { 706 // We had a fallthrough to the same basic block as the conditional jump 707 // targets. Remove the conditional jump, leaving an unconditional 708 // fallthrough or an unconditional jump. 709 TII->removeBranch(*this); 710 if (!isLayoutSuccessor(TBB)) { 711 Cond.clear(); 712 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 713 } 714 return; 715 } 716 717 // The block has a fallthrough conditional branch. 718 if (isLayoutSuccessor(TBB)) { 719 if (TII->reverseBranchCondition(Cond)) { 720 // We can't reverse the condition, add an unconditional branch. 721 Cond.clear(); 722 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 723 return; 724 } 725 TII->removeBranch(*this); 726 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 727 } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) { 728 TII->removeBranch(*this); 729 TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL); 730 } 731 } 732 733 void MachineBasicBlock::validateSuccProbs() const { 734 #ifndef NDEBUG 735 int64_t Sum = 0; 736 for (auto Prob : Probs) 737 Sum += Prob.getNumerator(); 738 // Due to precision issue, we assume that the sum of probabilities is one if 739 // the difference between the sum of their numerators and the denominator is 740 // no greater than the number of successors. 741 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 742 Probs.size() && 743 "The sum of successors's probabilities exceeds one."); 744 #endif // NDEBUG 745 } 746 747 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 748 BranchProbability Prob) { 749 // Probability list is either empty (if successor list isn't empty, this means 750 // disabled optimization) or has the same size as successor list. 751 if (!(Probs.empty() && !Successors.empty())) 752 Probs.push_back(Prob); 753 Successors.push_back(Succ); 754 Succ->addPredecessor(this); 755 } 756 757 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 758 // We need to make sure probability list is either empty or has the same size 759 // of successor list. When this function is called, we can safely delete all 760 // probability in the list. 761 Probs.clear(); 762 Successors.push_back(Succ); 763 Succ->addPredecessor(this); 764 } 765 766 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old, 767 MachineBasicBlock *New, 768 bool NormalizeSuccProbs) { 769 succ_iterator OldI = llvm::find(successors(), Old); 770 assert(OldI != succ_end() && "Old is not a successor of this block!"); 771 assert(!llvm::is_contained(successors(), New) && 772 "New is already a successor of this block!"); 773 774 // Add a new successor with equal probability as the original one. Note 775 // that we directly copy the probability using the iterator rather than 776 // getting a potentially synthetic probability computed when unknown. This 777 // preserves the probabilities as-is and then we can renormalize them and 778 // query them effectively afterward. 779 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown() 780 : *getProbabilityIterator(OldI)); 781 if (NormalizeSuccProbs) 782 normalizeSuccProbs(); 783 } 784 785 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 786 bool NormalizeSuccProbs) { 787 succ_iterator I = find(Successors, Succ); 788 removeSuccessor(I, NormalizeSuccProbs); 789 } 790 791 MachineBasicBlock::succ_iterator 792 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 793 assert(I != Successors.end() && "Not a current successor!"); 794 795 // If probability list is empty it means we don't use it (disabled 796 // optimization). 797 if (!Probs.empty()) { 798 probability_iterator WI = getProbabilityIterator(I); 799 Probs.erase(WI); 800 if (NormalizeSuccProbs) 801 normalizeSuccProbs(); 802 } 803 804 (*I)->removePredecessor(this); 805 return Successors.erase(I); 806 } 807 808 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 809 MachineBasicBlock *New) { 810 if (Old == New) 811 return; 812 813 succ_iterator E = succ_end(); 814 succ_iterator NewI = E; 815 succ_iterator OldI = E; 816 for (succ_iterator I = succ_begin(); I != E; ++I) { 817 if (*I == Old) { 818 OldI = I; 819 if (NewI != E) 820 break; 821 } 822 if (*I == New) { 823 NewI = I; 824 if (OldI != E) 825 break; 826 } 827 } 828 assert(OldI != E && "Old is not a successor of this block"); 829 830 // If New isn't already a successor, let it take Old's place. 