1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 18 #include "llvm/CodeGen/LiveVariables.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/SlotIndexes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/ModuleSlotTracker.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 #define DEBUG_TYPE "codegen" 40 41 MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb) 42 : BB(bb), Number(-1), xParent(&mf), Alignment(0), IsLandingPad(false), 43 AddressTaken(false), CachedMCSymbol(nullptr) { 44 Insts.Parent = this; 45 } 46 47 MachineBasicBlock::~MachineBasicBlock() { 48 } 49 50 /// getSymbol - Return the MCSymbol for this basic block. 51 /// 52 MCSymbol *MachineBasicBlock::getSymbol() const { 53 if (!CachedMCSymbol) { 54 const MachineFunction *MF = getParent(); 55 MCContext &Ctx = MF->getContext(); 56 const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 57 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 58 Twine(MF->getFunctionNumber()) + 59 "_" + Twine(getNumber())); 60 } 61 62 return CachedMCSymbol; 63 } 64 65 66 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 67 MBB.print(OS); 68 return OS; 69 } 70 71 /// addNodeToList (MBB) - When an MBB is added to an MF, we need to update the 72 /// parent pointer of the MBB, the MBB numbering, and any instructions in the 73 /// MBB to be on the right operand list for registers. 74 /// 75 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 76 /// gets the next available unique MBB number. If it is removed from a 77 /// MachineFunction, it goes back to being #-1. 78 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) { 79 MachineFunction &MF = *N->getParent(); 80 N->Number = MF.addToMBBNumbering(N); 81 82 // Make sure the instructions have their operands in the reginfo lists. 83 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 84 for (MachineBasicBlock::instr_iterator 85 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 86 I->AddRegOperandsToUseLists(RegInfo); 87 } 88 89 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) { 90 N->getParent()->removeFromMBBNumbering(N->Number); 91 N->Number = -1; 92 } 93 94 95 /// addNodeToList (MI) - When we add an instruction to a basic block 96 /// list, we update its parent pointer and add its operands from reg use/def 97 /// lists if appropriate. 98 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 99 assert(!N->getParent() && "machine instruction already in a basic block"); 100 N->setParent(Parent); 101 102 // Add the instruction's register operands to their corresponding 103 // use/def lists. 104 MachineFunction *MF = Parent->getParent(); 105 N->AddRegOperandsToUseLists(MF->getRegInfo()); 106 } 107 108 /// removeNodeFromList (MI) - When we remove an instruction from a basic block 109 /// list, we update its parent pointer and remove its operands from reg use/def 110 /// lists if appropriate. 111 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 112 assert(N->getParent() && "machine instruction not in a basic block"); 113 114 // Remove from the use/def lists. 115 if (MachineFunction *MF = N->getParent()->getParent()) 116 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 117 118 N->setParent(nullptr); 119 } 120 121 /// transferNodesFromList (MI) - When moving a range of instructions from one 122 /// MBB list to another, we need to update the parent pointers and the use/def 123 /// lists. 124 void ilist_traits<MachineInstr>:: 125 transferNodesFromList(ilist_traits<MachineInstr> &fromList, 126 ilist_iterator<MachineInstr> first, 127 ilist_iterator<MachineInstr> last) { 128 assert(Parent->getParent() == fromList.Parent->getParent() && 129 "MachineInstr parent mismatch!"); 130 131 // Splice within the same MBB -> no change. 132 if (Parent == fromList.Parent) return; 133 134 // If splicing between two blocks within the same function, just update the 135 // parent pointers. 136 for (; first != last; ++first) 137 first->setParent(Parent); 138 } 139 140 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) { 141 assert(!MI->getParent() && "MI is still in a block!"); 142 Parent->getParent()->DeleteMachineInstr(MI); 143 } 144 145 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 146 instr_iterator I = instr_begin(), E = instr_end(); 147 while (I != E && I->isPHI()) 148 ++I; 149 assert((I == E || !I->isInsideBundle()) && 150 "First non-phi MI cannot be inside a bundle!"); 151 return I; 152 } 153 154 MachineBasicBlock::iterator 155 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 156 iterator E = end(); 157 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue())) 158 ++I; 159 // FIXME: This needs to change if we wish to bundle labels / dbg_values 160 // inside the bundle. 