xref: /llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp (revision 34e70d722dfd0e73d460802e8d43d3a885d24784)
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/CodeGen/LiveIntervals.h"
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SlotIndexes.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/MC/MCAsmInfo.h"
32 #include "llvm/MC/MCContext.h"
33 #include "llvm/Support/DataTypes.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include <algorithm>
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "codegen"
41 
42 static cl::opt<bool> PrintSlotIndexes(
43     "print-slotindexes",
44     cl::desc("When printing machine IR, annotate instructions and blocks with "
45              "SlotIndexes when available"),
46     cl::init(true), cl::Hidden);
47 
48 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
49     : BB(B), Number(-1), xParent(&MF) {
50   Insts.Parent = this;
51   if (B)
52     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
53 }
54 
55 MachineBasicBlock::~MachineBasicBlock() {
56 }
57 
58 /// Return the MCSymbol for this basic block.
59 MCSymbol *MachineBasicBlock::getSymbol() const {
60   if (!CachedMCSymbol) {
61     const MachineFunction *MF = getParent();
62     MCContext &Ctx = MF->getContext();
63 
64     // We emit a non-temporary symbol -- with a descriptive name -- if it begins
65     // a section (with basic block sections). Otherwise we fall back to use temp
66     // label.
67     if (MF->hasBBSections() && isBeginSection()) {
68       SmallString<5> Suffix;
69       if (SectionID == MBBSectionID::ColdSectionID) {
70         Suffix += ".cold";
71       } else if (SectionID == MBBSectionID::ExceptionSectionID) {
72         Suffix += ".eh";
73       } else {
74         // For symbols that represent basic block sections, we add ".__part." to
75         // allow tools like symbolizers to know that this represents a part of
76         // the original function.
77         Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str();
78       }
79       CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix);
80     } else {
81       const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
82       CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
83                                              Twine(MF->getFunctionNumber()) +
84                                              "_" + Twine(getNumber()));
85     }
86   }
87   return CachedMCSymbol;
88 }
89 
90 MCSymbol *MachineBasicBlock::getEndSymbol() const {
91   if (!CachedEndMCSymbol) {
92     const MachineFunction *MF = getParent();
93     MCContext &Ctx = MF->getContext();
94     auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
95     CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" +
96                                               Twine(MF->getFunctionNumber()) +
97                                               "_" + Twine(getNumber()));
98   }
99   return CachedEndMCSymbol;
100 }
101 
102 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
103   MBB.print(OS);
104   return OS;
105 }
106 
107 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
108   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
109 }
110 
111 /// When an MBB is added to an MF, we need to update the parent pointer of the
112 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
113 /// operand list for registers.
114 ///
115 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
116 /// gets the next available unique MBB number. If it is removed from a
117 /// MachineFunction, it goes back to being #-1.
118 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
119     MachineBasicBlock *N) {
120   MachineFunction &MF = *N->getParent();
121   N->Number = MF.addToMBBNumbering(N);
122 
123   // Make sure the instructions have their operands in the reginfo lists.
124   MachineRegisterInfo &RegInfo = MF.getRegInfo();
125   for (MachineBasicBlock::instr_iterator
126          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
127     I->AddRegOperandsToUseLists(RegInfo);
128 }
129 
130 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
131     MachineBasicBlock *N) {
132   N->getParent()->removeFromMBBNumbering(N->Number);
133   N->Number = -1;
134 }
135 
136 /// When we add an instruction to a basic block list, we update its parent
137 /// pointer and add its operands from reg use/def lists if appropriate.
138 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
139   assert(!N->getParent() && "machine instruction already in a basic block");
140   N->setParent(Parent);
141 
142   // Add the instruction's register operands to their corresponding
143   // use/def lists.
144   MachineFunction *MF = Parent->getParent();
145   N->AddRegOperandsToUseLists(MF->getRegInfo());
146   MF->handleInsertion(*N);
147 }
148 
149 /// When we remove an instruction from a basic block list, we update its parent
150 /// pointer and remove its operands from reg use/def lists if appropriate.
151 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
152   assert(N->getParent() && "machine instruction not in a basic block");
153 
154   // Remove from the use/def lists.
155   if (MachineFunction *MF = N->getMF()) {
156     MF->handleRemoval(*N);
157     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
158   }
159 
160   N->setParent(nullptr);
161 }
162 
163 /// When moving a range of instructions from one MBB list to another, we need to
164 /// update the parent pointers and the use/def lists.
165 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
166                                                        instr_iterator First,
167                                                        instr_iterator Last) {
168   assert(Parent->getParent() == FromList.Parent->getParent() &&
169          "cannot transfer MachineInstrs between MachineFunctions");
170 
171   // If it's within the same BB, there's nothing to do.
172   if (this == &FromList)
173     return;
174 
175   assert(Parent != FromList.Parent && "Two lists have the same parent?");
176 
177   // If splicing between two blocks within the same function, just update the
178   // parent pointers.
179   for (; First != Last; ++First)
180     First->setParent(Parent);
181 }
182 
183 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
184   assert(!MI->getParent() && "MI is still in a block!");
185   Parent->getParent()->DeleteMachineInstr(MI);
186 }
187 
188 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
189   instr_iterator I = instr_begin(), E = instr_end();
190   while (I != E && I->isPHI())
191     ++I;
192   assert((I == E || !I->isInsideBundle()) &&
193          "First non-phi MI cannot be inside a bundle!");
194   return I;
195 }
196 
197 MachineBasicBlock::iterator
198 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
199   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
200 
201   iterator E = end();
202   while (I != E && (I->isPHI() || I->isPosition() ||
203                     TII->isBasicBlockPrologue(*I)))
204     ++I;
205   // FIXME: This needs to change if we wish to bundle labels
206   // inside the bundle.
207   assert((I == E || !I->isInsideBundle()) &&
208          "First non-phi / non-label instruction is inside a bundle!");
209   return I;
210 }
211 
212 MachineBasicBlock::iterator
213 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) {
214   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
215 
216   iterator E = end();
217   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
218                     TII->isBasicBlockPrologue(*I)))
219     ++I;
220   // FIXME: This needs to change if we wish to bundle labels / dbg_values
221   // inside the bundle.