831 if (NewI == E) { 832 Old->removePredecessor(this); 833 New->addPredecessor(this); 834 *OldI = New; 835 return; 836 } 837 838 // New is already a successor. 839 // Update its probability instead of adding a duplicate edge. 840 if (!Probs.empty()) { 841 auto ProbIter = getProbabilityIterator(NewI); 842 if (!ProbIter->isUnknown()) 843 *ProbIter += *getProbabilityIterator(OldI); 844 } 845 removeSuccessor(OldI); 846 } 847 848 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig, 849 succ_iterator I) { 850 if (!Orig->Probs.empty()) 851 addSuccessor(*I, Orig->getSuccProbability(I)); 852 else 853 addSuccessorWithoutProb(*I); 854 } 855 856 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 857 Predecessors.push_back(Pred); 858 } 859 860 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 861 pred_iterator I = find(Predecessors, Pred); 862 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 863 Predecessors.erase(I); 864 } 865 866 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 867 if (this == FromMBB) 868 return; 869 870 while (!FromMBB->succ_empty()) { 871 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 872 873 // If probability list is empty it means we don't use it (disabled 874 // optimization). 875 if (!FromMBB->Probs.empty()) { 876 auto Prob = *FromMBB->Probs.begin(); 877 addSuccessor(Succ, Prob); 878 } else 879 addSuccessorWithoutProb(Succ); 880 881 FromMBB->removeSuccessor(Succ); 882 } 883 } 884 885 void 886 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 887 if (this == FromMBB) 888 return; 889 890 while (!FromMBB->succ_empty()) { 891 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 892 if (!FromMBB->Probs.empty()) { 893 auto Prob = *FromMBB->Probs.begin(); 894 addSuccessor(Succ, Prob); 895 } else 896 addSuccessorWithoutProb(Succ); 897 FromMBB->removeSuccessor(Succ); 898 899 // Fix up any PHI nodes in the successor. 900 Succ->replacePhiUsesWith(FromMBB, this); 901 } 902 normalizeSuccProbs(); 903 } 904 905 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 906 return is_contained(predecessors(), MBB); 907 } 908 909 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 910 return is_contained(successors(), MBB); 911 } 912 913 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 914 MachineFunction::const_iterator I(this); 915 return std::next(I) == MachineFunction::const_iterator(MBB); 916 } 917 918 MachineBasicBlock *MachineBasicBlock::getFallThrough() { 919 MachineFunction::iterator Fallthrough = getIterator(); 920 ++Fallthrough; 921 // If FallthroughBlock is off the end of the function, it can't fall through. 922 if (Fallthrough == getParent()->end()) 923 return nullptr; 924 925 // If FallthroughBlock isn't a successor, no fallthrough is possible. 926 if (!isSuccessor(&*Fallthrough)) 927 return nullptr; 928 929 // Analyze the branches, if any, at the end of the block. 930 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 931 SmallVector<MachineOperand, 4> Cond; 932 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 933 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 934 // If we couldn't analyze the branch, examine the last instruction. 935 // If the block doesn't end in a known control barrier, assume fallthrough 936 // is possible. The isPredicated check is needed because this code can be 937 // called during IfConversion, where an instruction which is normally a 938 // Barrier is predicated and thus no longer an actual control barrier. 939 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 940 ? &*Fallthrough 941 : nullptr; 942 } 943 944 // If there is no branch, control always falls through. 945 if (!TBB) return &*Fallthrough; 946 947 // If there is some explicit branch to the fallthrough block, it can obviously 948 // reach, even though the branch should get folded to fall through implicitly. 