161 assert((I == E || !I->isInsideBundle()) && 162 "First non-phi / non-label instruction is inside a bundle!"); 163 return I; 164 } 165 166 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 167 iterator B = begin(), E = end(), I = E; 168 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 169 ; /*noop */ 170 while (I != E && !I->isTerminator()) 171 ++I; 172 return I; 173 } 174 175 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 176 instr_iterator B = instr_begin(), E = instr_end(), I = E; 177 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 178 ; /*noop */ 179 while (I != E && !I->isTerminator()) 180 ++I; 181 return I; 182 } 183 184 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 185 // Skip over begin-of-block dbg_value instructions. 186 iterator I = begin(), E = end(); 187 while (I != E && I->isDebugValue()) 188 ++I; 189 return I; 190 } 191 192 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 193 // Skip over end-of-block dbg_value instructions. 194 instr_iterator B = instr_begin(), I = instr_end(); 195 while (I != B) { 196 --I; 197 // Return instruction that starts a bundle. 198 if (I->isDebugValue() || I->isInsideBundle()) 199 continue; 200 return I; 201 } 202 // The block is all debug values. 203 return end(); 204 } 205 206 const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const { 207 // A block with a landing pad successor only has one other successor. 208 if (succ_size() > 2) 209 return nullptr; 210 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 211 if ((*I)->isLandingPad()) 212 return *I; 213 return nullptr; 214 } 215 216 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 217 void MachineBasicBlock::dump() const { 218 print(dbgs()); 219 } 220 #endif 221 222 StringRef MachineBasicBlock::getName() const { 223 if (const BasicBlock *LBB = getBasicBlock()) 224 return LBB->getName(); 225 else 226 return "(null)"; 227 } 228 229 /// Return a hopefully unique identifier for this block. 230 std::string MachineBasicBlock::getFullName() const { 231 std::string Name; 232 if (getParent()) 233 Name = (getParent()->getName() + ":").str(); 234 if (getBasicBlock()) 235 Name += getBasicBlock()->getName(); 236 else 237 Name += ("BB" + Twine(getNumber())).str(); 238 return Name; 239 } 240 241 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const { 242 const MachineFunction *MF = getParent(); 243 if (!MF) { 244 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 245 << " is null\n"; 246 return; 247 } 248 const Function *F = MF->getFunction(); 249 const Module *M = F ? F->getParent() : nullptr; 250 ModuleSlotTracker MST(M); 251 print(OS, MST, Indexes); 252 } 253 254 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 255 SlotIndexes *Indexes) const { 256 const MachineFunction *MF = getParent(); 257 if (!MF) { 258 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 259 << " is null\n"; 260 return; 261 } 262 263 if (Indexes) 264 OS << Indexes->getMBBStartIdx(this) << '\t'; 265 266 OS << "BB#" << getNumber() << ": "; 267 268 const char *Comma = ""; 269 if (const BasicBlock *LBB = getBasicBlock()) { 270 OS << Comma << "derived from LLVM BB "; 271 LBB->printAsOperand(OS, /*PrintType=*/false, MST); 272 Comma = ", "; 273 } 274 if (isLandingPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 275 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 276 if (Alignment) 277 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 278 << " bytes)"; 279 280 OS << '\n'; 281 282 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 283 if (!livein_empty()) { 284 if (Indexes) OS << '\t'; 285 OS << " Live Ins:"; 286 for (livein_iterator I = livein_begin(),E = livein_end(); I != E; ++I) 287 OS << ' ' << PrintReg(*I, TRI); 288 OS << '\n'; 289 } 290 // Print the preds of this block according to the CFG. 291 if (!pred_empty()) { 292 if (Indexes) OS << '\t'; 293 OS << " Predecessors according to CFG:"; 294 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 295 OS << " BB#" << (*PI)->getNumber(); 296 OS << '\n'; 297 } 298 299 for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) { 300 if (Indexes) { 301 if (Indexes->hasIndex(I)) 302 OS << Indexes->getInstructionIndex(I); 303 OS << '\t'; 304 } 305 OS << '\t'; 306 if (I->isInsideBundle()) 307 OS << " * "; 308 I->print(OS); 309 } 310 311 // Print the successors of this block according to the CFG. 312 if (!succ_empty()) { 313 if (Indexes) OS << '\t'; 314 OS << " Successors according to CFG:"; 315 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 316 OS << " BB#" << (*SI)->getNumber(); 317 if (!Weights.empty()) 318 OS << '(' << *getWeightIterator(SI) << ')'; 319 } 320 OS << '\n'; 321 } 322 } 323 324 void MachineBasicBlock::printAsOperand(raw_ostream &OS, bool /*PrintType*/) const { 325 OS << "BB#" << getNumber(); 326 } 327 328 void MachineBasicBlock::removeLiveIn(unsigned Reg) { 329 std::vector<unsigned>::iterator I = 330 std::find(LiveIns.begin(), LiveIns.end(), Reg); 331 if (I != LiveIns.end()) 332 LiveIns.erase(I); 333 } 334 335 bool MachineBasicBlock::isLiveIn(unsigned Reg) const { 336 livein_iterator I = std::find(livein_begin(), livein_end(), Reg); 337 return I != livein_end(); 338 } 339 340 unsigned 341 MachineBasicBlock::addLiveIn(unsigned PhysReg, const TargetRegisterClass *RC) { 342 assert(getParent() && "MBB must be inserted in function"); 343 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 344 assert(RC && "Register class is required"); 345 assert((isLandingPad() || this == &getParent()->front()) && 346 "Only the entry block and landing pads can have physreg live ins"); 347 348 bool LiveIn = isLiveIn(PhysReg); 349 iterator I = SkipPHIsAndLabels(begin()), E = end(); 350 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 351 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 352 353 // Look for an existing copy. 354 if (LiveIn) 355 for (;I != E && I->isCopy(); ++I) 356 if (I->getOperand(1).getReg() == PhysReg) { 357 unsigned VirtReg = I->getOperand(0).getReg(); 358 if (!MRI.constrainRegClass(VirtReg, RC)) 359 llvm_unreachable("Incompatible live-in register class."); 360 return VirtReg; 361 } 362 363 // No luck, create a virtual register. 