222   assert((I == E || !I->isInsideBundle()) &&
223          "First non-phi / non-label / non-debug "
224          "instruction is inside a bundle!");
225   return I;
226 }
227 
228 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
229   iterator B = begin(), E = end(), I = E;
230   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
231     ; /*noop */
232   while (I != E && !I->isTerminator())
233     ++I;
234   return I;
235 }
236 
237 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
238   instr_iterator B = instr_begin(), E = instr_end(), I = E;
239   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
240     ; /*noop */
241   while (I != E && !I->isTerminator())
242     ++I;
243   return I;
244 }
245 
246 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
247   // Skip over begin-of-block dbg_value instructions.
248   return skipDebugInstructionsForward(begin(), end());
249 }
250 
251 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
252   // Skip over end-of-block dbg_value instructions.
253   instr_iterator B = instr_begin(), I = instr_end();
254   while (I != B) {
255     --I;
256     // Return instruction that starts a bundle.
257     if (I->isDebugInstr() || I->isInsideBundle())
258       continue;
259     return I;
260   }
261   // The block is all debug values.
262   return end();
263 }
264 
265 bool MachineBasicBlock::hasEHPadSuccessor() const {
266   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
267     if ((*I)->isEHPad())
268       return true;
269   return false;
270 }
271 
272 bool MachineBasicBlock::isEntryBlock() const {
273   return getParent()->begin() == getIterator();
274 }
275 
276 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
277 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
278   print(dbgs());
279 }
280 #endif
281 
282 bool MachineBasicBlock::mayHaveInlineAsmBr() const {
283   for (const MachineBasicBlock *Succ : successors()) {
284     if (Succ->isInlineAsmBrIndirectTarget())
285       return true;
286   }
287   return false;
288 }
289 
290 bool MachineBasicBlock::isLegalToHoistInto() const {
291   if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr())
292     return false;
293   return true;
294 }
295 
296 StringRef MachineBasicBlock::getName() const {
297   if (const BasicBlock *LBB = getBasicBlock())
298     return LBB->getName();
299   else
300     return StringRef("", 0);
301 }
302 
303 /// Return a hopefully unique identifier for this block.
304 std::string MachineBasicBlock::getFullName() const {
305   std::string Name;
306   if (getParent())
307     Name = (getParent()->getName() + ":").str();
308   if (getBasicBlock())
309     Name += getBasicBlock()->getName();
310   else
311     Name += ("BB" + Twine(getNumber())).str();
312   return Name;
313 }
314 
315 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
316                               bool IsStandalone) const {
317   const MachineFunction *MF = getParent();
318   if (!MF) {
319     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
320        << " is null\n";
321     return;
322   }
323   const Function &F = MF->getFunction();
324   const Module *M = F.getParent();
325   ModuleSlotTracker MST(M);
326   MST.incorporateFunction(F);
327   print(OS, MST, Indexes, IsStandalone);
328 }
329 
330 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
331                               const SlotIndexes *Indexes,
332                               bool IsStandalone) const {
333   const MachineFunction *MF = getParent();
334   if (!MF) {
335     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
336        << " is null\n";
337     return;
338   }
339 
340   if (Indexes && PrintSlotIndexes)
341     OS << Indexes->getMBBStartIdx(this) << '\t';
342 
343   printName(OS, PrintNameIr | PrintNameAttributes, &MST);
344   OS << ":\n";
345 
346   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
347   const MachineRegisterInfo &MRI = MF->getRegInfo();
348   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
349   bool HasLineAttributes = false;
350 
351   // Print the preds of this block according to the CFG.
352   if (!pred_empty() && IsStandalone) {
353     if (Indexes) OS << '\t';
354     // Don't indent(2), align with previous line attributes.
355     OS << "; predecessors: ";
356     for (auto I = pred_begin(), E = pred_end(); I != E; ++I) {
357       if (I != pred_begin())
358         OS << ", ";
359       OS << printMBBReference(**I);
360     }
361     OS << '\n';
362     HasLineAttributes = true;
363   }
364 
365   if (!succ_empty()) {
366     if (Indexes) OS << '\t';
367     // Print the successors
368     OS.indent(2) << "successors: ";
369     for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
370       if (I != succ_begin())
371         OS << ", ";
372       OS << printMBBReference(**I);
373       if (!Probs.empty())
374         OS << '('
375            << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
376            << ')';
377     }
378     if (!Probs.empty() && IsStandalone) {
379       // Print human readable probabilities as comments.
380       OS << "; ";
381       for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
382         const BranchProbability &BP = getSuccProbability(I);
383         if (I != succ_begin())
384           OS << ", ";
385         OS << printMBBReference(**I) << '('
386            << format("%.2f%%",
387                      rint(((double)BP.getNumerator() / BP.getDenominator()) *
388                           100.0 * 100.0) /
389                          100.0)
390            << ')';
391       }
392     }
393 
394     OS << '\n';
395     HasLineAttributes = true;
396   }
397 
398   if (!livein_empty() && MRI.tracksLiveness()) {
399     if (Indexes) OS << '\t';
400     OS.indent(2) << "liveins: ";
401 
402     bool First = true;
403     for (const auto &LI : liveins()) {
404       if (!First)
405         OS << ", ";
406       First = false;
407       OS << printReg(LI.PhysReg, TRI);
408       if (!LI.LaneMask.all())
409         OS << ":0x" << PrintLaneMask(LI.LaneMask);
410     }
411     HasLineAttributes = true;
412   }
413 
414   if (HasLineAttributes)
415     OS << '\n';
416 
417   bool IsInBundle = false;
418   for (const MachineInstr &MI : instrs()) {
419     if (Indexes && PrintSlotIndexes) {
420       if (Indexes->hasIndex(MI))
421         OS << Indexes->getInstructionIndex(MI);
422       OS << '\t';
423     }
424 
425     if (IsInBundle && !MI.isInsideBundle()) {
426       OS.indent(2) << "}\n";
427       IsInBundle = false;
428     }
429 
430     OS.indent(IsInBundle ? 4 : 2);
431     MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
432              /*AddNewLine=*/false, &TII);
433 
434     if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
435       OS << " {";
436       IsInBundle = true;
437     }
438     OS << '\n';
439   }
440 
441   if (IsInBundle)
442     OS.indent(2) << "}\n";
443 
444   if (IrrLoopHeaderWeight && IsStandalone) {
445     if (Indexes) OS << '\t';
446     OS.indent(2) << "; Irreducible loop header weight: "
447                  << IrrLoopHeaderWeight.getValue() << '\n';
448   }
449 }
450 
451 /// Print the basic block's name as:
452 ///
453 ///    bb.{number}[.{ir-name}] [(attributes...)]