949 if (MachineFunction::iterator(TBB) == Fallthrough || 950 MachineFunction::iterator(FBB) == Fallthrough) 951 return &*Fallthrough; 952 953 // If it's an unconditional branch to some block not the fall through, it 954 // doesn't fall through. 955 if (Cond.empty()) return nullptr; 956 957 // Otherwise, if it is conditional and has no explicit false block, it falls 958 // through. 959 return (FBB == nullptr) ? &*Fallthrough : nullptr; 960 } 961 962 bool MachineBasicBlock::canFallThrough() { 963 return getFallThrough() != nullptr; 964 } 965 966 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI, 967 bool UpdateLiveIns, 968 LiveIntervals *LIS) { 969 MachineBasicBlock::iterator SplitPoint(&MI); 970 ++SplitPoint; 971 972 if (SplitPoint == end()) { 973 // Don't bother with a new block. 974 return this; 975 } 976 977 MachineFunction *MF = getParent(); 978 979 LivePhysRegs LiveRegs; 980 if (UpdateLiveIns) { 981 // Make sure we add any physregs we define in the block as liveins to the 982 // new block. 983 MachineBasicBlock::iterator Prev(&MI); 984 LiveRegs.init(*MF->getSubtarget().getRegisterInfo()); 985 LiveRegs.addLiveOuts(*this); 986 for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I) 987 LiveRegs.stepBackward(*I); 988 } 989 990 MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock()); 991 992 MF->insert(++MachineFunction::iterator(this), SplitBB); 993 SplitBB->splice(SplitBB->begin(), this, SplitPoint, end()); 994 995 SplitBB->transferSuccessorsAndUpdatePHIs(this); 996 addSuccessor(SplitBB); 997 998 if (UpdateLiveIns) 999 addLiveIns(*SplitBB, LiveRegs); 1000 1001 if (LIS) 1002 LIS->insertMBBInMaps(SplitBB); 1003 1004 return SplitBB; 1005 } 1006 1007 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge( 1008 MachineBasicBlock *Succ, Pass &P, 1009 std::vector<SparseBitVector<>> *LiveInSets) { 1010 if (!canSplitCriticalEdge(Succ)) 1011 return nullptr; 1012 1013 MachineFunction *MF = getParent(); 1014 MachineBasicBlock *PrevFallthrough = getNextNode(); 1015 DebugLoc DL; // FIXME: this is nowhere 1016 1017 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 1018 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 1019 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) 1020 << " -- " << printMBBReference(*NMBB) << " -- " 1021 << printMBBReference(*Succ) << '\n'); 1022 1023 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 1024 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 1025 if (LIS) 1026 LIS->insertMBBInMaps(NMBB); 1027 else if (Indexes) 1028 Indexes->insertMBBInMaps(NMBB); 1029 1030 // On some targets like Mips, branches may kill virtual registers. Make sure 1031 // that LiveVariables is properly updated after updateTerminator replaces the 1032 // terminators. 1033 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 1034 1035 // Collect a list of virtual registers killed by the terminators. 1036 SmallVector<Register, 4> KilledRegs; 1037 if (LV) 1038 for (MachineInstr &MI : 1039 llvm::make_range(getFirstInstrTerminator(), instr_end())) { 1040 for (MachineOperand &MO : MI.operands()) { 1041 if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse() || !MO.isKill() || 1042 MO.isUndef()) 1043 continue; 1044 Register Reg = MO.getReg(); 1045 if (Register::isPhysicalRegister(Reg) || 1046 LV->getVarInfo(Reg).removeKill(MI)) { 1047 KilledRegs.push_back(Reg); 1048 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << MI); 1049 MO.setIsKill(false); 1050 } 1051 } 1052 } 1053 1054 SmallVector<Register, 4> UsedRegs; 1055 if (LIS) { 1056 for (MachineInstr &MI : 1057 llvm::make_range(getFirstInstrTerminator(), instr_end())) { 1058 for (const MachineOperand &MO : MI.operands()) { 1059 if (!MO.isReg() || MO.getReg() == 0) 1060 continue; 1061 1062 Register Reg = MO.getReg(); 1063 if (!is_contained(UsedRegs, Reg)) 1064 UsedRegs.push_back(Reg); 1065 } 1066 } 1067 } 1068 1069 ReplaceUsesOfBlockWith(Succ, NMBB); 1070 1071 // If updateTerminator() removes instructions, we need to remove them from 1072 // SlotIndexes. 