364 unsigned VirtReg = MRI.createVirtualRegister(RC); 365 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 366 .addReg(PhysReg, RegState::Kill); 367 if (!LiveIn) 368 addLiveIn(PhysReg); 369 return VirtReg; 370 } 371 372 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 373 getParent()->splice(NewAfter, this); 374 } 375 376 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 377 MachineFunction::iterator BBI = NewBefore; 378 getParent()->splice(++BBI, this); 379 } 380 381 void MachineBasicBlock::updateTerminator() { 382 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 383 // A block with no successors has no concerns with fall-through edges. 384 if (this->succ_empty()) return; 385 386 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 387 SmallVector<MachineOperand, 4> Cond; 388 DebugLoc dl; // FIXME: this is nowhere 389 bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond); 390 (void) B; 391 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 392 if (Cond.empty()) { 393 if (TBB) { 394 // The block has an unconditional branch. If its successor is now 395 // its layout successor, delete the branch. 396 if (isLayoutSuccessor(TBB)) 397 TII->RemoveBranch(*this); 398 } else { 399 // The block has an unconditional fallthrough. If its successor is not 400 // its layout successor, insert a branch. First we have to locate the 401 // only non-landing-pad successor, as that is the fallthrough block. 402 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 403 if ((*SI)->isLandingPad()) 404 continue; 405 assert(!TBB && "Found more than one non-landing-pad successor!"); 406 TBB = *SI; 407 } 408 409 // If there is no non-landing-pad successor, the block has no 410 // fall-through edges to be concerned with. 411 if (!TBB) 412 return; 413 414 // Finally update the unconditional successor to be reached via a branch 415 // if it would not be reached by fallthrough. 416 if (!isLayoutSuccessor(TBB)) 417 TII->InsertBranch(*this, TBB, nullptr, Cond, dl); 418 } 419 } else { 420 if (FBB) { 421 // The block has a non-fallthrough conditional branch. If one of its 422 // successors is its layout successor, rewrite it to a fallthrough 423 // conditional branch. 424 if (isLayoutSuccessor(TBB)) { 425 if (TII->ReverseBranchCondition(Cond)) 426 return; 427 TII->RemoveBranch(*this); 428 TII->InsertBranch(*this, FBB, nullptr, Cond, dl); 429 } else if (isLayoutSuccessor(FBB)) { 430 TII->RemoveBranch(*this); 431 TII->InsertBranch(*this, TBB, nullptr, Cond, dl); 432 } 433 } else { 434 // Walk through the successors and find the successor which is not 435 // a landing pad and is not the conditional branch destination (in TBB) 436 // as the fallthrough successor. 437 MachineBasicBlock *FallthroughBB = nullptr; 438 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 439 if ((*SI)->isLandingPad() || *SI == TBB) 440 continue; 441 assert(!FallthroughBB && "Found more than one fallthrough successor."); 442 FallthroughBB = *SI; 443 } 444 if (!FallthroughBB && canFallThrough()) { 445 // We fallthrough to the same basic block as the conditional jump 446 // targets. Remove the conditional jump, leaving unconditional 447 // fallthrough. 448 // FIXME: This does not seem like a reasonable pattern to support, but it 449 // has been seen in the wild coming out of degenerate ARM test cases. 450 TII->RemoveBranch(*this); 451 452 // Finally update the unconditional successor to be reached via a branch 453 // if it would not be reached by fallthrough. 454 if (!isLayoutSuccessor(TBB)) 455 TII->InsertBranch(*this, TBB, nullptr, Cond, dl); 456 return; 457 } 458 459 // The block has a fallthrough conditional branch. 460 if (isLayoutSuccessor(TBB)) { 461 if (TII->ReverseBranchCondition(Cond)) { 462 // We can't reverse the condition, add an unconditional branch. 463 Cond.clear(); 464 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, dl); 465 return; 466 } 467 TII->RemoveBranch(*this); 468 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, dl); 469 } else if (!isLayoutSuccessor(FallthroughBB)) { 470 TII->RemoveBranch(*this); 471 TII->InsertBranch(*this, TBB, FallthroughBB, Cond, dl); 472 } 473 } 474 } 475 } 476 477 void MachineBasicBlock::addSuccessor(MachineBasicBlock *succ, uint32_t weight) { 478 479 // If we see non-zero value for the first time it means we actually use Weight 480 // list, so we fill all Weights with 0's. 481 if (weight != 0 && Weights.empty()) 482 Weights.resize(Successors.size()); 483 484 if (weight != 0 || !Weights.empty()) 485 Weights.push_back(weight); 486 487 Successors.push_back(succ); 488 succ->addPredecessor(this); 489 } 490 491 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *succ) { 492 succ->removePredecessor(this); 493 succ_iterator I = std::find(Successors.begin(), Successors.end(), succ); 494 assert(I != Successors.end() && "Not a current successor!"); 495 496 // If Weight list is empty it means we don't use it (disabled optimization). 