454 ///
455 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed
456 /// (which is the default). If the IR block has no name, it is identified
457 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})".
458 ///
459 /// When the \ref PrintNameAttributes flag is passed, additional attributes
460 /// of the block are printed when set.
461 ///
462 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating
463 ///                       the parts to print.
464 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will
465 ///                          incorporate its own tracker when necessary to
466 ///                          determine the block's IR name.
467 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags,
468                                   ModuleSlotTracker *moduleSlotTracker) const {
469   os << "bb." << getNumber();
470   bool hasAttributes = false;
471 
472   if (printNameFlags & PrintNameIr) {
473     if (const auto *bb = getBasicBlock()) {
474       if (bb->hasName()) {
475         os << '.' << bb->getName();
476       } else {
477         hasAttributes = true;
478         os << " (";
479 
480         int slot = -1;
481 
482         if (moduleSlotTracker) {
483           slot = moduleSlotTracker->getLocalSlot(bb);
484         } else if (bb->getParent()) {
485           ModuleSlotTracker tmpTracker(bb->getModule(), false);
486           tmpTracker.incorporateFunction(*bb->getParent());
487           slot = tmpTracker.getLocalSlot(bb);
488         }
489 
490         if (slot == -1)
491           os << "<ir-block badref>";
492         else
493           os << (Twine("%ir-block.") + Twine(slot)).str();
494       }
495     }
496   }
497 
498   if (printNameFlags & PrintNameAttributes) {
499     if (hasAddressTaken()) {
500       os << (hasAttributes ? ", " : " (");
501       os << "address-taken";
502       hasAttributes = true;
503     }
504     if (isEHPad()) {
505       os << (hasAttributes ? ", " : " (");
506       os << "landing-pad";
507       hasAttributes = true;
508     }
509     if (isEHFuncletEntry()) {
510       os << (hasAttributes ? ", " : " (");
511       os << "ehfunclet-entry";
512       hasAttributes = true;
513     }
514     if (getAlignment() != Align(1)) {
515       os << (hasAttributes ? ", " : " (");
516       os << "align " << getAlignment().value();
517       hasAttributes = true;
518     }
519     if (getSectionID() != MBBSectionID(0)) {
520       os << (hasAttributes ? ", " : " (");
521       os << "bbsections ";
522       switch (getSectionID().Type) {
523       case MBBSectionID::SectionType::Exception:
524         os << "Exception";
525         break;
526       case MBBSectionID::SectionType::Cold:
527         os << "Cold";
528         break;
529       default:
530         os << getSectionID().Number;
531       }
532       hasAttributes = true;
533     }
534   }
535 
536   if (hasAttributes)
537     os << ')';
538 }
539 
540 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
541                                        bool /*PrintType*/) const {
542   OS << '%';
543   printName(OS, 0);
544 }
545 
546 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
547   LiveInVector::iterator I = find_if(
548       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
549   if (I == LiveIns.end())
550     return;
551 
552   I->LaneMask &= ~LaneMask;
553   if (I->LaneMask.none())
554     LiveIns.erase(I);
555 }
556 
557 MachineBasicBlock::livein_iterator
558 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
559   // Get non-const version of iterator.
560   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
561   return LiveIns.erase(LI);
562 }
563 
564 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
565   livein_iterator I = find_if(
566       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
567   return I != livein_end() && (I->LaneMask & LaneMask).any();
568 }
569 
570 void MachineBasicBlock::sortUniqueLiveIns() {
571   llvm::sort(LiveIns,
572              [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
573                return LI0.PhysReg < LI1.PhysReg;
574              });
575   // Liveins are sorted by physreg now we can merge their lanemasks.
576   LiveInVector::const_iterator I = LiveIns.begin();
577   LiveInVector::const_iterator J;
578   LiveInVector::iterator Out = LiveIns.begin();
579   for (; I != LiveIns.end(); ++Out, I = J) {
580     MCRegister PhysReg = I->PhysReg;
581     LaneBitmask LaneMask = I->LaneMask;
582     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
583       LaneMask |= J->LaneMask;
584     Out->PhysReg = PhysReg;
585     Out->LaneMask = LaneMask;
586   }
587   LiveIns.erase(Out, LiveIns.end());
588 }
589 
590 Register
591 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) {
592   assert(getParent() && "MBB must be inserted in function");
593   assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg");
594   assert(RC && "Register class is required");
595   assert((isEHPad() || this == &getParent()->front()) &&
596          "Only the entry block and landing pads can have physreg live ins");
597 
598   bool LiveIn = isLiveIn(PhysReg);
599   iterator I = SkipPHIsAndLabels(begin()), E = end();
600   MachineRegisterInfo &MRI = getParent()->getRegInfo();
601   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
602 
603   // Look for an existing copy.
604   if (LiveIn)
605     for (;I != E && I->isCopy(); ++I)
606       if (I->getOperand(1).getReg() == PhysReg) {
607         Register VirtReg = I->getOperand(0).getReg();
608         if (!MRI.constrainRegClass(VirtReg, RC))
609           llvm_unreachable("Incompatible live-in register class.");
610         return VirtReg;
611       }
612 
613   // No luck, create a virtual register.
614   Register VirtReg = MRI.createVirtualRegister(RC);
615   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
616     .addReg(PhysReg, RegState::Kill);
617   if (!LiveIn)
618     addLiveIn(PhysReg);
619   return VirtReg;
620 }
621 
622 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
623   getParent()->splice(NewAfter->getIterator(), getIterator());
624 }
625 
626 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
627   getParent()->splice(++NewBefore->getIterator(), getIterator());
628 }
629 
630 void MachineBasicBlock::updateTerminator(
631     MachineBasicBlock *PreviousLayoutSuccessor) {
632   LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this)
633                     << "\n");
634 
635   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
636   // A block with no successors has no concerns with fall-through edges.