1073 SmallVector<MachineInstr*, 4> Terminators; 1074 if (Indexes) { 1075 for (MachineInstr &MI : 1076 llvm::make_range(getFirstInstrTerminator(), instr_end())) 1077 Terminators.push_back(&MI); 1078 } 1079 1080 // Since we replaced all uses of Succ with NMBB, that should also be treated 1081 // as the fallthrough successor 1082 if (Succ == PrevFallthrough) 1083 PrevFallthrough = NMBB; 1084 updateTerminator(PrevFallthrough); 1085 1086 if (Indexes) { 1087 SmallVector<MachineInstr*, 4> NewTerminators; 1088 for (MachineInstr &MI : 1089 llvm::make_range(getFirstInstrTerminator(), instr_end())) 1090 NewTerminators.push_back(&MI); 1091 1092 for (MachineInstr *Terminator : Terminators) { 1093 if (!is_contained(NewTerminators, Terminator)) 1094 Indexes->removeMachineInstrFromMaps(*Terminator); 1095 } 1096 } 1097 1098 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 1099 NMBB->addSuccessor(Succ); 1100 if (!NMBB->isLayoutSuccessor(Succ)) { 1101 SmallVector<MachineOperand, 4> Cond; 1102 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 1103 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 1104 1105 if (Indexes) { 1106 for (MachineInstr &MI : NMBB->instrs()) { 1107 // Some instructions may have been moved to NMBB by updateTerminator(), 1108 // so we first remove any instruction that already has an index. 1109 if (Indexes->hasIndex(MI)) 1110 Indexes->removeMachineInstrFromMaps(MI); 1111 Indexes->insertMachineInstrInMaps(MI); 1112 } 1113 } 1114 } 1115 1116 // Fix PHI nodes in Succ so they refer to NMBB instead of this. 1117 Succ->replacePhiUsesWith(this, NMBB); 1118 1119 // Inherit live-ins from the successor 1120 for (const auto &LI : Succ->liveins()) 1121 NMBB->addLiveIn(LI); 1122 1123 // Update LiveVariables. 1124 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1125 if (LV) { 1126 // Restore kills of virtual registers that were killed by the terminators. 1127 while (!KilledRegs.empty()) { 1128 Register Reg = KilledRegs.pop_back_val(); 1129 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 1130 if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false)) 1131 continue; 1132 if (Register::isVirtualRegister(Reg)) 1133 LV->getVarInfo(Reg).Kills.push_back(&*I); 1134 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I); 1135 break; 1136 } 1137 } 1138 // Update relevant live-through information. 1139 if (LiveInSets != nullptr) 1140 LV->addNewBlock(NMBB, this, Succ, *LiveInSets); 1141 else 1142 LV->addNewBlock(NMBB, this, Succ); 1143 } 1144 1145 if (LIS) { 1146 // After splitting the edge and updating SlotIndexes, live intervals may be 1147 // in one of two situations, depending on whether this block was the last in 1148 // the function. If the original block was the last in the function, all 1149 // live intervals will end prior to the beginning of the new split block. If 1150 // the original block was not at the end of the function, all live intervals 1151 // will extend to the end of the new split block. 1152 1153 bool isLastMBB = 1154 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 1155 1156 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 1157 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 1158 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 1159 1160 // Find the registers used from NMBB in PHIs in Succ. 1161 SmallSet<Register, 8> PHISrcRegs; 1162 for (MachineBasicBlock::instr_iterator 1163 I = Succ->instr_begin(), E = Succ->instr_end(); 1164 I != E && I->isPHI(); ++I) { 1165 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 1166 if (I->getOperand(ni+1).getMBB() == NMBB) { 1167 MachineOperand &MO = I->getOperand(ni); 1168 Register Reg = MO.getReg(); 1169 PHISrcRegs.insert(Reg); 1170 if (MO.isUndef()) 1171 continue; 1172 1173 LiveInterval &LI = LIS->getInterval(Reg); 1174 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1175 assert(VNI && 1176 "PHI sources should be live out of their predecessors."); 1177 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1178 } 1179 } 1180 } 1181 1182 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 1183 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1184 