497 if (!Weights.empty()) { 498 weight_iterator WI = getWeightIterator(I); 499 Weights.erase(WI); 500 } 501 502 Successors.erase(I); 503 } 504 505 MachineBasicBlock::succ_iterator 506 MachineBasicBlock::removeSuccessor(succ_iterator I) { 507 assert(I != Successors.end() && "Not a current successor!"); 508 509 // If Weight list is empty it means we don't use it (disabled optimization). 510 if (!Weights.empty()) { 511 weight_iterator WI = getWeightIterator(I); 512 Weights.erase(WI); 513 } 514 515 (*I)->removePredecessor(this); 516 return Successors.erase(I); 517 } 518 519 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 520 MachineBasicBlock *New) { 521 if (Old == New) 522 return; 523 524 succ_iterator E = succ_end(); 525 succ_iterator NewI = E; 526 succ_iterator OldI = E; 527 for (succ_iterator I = succ_begin(); I != E; ++I) { 528 if (*I == Old) { 529 OldI = I; 530 if (NewI != E) 531 break; 532 } 533 if (*I == New) { 534 NewI = I; 535 if (OldI != E) 536 break; 537 } 538 } 539 assert(OldI != E && "Old is not a successor of this block"); 540 Old->removePredecessor(this); 541 542 // If New isn't already a successor, let it take Old's place. 543 if (NewI == E) { 544 New->addPredecessor(this); 545 *OldI = New; 546 return; 547 } 548 549 // New is already a successor. 550 // Update its weight instead of adding a duplicate edge. 551 if (!Weights.empty()) { 552 weight_iterator OldWI = getWeightIterator(OldI); 553 *getWeightIterator(NewI) += *OldWI; 554 Weights.erase(OldWI); 555 } 556 Successors.erase(OldI); 557 } 558 559 void MachineBasicBlock::addPredecessor(MachineBasicBlock *pred) { 560 Predecessors.push_back(pred); 561 } 562 563 void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) { 564 pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), pred); 565 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 566 Predecessors.erase(I); 567 } 568 569 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) { 570 if (this == fromMBB) 571 return; 572 573 while (!fromMBB->succ_empty()) { 574 MachineBasicBlock *Succ = *fromMBB->succ_begin(); 575 uint32_t Weight = 0; 576 577 // If Weight list is empty it means we don't use it (disabled optimization). 578 if (!fromMBB->Weights.empty()) 579 Weight = *fromMBB->Weights.begin(); 580 581 addSuccessor(Succ, Weight); 582 fromMBB->removeSuccessor(Succ); 583 } 584 } 585 586 void 587 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB) { 588 if (this == fromMBB) 589 return; 590 591 while (!fromMBB->succ_empty()) { 592 MachineBasicBlock *Succ = *fromMBB->succ_begin(); 593 uint32_t Weight = 0; 594 if (!fromMBB->Weights.empty()) 595 Weight = *fromMBB->Weights.begin(); 596 addSuccessor(Succ, Weight); 597 fromMBB->removeSuccessor(Succ); 598 599 // Fix up any PHI nodes in the successor. 600 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 601 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 602 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 603 MachineOperand &MO = MI->getOperand(i); 604 if (MO.getMBB() == fromMBB) 605 MO.setMBB(this); 606 } 607 } 608 } 609 610 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 611 return std::find(pred_begin(), pred_end(), MBB) != pred_end(); 612 } 613 614 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 615 return std::find(succ_begin(), succ_end(), MBB) != succ_end(); 616 } 617 618 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 619 MachineFunction::const_iterator I(this); 620 return std::next(I) == MachineFunction::const_iterator(MBB); 621 } 622 623 bool MachineBasicBlock::canFallThrough() { 624 MachineFunction::iterator Fallthrough = this; 625 ++Fallthrough; 626 // If FallthroughBlock is off the end of the function, it can't fall through. 627 if (Fallthrough == getParent()->end()) 628 return false; 629 630 // If FallthroughBlock isn't a successor, no fallthrough is possible. 631 if (!isSuccessor(Fallthrough)) 632 return false; 633 634 // Analyze the branches, if any, at the end of the block. 635 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 636 SmallVector<MachineOperand, 4> Cond; 637 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 638 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) { 639 // If we couldn't analyze the branch, examine the last instruction. 640 // If the block doesn't end in a known control barrier, assume fallthrough 641 // is possible. The isPredicated check is needed because this code can be 642 // called during IfConversion, where an instruction which is normally a 643 // Barrier is predicated and thus no longer an actual control barrier. 