637   if (this->succ_empty())
638     return;
639 
640   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
641   SmallVector<MachineOperand, 4> Cond;
642   DebugLoc DL = findBranchDebugLoc();
643   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
644   (void) B;
645   assert(!B && "UpdateTerminators requires analyzable predecessors!");
646   if (Cond.empty()) {
647     if (TBB) {
648       // The block has an unconditional branch. If its successor is now its
649       // layout successor, delete the branch.
650       if (isLayoutSuccessor(TBB))
651         TII->removeBranch(*this);
652     } else {
653       // The block has an unconditional fallthrough, or the end of the block is
654       // unreachable.
655 
656       // Unfortunately, whether the end of the block is unreachable is not
657       // immediately obvious; we must fall back to checking the successor list,
658       // and assuming that if the passed in block is in the succesor list and
659       // not an EHPad, it must be the intended target.
660       if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) ||
661           PreviousLayoutSuccessor->isEHPad())
662         return;
663 
664       // If the unconditional successor block is not the current layout
665       // successor, insert a branch to jump to it.
666       if (!isLayoutSuccessor(PreviousLayoutSuccessor))
667         TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
668     }
669     return;
670   }
671 
672   if (FBB) {
673     // The block has a non-fallthrough conditional branch. If one of its
674     // successors is its layout successor, rewrite it to a fallthrough
675     // conditional branch.
676     if (isLayoutSuccessor(TBB)) {
677       if (TII->reverseBranchCondition(Cond))
678         return;
679       TII->removeBranch(*this);
680       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
681     } else if (isLayoutSuccessor(FBB)) {
682       TII->removeBranch(*this);
683       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
684     }
685     return;
686   }
687 
688   // We now know we're going to fallthrough to PreviousLayoutSuccessor.
689   assert(PreviousLayoutSuccessor);
690   assert(!PreviousLayoutSuccessor->isEHPad());
691   assert(isSuccessor(PreviousLayoutSuccessor));
692 
693   if (PreviousLayoutSuccessor == TBB) {
694     // We had a fallthrough to the same basic block as the conditional jump
695     // targets.  Remove the conditional jump, leaving an unconditional
696     // fallthrough or an unconditional jump.
697     TII->removeBranch(*this);
698     if (!isLayoutSuccessor(TBB)) {
699       Cond.clear();
700       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
701     }
702     return;
703   }
704 
705   // The block has a fallthrough conditional branch.
706   if (isLayoutSuccessor(TBB)) {
707     if (TII->reverseBranchCondition(Cond)) {
708       // We can't reverse the condition, add an unconditional branch.
709       Cond.clear();
710       TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
711       return;
712     }
713     TII->removeBranch(*this);
714     TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
715   } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) {
716     TII->removeBranch(*this);
717     TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL);
718   }
719 }
720 
721 void MachineBasicBlock::validateSuccProbs() const {
722 #ifndef NDEBUG
723   int64_t Sum = 0;
724   for (auto Prob : Probs)
725     Sum += Prob.getNumerator();
726   // Due to precision issue, we assume that the sum of probabilities is one if
727   // the difference between the sum of their numerators and the denominator is
728   // no greater than the number of successors.
729   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
730              Probs.size() &&
731          "The sum of successors's probabilities exceeds one.");
732 #endif // NDEBUG
733 }
734 
735 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
736                                      BranchProbability Prob) {
737   // Probability list is either empty (if successor list isn't empty, this means
738   // disabled optimization) or has the same size as successor list.
739   if (!(Probs.empty() && !Successors.empty()))
740     Probs.push_back(Prob);
741   Successors.push_back(Succ);
742   Succ->addPredecessor(this);
743 }
744 
745 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
746   // We need to make sure probability list is either empty or has the same size
747   // of successor list. When this function is called, we can safely delete all
748   // probability in the list.
749   Probs.clear();
750   Successors.push_back(Succ);
751   Succ->addPredecessor(this);
752 }
753 
754 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
755                                        MachineBasicBlock *New,
756                                        bool NormalizeSuccProbs) {
757   succ_iterator OldI = llvm::find(successors(), Old);
758   assert(OldI != succ_end() && "Old is not a successor of this block!");
759   assert(!llvm::is_contained(successors(), New) &&
760          "New is already a successor of this block!");
761 
762   // Add a new successor with equal probability as the original one. Note
763   // that we directly copy the probability using the iterator rather than
764   // getting a potentially synthetic probability computed when unknown. This
765   // preserves the probabilities as-is and then we can renormalize them and
766   // query them effectively afterward.
767   addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
768                                   : *getProbabilityIterator(OldI));
769   if (NormalizeSuccProbs)
770     normalizeSuccProbs();
771 }
772 
773 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
774                                         bool NormalizeSuccProbs) {
775   succ_iterator I = find(Successors, Succ);
776   removeSuccessor(I, NormalizeSuccProbs);
777 }
778 
779 MachineBasicBlock::succ_iterator
780 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
781   assert(I != Successors.end() && "Not a current successor!");
782 
783   // If probability list is empty it means we don't use it (disabled
784   // optimization).
785   if (!Probs.empty()) {
786     probability_iterator WI = getProbabilityIterator(I);
787     Probs.erase(WI);
788     if (NormalizeSuccProbs)
789       normalizeSuccProbs();
790   }
791 
792   (*I)->removePredecessor(this);
793   return Successors.erase(I);
794 }
795 
796 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
797                                          MachineBasicBlock *New) {
798   if (Old == New)
799     return;
800 
801   succ_iterator E = succ_end();
802   succ_iterator NewI = E;
803   succ_iterator OldI = E;
804   for (succ_iterator I = succ_begin(); I != E; ++I) {
805     if (*I == Old) {
806       OldI = I;
807       if (NewI != E)
808         break;
809     }
810     if (*I == New) {
811       NewI = I;
812       if (OldI != E)
813         break;
814     }
815   }
816   assert(OldI != E && "Old is not a successor of this block");
817 
818   // If New isn't already a successor, let it take Old's place.
819   if (NewI == E) {
820     Old->removePredecessor(this);
821     New->addPredecessor(this);
822     *OldI = New;
823     return;
824   }
825 
826   // New is already a successor.
827   // Update its probability instead of adding a duplicate edge.