Register Reg = Register::index2VirtReg(i); 1185 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 1186 continue; 1187 1188 LiveInterval &LI = LIS->getInterval(Reg); 1189 if (!LI.liveAt(PrevIndex)) 1190 continue; 1191 1192 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 1193 if (isLiveOut && isLastMBB) { 1194 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1195 assert(VNI && "LiveInterval should have VNInfo where it is live."); 1196 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1197 } else if (!isLiveOut && !isLastMBB) { 1198 LI.removeSegment(StartIndex, EndIndex); 1199 } 1200 } 1201 1202 // Update all intervals for registers whose uses may have been modified by 1203 // updateTerminator(). 1204 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 1205 } 1206 1207 if (MachineDominatorTree *MDT = 1208 P.getAnalysisIfAvailable<MachineDominatorTree>()) 1209 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 1210 1211 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 1212 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 1213 // If one or the other blocks were not in a loop, the new block is not 1214 // either, and thus LI doesn't need to be updated. 1215 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 1216 if (TIL == DestLoop) { 1217 // Both in the same loop, the NMBB joins loop. 1218 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1219 } else if (TIL->contains(DestLoop)) { 1220 // Edge from an outer loop to an inner loop. Add to the outer loop. 1221 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 1222 } else if (DestLoop->contains(TIL)) { 1223 // Edge from an inner loop to an outer loop. Add to the outer loop. 1224 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1225 } else { 1226 // Edge from two loops with no containment relation. Because these 1227 // are natural loops, we know that the destination block must be the 1228 // header of its loop (adding a branch into a loop elsewhere would 1229 // create an irreducible loop). 1230 assert(DestLoop->getHeader() == Succ && 1231 "Should not create irreducible loops!"); 1232 if (MachineLoop *P = DestLoop->getParentLoop()) 1233 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 1234 } 1235 } 1236 } 1237 1238 return NMBB; 1239 } 1240 1241 bool MachineBasicBlock::canSplitCriticalEdge( 1242 const MachineBasicBlock *Succ) const { 1243 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 1244 // it in this generic function. 1245 if (Succ->isEHPad()) 1246 return false; 1247 1248 // Splitting the critical edge to a callbr's indirect block isn't advised. 1249 // Don't do it in this generic function. 1250 if (Succ->isInlineAsmBrIndirectTarget()) 1251 return false; 1252 1253 const MachineFunction *MF = getParent(); 1254 // Performance might be harmed on HW that implements branching using exec mask 1255 // where both sides of the branches are always executed. 1256 if (MF->getTarget().requiresStructuredCFG()) 1257 return false; 1258 1259 // We may need to update this's terminator, but we can't do that if 1260 // analyzeBranch fails. If this uses a jump table, we won't touch it. 1261 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1262 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1263 SmallVector<MachineOperand, 4> Cond; 1264 // AnalyzeBanch should modify this, since we did not allow modification. 1265 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1266 /*AllowModify*/ false)) 1267 return false; 1268 1269 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1270 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1271 // case that we can't handle. Since this never happens in properly optimized 1272 // code, just skip those edges. 1273 if (TBB && TBB == FBB) { 1274 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate " 1275 << printMBBReference(*this) << '\n'); 1276 return false; 1277 } 1278 return true; 1279 } 1280 1281 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1282 /// neighboring instructions so the bundle won't be broken by removing MI. 1283 static void unbundleSingleMI(MachineInstr *MI) { 1284 // Removing the first instruction in a bundle. 