644 return empty() || !back().isBarrier() || TII->isPredicated(&back()); 645 } 646 647 // If there is no branch, control always falls through. 648 if (!TBB) return true; 649 650 // If there is some explicit branch to the fallthrough block, it can obviously 651 // reach, even though the branch should get folded to fall through implicitly. 652 if (MachineFunction::iterator(TBB) == Fallthrough || 653 MachineFunction::iterator(FBB) == Fallthrough) 654 return true; 655 656 // If it's an unconditional branch to some block not the fall through, it 657 // doesn't fall through. 658 if (Cond.empty()) return false; 659 660 // Otherwise, if it is conditional and has no explicit false block, it falls 661 // through. 662 return FBB == nullptr; 663 } 664 665 MachineBasicBlock * 666 MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) { 667 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 668 // it in this generic function. 669 if (Succ->isLandingPad()) 670 return nullptr; 671 672 MachineFunction *MF = getParent(); 673 DebugLoc dl; // FIXME: this is nowhere 674 675 // Performance might be harmed on HW that implements branching using exec mask 676 // where both sides of the branches are always executed. 677 if (MF->getTarget().requiresStructuredCFG()) 678 return nullptr; 679 680 // We may need to update this's terminator, but we can't do that if 681 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 682 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 683 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 684 SmallVector<MachineOperand, 4> Cond; 685 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) 686 return nullptr; 687 688 // Avoid bugpoint weirdness: A block may end with a conditional branch but 689 // jumps to the same MBB is either case. We have duplicate CFG edges in that 690 // case that we can't handle. Since this never happens in properly optimized 691 // code, just skip those edges. 692 if (TBB && TBB == FBB) { 693 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 694 << getNumber() << '\n'); 695 return nullptr; 696 } 697 698 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 699 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 700 DEBUG(dbgs() << "Splitting critical edge:" 701 " BB#" << getNumber() 702 << " -- BB#" << NMBB->getNumber() 703 << " -- BB#" << Succ->getNumber() << '\n'); 704 705 LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>(); 706 SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>(); 707 if (LIS) 708 LIS->insertMBBInMaps(NMBB); 709 else if (Indexes) 710 Indexes->insertMBBInMaps(NMBB); 711 712 // On some targets like Mips, branches may kill virtual registers. Make sure 713 // that LiveVariables is properly updated after updateTerminator replaces the 714 // terminators. 715 LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>(); 716 717 // Collect a list of virtual registers killed by the terminators. 718 SmallVector<unsigned, 4> KilledRegs; 719 if (LV) 720 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 721 I != E; ++I) { 722 MachineInstr *MI = I; 723 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 724 OE = MI->operands_end(); OI != OE; ++OI) { 725 if (!OI->isReg() || OI->getReg() == 0 || 726 !OI->isUse() || !OI->isKill() || OI->isUndef()) 727 continue; 728 unsigned Reg = OI->getReg(); 729 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 730 LV->getVarInfo(Reg).removeKill(MI)) { 731 KilledRegs.push_back(Reg); 732 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 733 OI->setIsKill(false); 734 } 735 } 736 } 737 738 SmallVector<unsigned, 4> UsedRegs; 739 if (LIS) { 740 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 741 I != E; ++I) { 742 MachineInstr *MI = I; 743 744 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 745 OE = MI->operands_end(); OI != OE; ++OI) { 746 if (!OI->isReg() || OI->getReg() == 0) 747 continue; 748 749 unsigned Reg = OI->getReg(); 750 if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end()) 751 UsedRegs.push_back(Reg); 752 } 753 } 754 } 755 756 ReplaceUsesOfBlockWith(Succ, NMBB); 757 758 // If updateTerminator() removes instructions, we need to remove them from 759 // SlotIndexes. 760 SmallVector<MachineInstr*, 4> Terminators; 761 if (Indexes) { 762 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 763 I != E; ++I) 764 Terminators.push_back(I); 765 } 766 767 updateTerminator(); 768 769 if (Indexes) { 770 SmallVector<MachineInstr*, 4> NewTerminators; 771 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 772 I != E; ++I) 773 NewTerminators.push_back(I); 774 775 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 776 E = Terminators.end(); I != E; ++I) { 777 if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) == 778 NewTerminators.end()) 779 Indexes->removeMachineInstrFromMaps(*I); 780 } 781 } 782 783 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 784 NMBB->addSuccessor(Succ); 785 if (!NMBB->isLayoutSuccessor(Succ)) { 786 Cond.clear(); 787 MF->getSubtarget().getInstrInfo()->InsertBranch(*NMBB, Succ, nullptr, Cond, 788 dl); 789 790 if (Indexes) { 791 for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end(); 792 I != E; ++I) { 793 // Some instructions may have been moved to NMBB by updateTerminator(), 794 // so we first remove any instruction that already has an index. 