828   if (!Probs.empty()) {
829     auto ProbIter = getProbabilityIterator(NewI);
830     if (!ProbIter->isUnknown())
831       *ProbIter += *getProbabilityIterator(OldI);
832   }
833   removeSuccessor(OldI);
834 }
835 
836 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
837                                       succ_iterator I) {
838   if (!Orig->Probs.empty())
839     addSuccessor(*I, Orig->getSuccProbability(I));
840   else
841     addSuccessorWithoutProb(*I);
842 }
843 
844 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
845   Predecessors.push_back(Pred);
846 }
847 
848 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
849   pred_iterator I = find(Predecessors, Pred);
850   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
851   Predecessors.erase(I);
852 }
853 
854 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
855   if (this == FromMBB)
856     return;
857 
858   while (!FromMBB->succ_empty()) {
859     MachineBasicBlock *Succ = *FromMBB->succ_begin();
860 
861     // If probability list is empty it means we don't use it (disabled
862     // optimization).
863     if (!FromMBB->Probs.empty()) {
864       auto Prob = *FromMBB->Probs.begin();
865       addSuccessor(Succ, Prob);
866     } else
867       addSuccessorWithoutProb(Succ);
868 
869     FromMBB->removeSuccessor(Succ);
870   }
871 }
872 
873 void
874 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
875   if (this == FromMBB)
876     return;
877 
878   while (!FromMBB->succ_empty()) {
879     MachineBasicBlock *Succ = *FromMBB->succ_begin();
880     if (!FromMBB->Probs.empty()) {
881       auto Prob = *FromMBB->Probs.begin();
882       addSuccessor(Succ, Prob);
883     } else
884       addSuccessorWithoutProb(Succ);
885     FromMBB->removeSuccessor(Succ);
886 
887     // Fix up any PHI nodes in the successor.
888     Succ->replacePhiUsesWith(FromMBB, this);
889   }
890   normalizeSuccProbs();
891 }
892 
893 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
894   return is_contained(predecessors(), MBB);
895 }
896 
897 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
898   return is_contained(successors(), MBB);
899 }
900 
901 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
902   MachineFunction::const_iterator I(this);
903   return std::next(I) == MachineFunction::const_iterator(MBB);
904 }
905 
906 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
907   MachineFunction::iterator Fallthrough = getIterator();
908   ++Fallthrough;
909   // If FallthroughBlock is off the end of the function, it can't fall through.
910   if (Fallthrough == getParent()->end())
911     return nullptr;
912 
913   // If FallthroughBlock isn't a successor, no fallthrough is possible.
914   if (!isSuccessor(&*Fallthrough))
915     return nullptr;
916 
917   // Analyze the branches, if any, at the end of the block.
918   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
919   SmallVector<MachineOperand, 4> Cond;
920   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
921   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
922     // If we couldn't analyze the branch, examine the last instruction.
923     // If the block doesn't end in a known control barrier, assume fallthrough
924     // is possible. The isPredicated check is needed because this code can be
925     // called during IfConversion, where an instruction which is normally a
926     // Barrier is predicated and thus no longer an actual control barrier.
927     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
928                ? &*Fallthrough
929                : nullptr;
930   }
931 
932   // If there is no branch, control always falls through.
933   if (!TBB) return &*Fallthrough;
934 
935   // If there is some explicit branch to the fallthrough block, it can obviously
936   // reach, even though the branch should get folded to fall through implicitly.
937   if (MachineFunction::iterator(TBB) == Fallthrough ||
938       MachineFunction::iterator(FBB) == Fallthrough)
939     return &*Fallthrough;
940 
941   // If it's an unconditional branch to some block not the fall through, it
942   // doesn't fall through.
943   if (Cond.empty()) return nullptr;
944 
945   // Otherwise, if it is conditional and has no explicit false block, it falls
946   // through.
947   return (FBB == nullptr) ? &*Fallthrough : nullptr;
948 }
949 
950 bool MachineBasicBlock::canFallThrough() {
951   return getFallThrough() != nullptr;
952 }
953 
954 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI,
955                                               bool UpdateLiveIns,
956                                               LiveIntervals *LIS) {
957   MachineBasicBlock::iterator SplitPoint(&MI);
958   ++SplitPoint;
959 
960   if (SplitPoint == end()) {
961     // Don't bother with a new block.
962     return this;
963   }
964 
965   MachineFunction *MF = getParent();
966 
967   LivePhysRegs LiveRegs;
968   if (UpdateLiveIns) {
969     // Make sure we add any physregs we define in the block as liveins to the
970     // new block.
971     MachineBasicBlock::iterator Prev(&MI);
972     LiveRegs.init(*MF->getSubtarget().getRegisterInfo());
973     LiveRegs.addLiveOuts(*this);
974     for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I)
975       LiveRegs.stepBackward(*I);
976   }
977 
978   MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock());
979 
980   MF->insert(++MachineFunction::iterator(this), SplitBB);
981   SplitBB->splice(SplitBB->begin(), this, SplitPoint, end());
982 
983   SplitBB->transferSuccessorsAndUpdatePHIs(this);
984   addSuccessor(SplitBB);
985 
986   if (UpdateLiveIns)
987     addLiveIns(*SplitBB, LiveRegs);
988 
989   if (LIS)
990     LIS->insertMBBInMaps(SplitBB, &MI);
991 
992   return SplitBB;
993 }
994 
995 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(
996     MachineBasicBlock *Succ, Pass &P,
997     std::vector<SparseBitVector<>> *LiveInSets) {
998   if (!canSplitCriticalEdge(Succ))
999     return nullptr;
1000 
1001   MachineFunction *MF = getParent();
1002   MachineBasicBlock *PrevFallthrough = getNextNode();
1003   DebugLoc DL;  // FIXME: this is nowhere
1004 
1005   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
1006   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
1007   LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
1008                     << " -- " << printMBBReference(*NMBB) << " -- "
1009                     << printMBBReference(*Succ) << '\n');
1010 
1011   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
1012   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
1013   if (LIS)
1014     LIS->insertMBBInMaps(NMBB);
1015   else if (Indexes)
1016     Indexes->insertMBBInMaps(NMBB);
1017 
1018   // On some targets like Mips, branches may kill virtual registers. Make sure
1019   // that LiveVariables is properly updated after updateTerminator replaces the
1020   // terminators.
1021   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
1022 
1023   // Collect a list of virtual registers killed by the terminators.