1285 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1286 MI->unbundleFromSucc(); 1287 // Removing the last instruction in a bundle. 1288 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1289 MI->unbundleFromPred(); 1290 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1291 // are already fine. 1292 } 1293 1294 MachineBasicBlock::instr_iterator 1295 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1296 unbundleSingleMI(&*I); 1297 return Insts.erase(I); 1298 } 1299 1300 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1301 unbundleSingleMI(MI); 1302 MI->clearFlag(MachineInstr::BundledPred); 1303 MI->clearFlag(MachineInstr::BundledSucc); 1304 return Insts.remove(MI); 1305 } 1306 1307 MachineBasicBlock::instr_iterator 1308 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1309 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1310 "Cannot insert instruction with bundle flags"); 1311 // Set the bundle flags when inserting inside a bundle. 1312 if (I != instr_end() && I->isBundledWithPred()) { 1313 MI->setFlag(MachineInstr::BundledPred); 1314 MI->setFlag(MachineInstr::BundledSucc); 1315 } 1316 return Insts.insert(I, MI); 1317 } 1318 1319 /// This method unlinks 'this' from the containing function, and returns it, but 1320 /// does not delete it. 1321 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1322 assert(getParent() && "Not embedded in a function!"); 1323 getParent()->remove(this); 1324 return this; 1325 } 1326 1327 /// This method unlinks 'this' from the containing function, and deletes it. 1328 void MachineBasicBlock::eraseFromParent() { 1329 assert(getParent() && "Not embedded in a function!"); 1330 getParent()->erase(this); 1331 } 1332 1333 /// Given a machine basic block that branched to 'Old', change the code and CFG 1334 /// so that it branches to 'New' instead. 1335 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1336 MachineBasicBlock *New) { 1337 assert(Old != New && "Cannot replace self with self!"); 1338 1339 MachineBasicBlock::instr_iterator I = instr_end(); 1340 while (I != instr_begin()) { 1341 --I; 1342 if (!I->isTerminator()) break; 1343 1344 // Scan the operands of this machine instruction, replacing any uses of Old 1345 // with New. 1346 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1347 if (I->getOperand(i).isMBB() && 1348 I->getOperand(i).getMBB() == Old) 1349 I->getOperand(i).setMBB(New); 1350 } 1351 1352 // Update the successor information. 1353 replaceSuccessor(Old, New); 1354 } 1355 1356 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old, 1357 MachineBasicBlock *New) { 1358 for (MachineInstr &MI : phis()) 1359 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 1360 MachineOperand &MO = MI.getOperand(i); 1361 if (MO.getMBB() == Old) 1362 MO.setMBB(New); 1363 } 1364 } 1365 1366 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1367 /// instructions. Return UnknownLoc if there is none. 1368 DebugLoc 1369 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1370 // Skip debug declarations, we don't want a DebugLoc from them. 1371 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1372 if (MBBI != instr_end()) 1373 return MBBI->getDebugLoc(); 1374 return {}; 1375 } 1376 1377 DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) { 1378 // Skip debug declarations, we don't want a DebugLoc from them. 1379 MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin()); 1380 if (!MBBI->isDebugInstr()) 1381 return MBBI->getDebugLoc(); 1382 return {}; 1383 } 1384 1385 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE 1386 /// instructions. Return UnknownLoc if there is none. 1387 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) { 1388 if (MBBI == instr_begin()) return {}; 1389 // Skip debug instructions, we don't want a DebugLoc from them. 1390 MBBI = prev_nodbg(MBBI, instr_begin()); 1391 if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc(); 1392 return {}; 1393 } 1394 1395 DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) { 1396 if (MBBI == instr_rend()) 1397 return {}; 1398 // Skip debug declarations, we don't want a DebugLoc from them. 1399 MBBI = next_nodbg(MBBI, instr_rend()); 1400 if (MBBI != instr_rend()) 1401 return MBBI->getDebugLoc(); 1402 return {}; 1403 } 1404 1405 /// Find and return the merged DebugLoc of the branch instructions of the block. 