795 if (Indexes->hasIndex(I)) 796 Indexes->removeMachineInstrFromMaps(I); 797 Indexes->insertMachineInstrInMaps(I); 798 } 799 } 800 } 801 802 // Fix PHI nodes in Succ so they refer to NMBB instead of this 803 for (MachineBasicBlock::instr_iterator 804 i = Succ->instr_begin(),e = Succ->instr_end(); 805 i != e && i->isPHI(); ++i) 806 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 807 if (i->getOperand(ni+1).getMBB() == this) 808 i->getOperand(ni+1).setMBB(NMBB); 809 810 // Inherit live-ins from the successor 811 for (MachineBasicBlock::livein_iterator I = Succ->livein_begin(), 812 E = Succ->livein_end(); I != E; ++I) 813 NMBB->addLiveIn(*I); 814 815 // Update LiveVariables. 816 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 817 if (LV) { 818 // Restore kills of virtual registers that were killed by the terminators. 819 while (!KilledRegs.empty()) { 820 unsigned Reg = KilledRegs.pop_back_val(); 821 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 822 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 823 continue; 824 if (TargetRegisterInfo::isVirtualRegister(Reg)) 825 LV->getVarInfo(Reg).Kills.push_back(I); 826 DEBUG(dbgs() << "Restored terminator kill: " << *I); 827 break; 828 } 829 } 830 // Update relevant live-through information. 831 LV->addNewBlock(NMBB, this, Succ); 832 } 833 834 if (LIS) { 835 // After splitting the edge and updating SlotIndexes, live intervals may be 836 // in one of two situations, depending on whether this block was the last in 837 // the function. If the original block was the last in the function, all live 838 // intervals will end prior to the beginning of the new split block. If the 839 // original block was not at the end of the function, all live intervals will 840 // extend to the end of the new split block. 841 842 bool isLastMBB = 843 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 844 845 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 846 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 847 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 848 849 // Find the registers used from NMBB in PHIs in Succ. 850 SmallSet<unsigned, 8> PHISrcRegs; 851 for (MachineBasicBlock::instr_iterator 852 I = Succ->instr_begin(), E = Succ->instr_end(); 853 I != E && I->isPHI(); ++I) { 854 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 855 if (I->getOperand(ni+1).getMBB() == NMBB) { 856 MachineOperand &MO = I->getOperand(ni); 857 unsigned Reg = MO.getReg(); 858 PHISrcRegs.insert(Reg); 859 if (MO.isUndef()) 860 continue; 861 862 LiveInterval &LI = LIS->getInterval(Reg); 863 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 864 assert(VNI && "PHI sources should be live out of their predecessors."); 865 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 866 } 867 } 868 } 869 870 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 871 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 872 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 873 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 874 continue; 875 876 LiveInterval &LI = LIS->getInterval(Reg); 877 if (!LI.liveAt(PrevIndex)) 878 continue; 879 880 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 881 if (isLiveOut && isLastMBB) { 882 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 883 assert(VNI && "LiveInterval should have VNInfo where it is live."); 884 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 885 } else if (!isLiveOut && !isLastMBB) { 886 LI.removeSegment(StartIndex, EndIndex); 887 } 888 } 889 890 // Update all intervals for registers whose uses may have been modified by 891 // updateTerminator(). 892 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 893 } 894 895 if (MachineDominatorTree *MDT = 896 P->getAnalysisIfAvailable<MachineDominatorTree>()) 897 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 898 899 if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>()) 900 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 901 // If one or the other blocks were not in a loop, the new block is not 902 // either, and thus LI doesn't need to be updated. 903 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 904 if (TIL == DestLoop) { 905 // Both in the same loop, the NMBB joins loop. 906 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 907 } else if (TIL->contains(DestLoop)) { 908 // Edge from an outer loop to an inner loop. Add to the outer loop. 909 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 910 } else if (DestLoop->contains(TIL)) { 911 // Edge from an inner loop to an outer loop. Add to the outer loop. 912 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 913 } else { 914 // Edge from two loops with no containment relation. Because these 915 // are natural loops, we know that the destination block must be the 916 // header of its loop (adding a branch into a loop elsewhere would 917 // create an irreducible loop). 