1024   SmallVector<Register, 4> KilledRegs;
1025   if (LV)
1026     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1027          I != E; ++I) {
1028       MachineInstr *MI = &*I;
1029       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
1030            OE = MI->operands_end(); OI != OE; ++OI) {
1031         if (!OI->isReg() || OI->getReg() == 0 ||
1032             !OI->isUse() || !OI->isKill() || OI->isUndef())
1033           continue;
1034         Register Reg = OI->getReg();
1035         if (Register::isPhysicalRegister(Reg) ||
1036             LV->getVarInfo(Reg).removeKill(*MI)) {
1037           KilledRegs.push_back(Reg);
1038           LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI);
1039           OI->setIsKill(false);
1040         }
1041       }
1042     }
1043 
1044   SmallVector<Register, 4> UsedRegs;
1045   if (LIS) {
1046     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1047          I != E; ++I) {
1048       MachineInstr *MI = &*I;
1049 
1050       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
1051            OE = MI->operands_end(); OI != OE; ++OI) {
1052         if (!OI->isReg() || OI->getReg() == 0)
1053           continue;
1054 
1055         Register Reg = OI->getReg();
1056         if (!is_contained(UsedRegs, Reg))
1057           UsedRegs.push_back(Reg);
1058       }
1059     }
1060   }
1061 
1062   ReplaceUsesOfBlockWith(Succ, NMBB);
1063 
1064   // If updateTerminator() removes instructions, we need to remove them from
1065   // SlotIndexes.
1066   SmallVector<MachineInstr*, 4> Terminators;
1067   if (Indexes) {
1068     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1069          I != E; ++I)
1070       Terminators.push_back(&*I);
1071   }
1072 
1073   // Since we replaced all uses of Succ with NMBB, that should also be treated
1074   // as the fallthrough successor
1075   if (Succ == PrevFallthrough)
1076     PrevFallthrough = NMBB;
1077   updateTerminator(PrevFallthrough);
1078 
1079   if (Indexes) {
1080     SmallVector<MachineInstr*, 4> NewTerminators;
1081     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
1082          I != E; ++I)
1083       NewTerminators.push_back(&*I);
1084 
1085     for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
1086         E = Terminators.end(); I != E; ++I) {
1087       if (!is_contained(NewTerminators, *I))
1088         Indexes->removeMachineInstrFromMaps(**I);
1089     }
1090   }
1091 
1092   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
1093   NMBB->addSuccessor(Succ);
1094   if (!NMBB->isLayoutSuccessor(Succ)) {
1095     SmallVector<MachineOperand, 4> Cond;
1096     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
1097     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
1098 
1099     if (Indexes) {
1100       for (MachineInstr &MI : NMBB->instrs()) {
1101         // Some instructions may have been moved to NMBB by updateTerminator(),
1102         // so we first remove any instruction that already has an index.
1103         if (Indexes->hasIndex(MI))
1104           Indexes->removeMachineInstrFromMaps(MI);
1105         Indexes->insertMachineInstrInMaps(MI);
1106       }
1107     }
1108   }
1109 
1110   // Fix PHI nodes in Succ so they refer to NMBB instead of this.
1111   Succ->replacePhiUsesWith(this, NMBB);
1112 
1113   // Inherit live-ins from the successor
1114   for (const auto &LI : Succ->liveins())
1115     NMBB->addLiveIn(LI);
1116 
1117   // Update LiveVariables.
1118   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1119   if (LV) {
1120     // Restore kills of virtual registers that were killed by the terminators.
1121     while (!KilledRegs.empty()) {
1122       Register Reg = KilledRegs.pop_back_val();
1123       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
1124         if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
1125           continue;
1126         if (Register::isVirtualRegister(Reg))
1127           LV->getVarInfo(Reg).Kills.push_back(&*I);
1128         LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1129         break;
1130       }
1131     }
1132     // Update relevant live-through information.
1133     if (LiveInSets != nullptr)
1134       LV->addNewBlock(NMBB, this, Succ, *LiveInSets);
1135     else
1136       LV->addNewBlock(NMBB, this, Succ);
1137   }
1138 
1139   if (LIS) {
1140     // After splitting the edge and updating SlotIndexes, live intervals may be
1141     // in one of two situations, depending on whether this block was the last in
1142     // the function. If the original block was the last in the function, all
1143     // live intervals will end prior to the beginning of the new split block. If
1144     // the original block was not at the end of the function, all live intervals
1145     // will extend to the end of the new split block.
1146 
1147     bool isLastMBB =
1148       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1149 
1150     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1151     SlotIndex PrevIndex = StartIndex.getPrevSlot();
1152     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1153 
1154     // Find the registers used from NMBB in PHIs in Succ.
1155     SmallSet<Register, 8> PHISrcRegs;
1156     for (MachineBasicBlock::instr_iterator
1157          I = Succ->instr_begin(), E = Succ->instr_end();
1158          I != E && I->isPHI(); ++I) {
1159       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1160         if (I->getOperand(ni+1).getMBB() == NMBB) {
1161           MachineOperand &MO = I->getOperand(ni);
1162           Register Reg = MO.getReg();
1163           PHISrcRegs.insert(Reg);
1164           if (MO.isUndef())
1165             continue;
1166 
1167           LiveInterval &LI = LIS->getInterval(Reg);
1168           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1169           assert(VNI &&
1170                  "PHI sources should be live out of their predecessors.");
1171           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1172         }
1173       }
1174     }
1175 
1176     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1177     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1178       Register Reg = Register::index2VirtReg(i);
1179       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1180         continue;
1181 
1182       LiveInterval &LI = LIS->getInterval(Reg);
1183       if (!LI.liveAt(PrevIndex))
1184         continue;
1185 
1186       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1187       if (isLiveOut && isLastMBB) {
1188         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1189         assert(VNI && "LiveInterval should have VNInfo where it is live.");
1190         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1191       } else if (!isLiveOut && !isLastMBB) {
1192         LI.removeSegment(StartIndex, EndIndex);
1193       }
1194     }
1195 
1196     // Update all intervals for registers whose uses may have been modified by
1197     // updateTerminator().
1198     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1199   }
1200 
1201   if (MachineDominatorTree *MDT =
1202           P.getAnalysisIfAvailable<MachineDominatorTree>())
1203     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1204 
1205   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1206     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1207       // If one or the other blocks were not in a loop, the new block is not
1208       // either, and thus LI doesn't need to be updated.