1406 /// Return UnknownLoc if there is none. 1407 DebugLoc 1408 MachineBasicBlock::findBranchDebugLoc() { 1409 DebugLoc DL; 1410 auto TI = getFirstTerminator(); 1411 while (TI != end() && !TI->isBranch()) 1412 ++TI; 1413 1414 if (TI != end()) { 1415 DL = TI->getDebugLoc(); 1416 for (++TI ; TI != end() ; ++TI) 1417 if (TI->isBranch()) 1418 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1419 } 1420 return DL; 1421 } 1422 1423 /// Return probability of the edge from this block to MBB. 1424 BranchProbability 1425 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1426 if (Probs.empty()) 1427 return BranchProbability(1, succ_size()); 1428 1429 const auto &Prob = *getProbabilityIterator(Succ); 1430 if (Prob.isUnknown()) { 1431 // For unknown probabilities, collect the sum of all known ones, and evenly 1432 // ditribute the complemental of the sum to each unknown probability. 1433 unsigned KnownProbNum = 0; 1434 auto Sum = BranchProbability::getZero(); 1435 for (auto &P : Probs) { 1436 if (!P.isUnknown()) { 1437 Sum += P; 1438 KnownProbNum++; 1439 } 1440 } 1441 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1442 } else 1443 return Prob; 1444 } 1445 1446 /// Set successor probability of a given iterator. 1447 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1448 BranchProbability Prob) { 1449 assert(!Prob.isUnknown()); 1450 if (Probs.empty()) 1451 return; 1452 *getProbabilityIterator(I) = Prob; 1453 } 1454 1455 /// Return probability iterator corresonding to the I successor iterator 1456 MachineBasicBlock::const_probability_iterator 1457 MachineBasicBlock::getProbabilityIterator( 1458 MachineBasicBlock::const_succ_iterator I) const { 1459 assert(Probs.size() == Successors.size() && "Async probability list!"); 1460 const size_t index = std::distance(Successors.begin(), I); 1461 assert(index < Probs.size() && "Not a current successor!"); 1462 return Probs.begin() + index; 1463 } 1464 1465 /// Return probability iterator corresonding to the I successor iterator. 1466 MachineBasicBlock::probability_iterator 1467 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1468 assert(Probs.size() == Successors.size() && "Async probability list!"); 1469 const size_t index = std::distance(Successors.begin(), I); 1470 assert(index < Probs.size() && "Not a current successor!"); 1471 return Probs.begin() + index; 1472 } 1473 1474 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1475 /// as of just before "MI". 1476 /// 1477 /// Search is localised to a neighborhood of 1478 /// Neighborhood instructions before (searching for defs or kills) and N 1479 /// instructions after (searching just for defs) MI. 1480 MachineBasicBlock::LivenessQueryResult 1481 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1482 MCRegister Reg, const_iterator Before, 1483 unsigned Neighborhood) const { 1484 unsigned N = Neighborhood; 1485 1486 // Try searching forwards from Before, looking for reads or defs. 1487 const_iterator I(Before); 1488 for (; I != end() && N > 0; ++I) { 1489 if (I->isDebugOrPseudoInstr()) 1490 continue; 1491 1492 --N; 1493 1494 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1495 1496 // Register is live when we read it here. 1497 if (Info.Read) 1498 return LQR_Live; 1499 // Register is dead if we can fully overwrite or clobber it here. 1500 if (Info.FullyDefined || Info.Clobbered) 1501 return LQR_Dead; 1502 } 1503 1504 // If we reached the end, it is safe to clobber Reg at the end of a block of 1505 // no successor has it live in. 1506 if (I == end()) { 1507 for (MachineBasicBlock *S : successors()) { 1508 for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) { 1509 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1510 return LQR_Live; 1511 } 1512 } 1513 1514 return LQR_Dead; 1515 } 1516 1517 1518 N = Neighborhood; 1519 1520 // Start by searching backwards from Before, looking for kills, reads or defs. 1521 I = const_iterator(Before); 1522 // If this is the first insn in the block, don't search backwards. 