918 assert(DestLoop->getHeader() == Succ && 919 "Should not create irreducible loops!"); 920 if (MachineLoop *P = DestLoop->getParentLoop()) 921 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 922 } 923 } 924 } 925 926 return NMBB; 927 } 928 929 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 930 /// neighboring instructions so the bundle won't be broken by removing MI. 931 static void unbundleSingleMI(MachineInstr *MI) { 932 // Removing the first instruction in a bundle. 933 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 934 MI->unbundleFromSucc(); 935 // Removing the last instruction in a bundle. 936 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 937 MI->unbundleFromPred(); 938 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 939 // are already fine. 940 } 941 942 MachineBasicBlock::instr_iterator 943 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 944 unbundleSingleMI(I); 945 return Insts.erase(I); 946 } 947 948 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 949 unbundleSingleMI(MI); 950 MI->clearFlag(MachineInstr::BundledPred); 951 MI->clearFlag(MachineInstr::BundledSucc); 952 return Insts.remove(MI); 953 } 954 955 MachineBasicBlock::instr_iterator 956 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 957 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 958 "Cannot insert instruction with bundle flags"); 959 // Set the bundle flags when inserting inside a bundle. 960 if (I != instr_end() && I->isBundledWithPred()) { 961 MI->setFlag(MachineInstr::BundledPred); 962 MI->setFlag(MachineInstr::BundledSucc); 963 } 964 return Insts.insert(I, MI); 965 } 966 967 /// removeFromParent - This method unlinks 'this' from the containing function, 968 /// and returns it, but does not delete it. 969 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 970 assert(getParent() && "Not embedded in a function!"); 971 getParent()->remove(this); 972 return this; 973 } 974 975 976 /// eraseFromParent - This method unlinks 'this' from the containing function, 977 /// and deletes it. 978 void MachineBasicBlock::eraseFromParent() { 979 assert(getParent() && "Not embedded in a function!"); 980 getParent()->erase(this); 981 } 982 983 984 /// ReplaceUsesOfBlockWith - Given a machine basic block that branched to 985 /// 'Old', change the code and CFG so that it branches to 'New' instead. 986 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 987 MachineBasicBlock *New) { 988 assert(Old != New && "Cannot replace self with self!"); 989 990 MachineBasicBlock::instr_iterator I = instr_end(); 991 while (I != instr_begin()) { 992 --I; 993 if (!I->isTerminator()) break; 994 995 // Scan the operands of this machine instruction, replacing any uses of Old 996 // with New. 997 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 998 if (I->getOperand(i).isMBB() && 999 I->getOperand(i).getMBB() == Old) 1000 I->getOperand(i).setMBB(New); 1001 } 1002 1003 // Update the successor information. 1004 replaceSuccessor(Old, New); 1005 } 1006 1007 /// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in the 1008 /// CFG to be inserted. If we have proven that MBB can only branch to DestA and 1009 /// DestB, remove any other MBB successors from the CFG. DestA and DestB can be 1010 /// null. 1011 /// 1012 /// Besides DestA and DestB, retain other edges leading to LandingPads 1013 /// (currently there can be only one; we don't check or require that here). 1014 /// Note it is possible that DestA and/or DestB are LandingPads. 1015 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1016 MachineBasicBlock *DestB, 1017 bool isCond) { 1018 // The values of DestA and DestB frequently come from a call to the 1019 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1020 // values from there. 1021 // 1022 // 1. If both DestA and DestB are null, then the block ends with no branches 1023 // (it falls through to its successor). 1024 // 2. If DestA is set, DestB is null, and isCond is false, then the block ends 1025 // with only an unconditional branch. 1026 // 3. If DestA is set, DestB is null, and isCond is true, then the block ends 1027 // with a conditional branch that falls through to a successor (DestB). 1028 // 4. If DestA and DestB is set and isCond is true, then the block ends with a 1029 // conditional branch followed by an unconditional branch. DestA is the 1030 // 'true' destination and DestB is the 'false' destination. 1031 1032 bool Changed = false; 1033 1034 MachineFunction::iterator FallThru = 1035 std::next(MachineFunction::iterator(this)); 1036 1037 if (!DestA && !DestB) { 1038 // Block falls through to successor. 1039 DestA = FallThru; 1040 DestB = FallThru; 1041 } else if (DestA && !DestB) { 1042 if (isCond) 1043 // Block ends in conditional jump that falls through to successor. 