1209       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1210         if (TIL == DestLoop) {
1211           // Both in the same loop, the NMBB joins loop.
1212           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1213         } else if (TIL->contains(DestLoop)) {
1214           // Edge from an outer loop to an inner loop.  Add to the outer loop.
1215           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1216         } else if (DestLoop->contains(TIL)) {
1217           // Edge from an inner loop to an outer loop.  Add to the outer loop.
1218           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1219         } else {
1220           // Edge from two loops with no containment relation.  Because these
1221           // are natural loops, we know that the destination block must be the
1222           // header of its loop (adding a branch into a loop elsewhere would
1223           // create an irreducible loop).
1224           assert(DestLoop->getHeader() == Succ &&
1225                  "Should not create irreducible loops!");
1226           if (MachineLoop *P = DestLoop->getParentLoop())
1227             P->addBasicBlockToLoop(NMBB, MLI->getBase());
1228         }
1229       }
1230     }
1231 
1232   return NMBB;
1233 }
1234 
1235 bool MachineBasicBlock::canSplitCriticalEdge(
1236     const MachineBasicBlock *Succ) const {
1237   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1238   // it in this generic function.
1239   if (Succ->isEHPad())
1240     return false;
1241 
1242   // Splitting the critical edge to a callbr's indirect block isn't advised.
1243   // Don't do it in this generic function.
1244   if (Succ->isInlineAsmBrIndirectTarget())
1245     return false;
1246 
1247   const MachineFunction *MF = getParent();
1248   // Performance might be harmed on HW that implements branching using exec mask
1249   // where both sides of the branches are always executed.
1250   if (MF->getTarget().requiresStructuredCFG())
1251     return false;
1252 
1253   // We may need to update this's terminator, but we can't do that if
1254   // analyzeBranch fails. If this uses a jump table, we won't touch it.
1255   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1256   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1257   SmallVector<MachineOperand, 4> Cond;
1258   // AnalyzeBanch should modify this, since we did not allow modification.
1259   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1260                          /*AllowModify*/ false))
1261     return false;
1262 
1263   // Avoid bugpoint weirdness: A block may end with a conditional branch but
1264   // jumps to the same MBB is either case. We have duplicate CFG edges in that
1265   // case that we can't handle. Since this never happens in properly optimized
1266   // code, just skip those edges.
1267   if (TBB && TBB == FBB) {
1268     LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1269                       << printMBBReference(*this) << '\n');
1270     return false;
1271   }
1272   return true;
1273 }
1274 
1275 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1276 /// neighboring instructions so the bundle won't be broken by removing MI.
1277 static void unbundleSingleMI(MachineInstr *MI) {
1278   // Removing the first instruction in a bundle.
1279   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1280     MI->unbundleFromSucc();
1281   // Removing the last instruction in a bundle.
1282   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1283     MI->unbundleFromPred();
1284   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1285   // are already fine.
1286 }
1287 
1288 MachineBasicBlock::instr_iterator
1289 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1290   unbundleSingleMI(&*I);
1291   return Insts.erase(I);
1292 }
1293 
1294 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1295   unbundleSingleMI(MI);
1296   MI->clearFlag(MachineInstr::BundledPred);
1297   MI->clearFlag(MachineInstr::BundledSucc);
1298   return Insts.remove(MI);
1299 }
1300 
1301 MachineBasicBlock::instr_iterator
1302 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1303   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1304          "Cannot insert instruction with bundle flags");
1305   // Set the bundle flags when inserting inside a bundle.
1306   if (I != instr_end() && I->isBundledWithPred()) {
1307     MI->setFlag(MachineInstr::BundledPred);
1308     MI->setFlag(MachineInstr::BundledSucc);
1309   }
1310   return Insts.insert(I, MI);
1311 }
1312 
1313 /// This method unlinks 'this' from the containing function, and returns it, but
1314 /// does not delete it.
1315 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1316   assert(getParent() && "Not embedded in a function!");
1317   getParent()->remove(this);
1318   return this;
1319 }
1320 
1321 /// This method unlinks 'this' from the containing function, and deletes it.
1322 void MachineBasicBlock::eraseFromParent() {
1323   assert(getParent() && "Not embedded in a function!");
1324   getParent()->erase(this);
1325 }
1326 
1327 /// Given a machine basic block that branched to 'Old', change the code and CFG
1328 /// so that it branches to 'New' instead.
1329 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1330                                                MachineBasicBlock *New) {
1331   assert(Old != New && "Cannot replace self with self!");
1332 
1333   MachineBasicBlock::instr_iterator I = instr_end();
1334   while (I != instr_begin()) {
1335     --I;
1336     if (!I->isTerminator()) break;
1337 
1338     // Scan the operands of this machine instruction, replacing any uses of Old
1339     // with New.
1340     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1341       if (I->getOperand(i).isMBB() &&
1342           I->getOperand(i).getMBB() == Old)
1343         I->getOperand(i).setMBB(New);
1344   }
1345 
1346   // Update the successor information.
1347   replaceSuccessor(Old, New);
1348 }
1349 
1350 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
1351                                            MachineBasicBlock *New) {
1352   for (MachineInstr &MI : phis())
1353     for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
1354       MachineOperand &MO = MI.getOperand(i);
1355       if (MO.getMBB() == Old)
1356         MO.setMBB(New);
1357     }
1358 }
1359 
1360 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1361 /// instructions.  Return UnknownLoc if there is none.
1362 DebugLoc
1363 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1364   // Skip debug declarations, we don't want a DebugLoc from them.
1365   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1366   if (MBBI != instr_end())
1367     return MBBI->getDebugLoc();
1368   return {};
1369 }
1370 
1371 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1372 /// instructions.  Return UnknownLoc if there is none.
1373 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1374   if (MBBI == instr_begin()) return {};
1375   // Skip debug instructions, we don't want a DebugLoc from them.
1376   MBBI = prev_nodbg(MBBI, instr_begin());
1377   if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
1378   return {};
1379 }
1380 
1381 /// Find and return the merged DebugLoc of the branch instructions of the block.
1382 /// Return UnknownLoc if there is none.