1523 if (I != begin()) { 1524 do { 1525 --I; 1526 1527 if (I->isDebugOrPseudoInstr()) 1528 continue; 1529 1530 --N; 1531 1532 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1533 1534 // Defs happen after uses so they take precedence if both are present. 1535 1536 // Register is dead after a dead def of the full register. 1537 if (Info.DeadDef) 1538 return LQR_Dead; 1539 // Register is (at least partially) live after a def. 1540 if (Info.Defined) { 1541 if (!Info.PartialDeadDef) 1542 return LQR_Live; 1543 // As soon as we saw a partial definition (dead or not), 1544 // we cannot tell if the value is partial live without 1545 // tracking the lanemasks. We are not going to do this, 1546 // so fall back on the remaining of the analysis. 1547 break; 1548 } 1549 // Register is dead after a full kill or clobber and no def. 1550 if (Info.Killed || Info.Clobbered) 1551 return LQR_Dead; 1552 // Register must be live if we read it. 1553 if (Info.Read) 1554 return LQR_Live; 1555 1556 } while (I != begin() && N > 0); 1557 } 1558 1559 // If all the instructions before this in the block are debug instructions, 1560 // skip over them. 1561 while (I != begin() && std::prev(I)->isDebugOrPseudoInstr()) 1562 --I; 1563 1564 // Did we get to the start of the block? 1565 if (I == begin()) { 1566 // If so, the register's state is definitely defined by the live-in state. 1567 for (const MachineBasicBlock::RegisterMaskPair &LI : liveins()) 1568 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1569 return LQR_Live; 1570 1571 return LQR_Dead; 1572 } 1573 1574 // At this point we have no idea of the liveness of the register. 1575 return LQR_Unknown; 1576 } 1577 1578 const uint32_t * 1579 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1580 // EH funclet entry does not preserve any registers. 1581 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1582 } 1583 1584 const uint32_t * 1585 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1586 // If we see a return block with successors, this must be a funclet return, 1587 // which does not preserve any registers. If there are no successors, we don't 1588 // care what kind of return it is, putting a mask after it is a no-op. 1589 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1590 } 1591 1592 void MachineBasicBlock::clearLiveIns() { 1593 LiveIns.clear(); 1594 } 1595 1596 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1597 assert(getParent()->getProperties().hasProperty( 1598 MachineFunctionProperties::Property::TracksLiveness) && 1599 "Liveness information is accurate"); 1600 return LiveIns.begin(); 1601 } 1602 1603 MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const { 1604 const MachineFunction &MF = *getParent(); 1605 assert(MF.getProperties().hasProperty( 1606 MachineFunctionProperties::Property::TracksLiveness) && 1607 "Liveness information is accurate"); 1608 1609 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 1610 MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0; 1611 if (MF.getFunction().hasPersonalityFn()) { 1612 auto PersonalityFn = MF.getFunction().getPersonalityFn(); 1613 ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn); 1614 ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn); 1615 } 1616 1617 return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false); 1618 } 1619 1620 bool MachineBasicBlock::sizeWithoutDebugLargerThan(unsigned Limit) const { 1621 unsigned Cntr = 0; 1622 auto R = instructionsWithoutDebug(begin(), end()); 1623 for (auto I = R.begin(), E = R.end(); I != E; ++I) { 1624 if (++Cntr > Limit) 1625 return true; 1626 } 1627 return false; 1628 } 1629 1630 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold); 1631 const MBBSectionID 1632 MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception); 1633