1044 DestB = FallThru; 1045 } else { 1046 assert(DestA && DestB && isCond && 1047 "CFG in a bad state. Cannot correct CFG edges"); 1048 } 1049 1050 // Remove superfluous edges. I.e., those which aren't destinations of this 1051 // basic block, duplicate edges, or landing pads. 1052 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1053 MachineBasicBlock::succ_iterator SI = succ_begin(); 1054 while (SI != succ_end()) { 1055 const MachineBasicBlock *MBB = *SI; 1056 if (!SeenMBBs.insert(MBB).second || 1057 (MBB != DestA && MBB != DestB && !MBB->isLandingPad())) { 1058 // This is a superfluous edge, remove it. 1059 SI = removeSuccessor(SI); 1060 Changed = true; 1061 } else { 1062 ++SI; 1063 } 1064 } 1065 1066 return Changed; 1067 } 1068 1069 /// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping 1070 /// any DBG_VALUE instructions. Return UnknownLoc if there is none. 1071 DebugLoc 1072 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1073 DebugLoc DL; 1074 instr_iterator E = instr_end(); 1075 if (MBBI == E) 1076 return DL; 1077 1078 // Skip debug declarations, we don't want a DebugLoc from them. 1079 while (MBBI != E && MBBI->isDebugValue()) 1080 MBBI++; 1081 if (MBBI != E) 1082 DL = MBBI->getDebugLoc(); 1083 return DL; 1084 } 1085 1086 /// getSuccWeight - Return weight of the edge from this block to MBB. 1087 /// 1088 uint32_t MachineBasicBlock::getSuccWeight(const_succ_iterator Succ) const { 1089 if (Weights.empty()) 1090 return 0; 1091 1092 return *getWeightIterator(Succ); 1093 } 1094 1095 /// Set successor weight of a given iterator. 1096 void MachineBasicBlock::setSuccWeight(succ_iterator I, uint32_t weight) { 1097 if (Weights.empty()) 1098 return; 1099 *getWeightIterator(I) = weight; 1100 } 1101 1102 /// getWeightIterator - Return wight iterator corresonding to the I successor 1103 /// iterator 1104 MachineBasicBlock::weight_iterator MachineBasicBlock:: 1105 getWeightIterator(MachineBasicBlock::succ_iterator I) { 1106 assert(Weights.size() == Successors.size() && "Async weight list!"); 1107 size_t index = std::distance(Successors.begin(), I); 1108 assert(index < Weights.size() && "Not a current successor!"); 1109 return Weights.begin() + index; 1110 } 1111 1112 /// getWeightIterator - Return wight iterator corresonding to the I successor 1113 /// iterator 1114 MachineBasicBlock::const_weight_iterator MachineBasicBlock:: 1115 getWeightIterator(MachineBasicBlock::const_succ_iterator I) const { 1116 assert(Weights.size() == Successors.size() && "Async weight list!"); 1117 const size_t index = std::distance(Successors.begin(), I); 1118 assert(index < Weights.size() && "Not a current successor!"); 1119 return Weights.begin() + index; 1120 } 1121 1122 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1123 /// as of just before "MI". 1124 /// 1125 /// Search is localised to a neighborhood of 1126 /// Neighborhood instructions before (searching for defs or kills) and N 1127 /// instructions after (searching just for defs) MI. 1128 MachineBasicBlock::LivenessQueryResult 1129 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1130 unsigned Reg, const_iterator Before, 1131 unsigned Neighborhood) const { 1132 unsigned N = Neighborhood; 1133 1134 // Start by searching backwards from Before, looking for kills, reads or defs. 1135 const_iterator I(Before); 1136 // If this is the first insn in the block, don't search backwards. 1137 if (I != begin()) { 1138 do { 1139 --I; 1140 1141 MachineOperandIteratorBase::PhysRegInfo Analysis = 1142 ConstMIOperands(I).analyzePhysReg(Reg, TRI); 1143 1144 if (Analysis.Defines) 1145 // Outputs happen after inputs so they take precedence if both are 1146 // present. 1147 return Analysis.DefinesDead ? LQR_Dead : LQR_Live; 1148 1149 if (Analysis.Kills || Analysis.Clobbers) 1150 // Register killed, so isn't live. 1151 return LQR_Dead; 1152 1153 else if (Analysis.ReadsOverlap) 1154 // Defined or read without a previous kill - live. 1155 return Analysis.Reads ? LQR_Live : LQR_OverlappingLive; 1156 1157 } while (I != begin() && --N > 0); 1158 } 1159 1160 // Did we get to the start of the block? 1161 if (I == begin()) { 1162 // If so, the register's state is definitely defined by the live-in state. 1163 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); 1164 RAI.isValid(); ++RAI) { 1165 if (isLiveIn(*RAI)) 1166 return (*RAI == Reg) ? LQR_Live : LQR_OverlappingLive; 1167 } 1168 1169 return LQR_Dead; 1170 } 1171 1172 N = Neighborhood; 1173 1174 // Try searching forwards from Before, looking for reads or defs. 1175 I = const_iterator(Before); 1176 // If this is the last insn in the block, don't search forwards. 1177 if (I != end()) { 1178 for (++I; I != end() && N > 0; ++I, --N) { 1179 MachineOperandIteratorBase::PhysRegInfo Analysis = 1180 ConstMIOperands(I).analyzePhysReg(Reg, TRI); 1181 1182 if (Analysis.ReadsOverlap) 1183 // Used, therefore must have been live. 1184 return (Analysis.Reads) ? 1185 LQR_Live : LQR_OverlappingLive; 1186 1187 else if (Analysis.Clobbers || Analysis.Defines) 1188 // Defined (but not read) therefore cannot have been live. 1189 return LQR_Dead; 1190 } 1191 } 1192 1193 // At this point we have no idea of the liveness of the register. 1194 return LQR_Unknown; 1195 } 1196