1383 DebugLoc
1384 MachineBasicBlock::findBranchDebugLoc() {
1385   DebugLoc DL;
1386   auto TI = getFirstTerminator();
1387   while (TI != end() && !TI->isBranch())
1388     ++TI;
1389 
1390   if (TI != end()) {
1391     DL = TI->getDebugLoc();
1392     for (++TI ; TI != end() ; ++TI)
1393       if (TI->isBranch())
1394         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1395   }
1396   return DL;
1397 }
1398 
1399 /// Return probability of the edge from this block to MBB.
1400 BranchProbability
1401 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1402   if (Probs.empty())
1403     return BranchProbability(1, succ_size());
1404 
1405   const auto &Prob = *getProbabilityIterator(Succ);
1406   if (Prob.isUnknown()) {
1407     // For unknown probabilities, collect the sum of all known ones, and evenly
1408     // ditribute the complemental of the sum to each unknown probability.
1409     unsigned KnownProbNum = 0;
1410     auto Sum = BranchProbability::getZero();
1411     for (auto &P : Probs) {
1412       if (!P.isUnknown()) {
1413         Sum += P;
1414         KnownProbNum++;
1415       }
1416     }
1417     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1418   } else
1419     return Prob;
1420 }
1421 
1422 /// Set successor probability of a given iterator.
1423 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1424                                            BranchProbability Prob) {
1425   assert(!Prob.isUnknown());
1426   if (Probs.empty())
1427     return;
1428   *getProbabilityIterator(I) = Prob;
1429 }
1430 
1431 /// Return probability iterator corresonding to the I successor iterator
1432 MachineBasicBlock::const_probability_iterator
1433 MachineBasicBlock::getProbabilityIterator(
1434     MachineBasicBlock::const_succ_iterator I) const {
1435   assert(Probs.size() == Successors.size() && "Async probability list!");
1436   const size_t index = std::distance(Successors.begin(), I);
1437   assert(index < Probs.size() && "Not a current successor!");
1438   return Probs.begin() + index;
1439 }
1440 
1441 /// Return probability iterator corresonding to the I successor iterator.
1442 MachineBasicBlock::probability_iterator
1443 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1444   assert(Probs.size() == Successors.size() && "Async probability list!");
1445   const size_t index = std::distance(Successors.begin(), I);
1446   assert(index < Probs.size() && "Not a current successor!");
1447   return Probs.begin() + index;
1448 }
1449 
1450 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1451 /// as of just before "MI".
1452 ///
1453 /// Search is localised to a neighborhood of
1454 /// Neighborhood instructions before (searching for defs or kills) and N
1455 /// instructions after (searching just for defs) MI.
1456 MachineBasicBlock::LivenessQueryResult
1457 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1458                                            MCRegister Reg, const_iterator Before,
1459                                            unsigned Neighborhood) const {
1460   unsigned N = Neighborhood;
1461 
1462   // Try searching forwards from Before, looking for reads or defs.
1463   const_iterator I(Before);
1464   for (; I != end() && N > 0; ++I) {
1465     if (I->isDebugInstr())
1466       continue;
1467 
1468     --N;
1469 
1470     PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1471 
1472     // Register is live when we read it here.
1473     if (Info.Read)
1474       return LQR_Live;
1475     // Register is dead if we can fully overwrite or clobber it here.
1476     if (Info.FullyDefined || Info.Clobbered)
1477       return LQR_Dead;
1478   }
1479 
1480   // If we reached the end, it is safe to clobber Reg at the end of a block of
1481   // no successor has it live in.
1482   if (I == end()) {
1483     for (MachineBasicBlock *S : successors()) {
1484       for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1485         if (TRI->regsOverlap(LI.PhysReg, Reg))
1486           return LQR_Live;
1487       }
1488     }
1489 
1490     return LQR_Dead;
1491   }
1492 
1493 
1494   N = Neighborhood;
1495 
1496   // Start by searching backwards from Before, looking for kills, reads or defs.
1497   I = const_iterator(Before);
1498   // If this is the first insn in the block, don't search backwards.
1499   if (I != begin()) {
1500     do {
1501       --I;
1502 
1503       if (I->isDebugInstr())
1504         continue;
1505 
1506       --N;
1507 
1508       PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1509 
1510       // Defs happen after uses so they take precedence if both are present.
1511 
1512       // Register is dead after a dead def of the full register.
1513       if (Info.DeadDef)
1514         return LQR_Dead;
1515       // Register is (at least partially) live after a def.
1516       if (Info.Defined) {
1517         if (!Info.PartialDeadDef)
1518           return LQR_Live;
1519         // As soon as we saw a partial definition (dead or not),
1520         // we cannot tell if the value is partial live without
1521         // tracking the lanemasks. We are not going to do this,
1522         // so fall back on the remaining of the analysis.
1523         break;
1524       }
1525       // Register is dead after a full kill or clobber and no def.
1526       if (Info.Killed || Info.Clobbered)
1527         return LQR_Dead;
1528       // Register must be live if we read it.
1529       if (Info.Read)
1530         return LQR_Live;
1531 
1532     } while (I != begin() && N > 0);
1533   }
1534 
1535   // If all the instructions before this in the block are debug instructions,
1536   // skip over them.
1537   while (I != begin() && std::prev(I)->isDebugInstr())
1538     --I;
1539 
1540   // Did we get to the start of the block?
1541   if (I == begin()) {
1542     // If so, the register's state is definitely defined by the live-in state.
1543     for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1544       if (TRI->regsOverlap(LI.PhysReg, Reg))
1545         return LQR_Live;
1546 
1547     return LQR_Dead;
1548   }
1549 
1550   // At this point we have no idea of the liveness of the register.
1551   return LQR_Unknown;
1552 }
1553 
1554 const uint32_t *
1555 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1556   // EH funclet entry does not preserve any registers.
1557   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1558 }
1559 
1560 const uint32_t *
1561 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1562   // If we see a return block with successors, this must be a funclet return,
1563   // which does not preserve any registers. If there are no successors, we don't
1564   // care what kind of return it is, putting a mask after it is a no-op.
1565   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1566 }
1567 
1568 void MachineBasicBlock::clearLiveIns() {
1569   LiveIns.clear();
1570 }
1571 
1572 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1573   assert(getParent()->getProperties().hasProperty(
1574       MachineFunctionProperties::Property::TracksLiveness) &&
1575       "Liveness information is accurate");
1576   return LiveIns.begin();
1577 }
1578 
1579 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold);
1580 const MBBSectionID
1581     MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception);
1582