xref: /llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp (revision 2946cd701067404b99c39fb29dc9c74bd7193eb3)
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/CodeGen/LiveIntervals.h"
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SlotIndexes.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/MC/MCAsmInfo.h"
32 #include "llvm/MC/MCContext.h"
33 #include "llvm/Support/DataTypes.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include <algorithm>
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "codegen"
41 
42 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
43     : BB(B), Number(-1), xParent(&MF) {
44   Insts.Parent = this;
45   if (B)
46     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
47 }
48 
49 MachineBasicBlock::~MachineBasicBlock() {
50 }
51 
52 /// Return the MCSymbol for this basic block.
53 MCSymbol *MachineBasicBlock::getSymbol() const {
54   if (!CachedMCSymbol) {
55     const MachineFunction *MF = getParent();
56     MCContext &Ctx = MF->getContext();
57     auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
58     assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
59     CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
60                                            Twine(MF->getFunctionNumber()) +
61                                            "_" + Twine(getNumber()));
62   }
63 
64   return CachedMCSymbol;
65 }
66 
67 
68 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
69   MBB.print(OS);
70   return OS;
71 }
72 
73 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
74   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
75 }
76 
77 /// When an MBB is added to an MF, we need to update the parent pointer of the
78 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
79 /// operand list for registers.
80 ///
81 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
82 /// gets the next available unique MBB number. If it is removed from a
83 /// MachineFunction, it goes back to being #-1.
84 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
85     MachineBasicBlock *N) {
86   MachineFunction &MF = *N->getParent();
87   N->Number = MF.addToMBBNumbering(N);
88 
89   // Make sure the instructions have their operands in the reginfo lists.
90   MachineRegisterInfo &RegInfo = MF.getRegInfo();
91   for (MachineBasicBlock::instr_iterator
92          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
93     I->AddRegOperandsToUseLists(RegInfo);
94 }
95 
96 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
97     MachineBasicBlock *N) {
98   N->getParent()->removeFromMBBNumbering(N->Number);
99   N->Number = -1;
100 }
101 
102 /// When we add an instruction to a basic block list, we update its parent
103 /// pointer and add its operands from reg use/def lists if appropriate.
104 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
105   assert(!N->getParent() && "machine instruction already in a basic block");
106   N->setParent(Parent);
107 
108   // Add the instruction's register operands to their corresponding
109   // use/def lists.
110   MachineFunction *MF = Parent->getParent();
111   N->AddRegOperandsToUseLists(MF->getRegInfo());
112   MF->handleInsertion(*N);
113 }
114 
115 /// When we remove an instruction from a basic block list, we update its parent
116 /// pointer and remove its operands from reg use/def lists if appropriate.
117 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
118   assert(N->getParent() && "machine instruction not in a basic block");
119 
120   // Remove from the use/def lists.
121   if (MachineFunction *MF = N->getMF()) {
122     MF->handleRemoval(*N);
123     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
124   }
125 
126   N->setParent(nullptr);
127 }
128 
129 /// When moving a range of instructions from one MBB list to another, we need to
130 /// update the parent pointers and the use/def lists.
131 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
132                                                        instr_iterator First,
133                                                        instr_iterator Last) {
134   assert(Parent->getParent() == FromList.Parent->getParent() &&
135         "MachineInstr parent mismatch!");
136   assert(this != &FromList && "Called without a real transfer...");
137   assert(Parent != FromList.Parent && "Two lists have the same parent?");
138 
139   // If splicing between two blocks within the same function, just update the
140   // parent pointers.
141   for (; First != Last; ++First)
142     First->setParent(Parent);
143 }
144 
145 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
146   assert(!MI->getParent() && "MI is still in a block!");
147   Parent->getParent()->DeleteMachineInstr(MI);
148 }
149 
150 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
151   instr_iterator I = instr_begin(), E = instr_end();
152   while (I != E && I->isPHI())
153     ++I;
154   assert((I == E || !I->isInsideBundle()) &&
155          "First non-phi MI cannot be inside a bundle!");
156   return I;
157 }
158 
159 MachineBasicBlock::iterator
160 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
161   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
162 
163   iterator E = end();
164   while (I != E && (I->isPHI() || I->isPosition() ||
165                     TII->isBasicBlockPrologue(*I)))
166     ++I;
167   // FIXME: This needs to change if we wish to bundle labels
168   // inside the bundle.
169   assert((I == E || !I->isInsideBundle()) &&
170          "First non-phi / non-label instruction is inside a bundle!");
171   return I;
172 }
173 
174 MachineBasicBlock::iterator
175 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) {
176   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
177 
178   iterator E = end();
179   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
180                     TII->isBasicBlockPrologue(*I)))
181     ++I;
182   // FIXME: This needs to change if we wish to bundle labels / dbg_values
183   // inside the bundle.
184   assert((I == E || !I->isInsideBundle()) &&
185          "First non-phi / non-label / non-debug "
186          "instruction is inside a bundle!");
187   return I;
188 }
189 
190 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
191   iterator B = begin(), E = end(), I = E;
192   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
193     ; /*noop */
194   while (I != E && !I->isTerminator())
195     ++I;
196   return I;
197 }
198 
199 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
200   instr_iterator B = instr_begin(), E = instr_end(), I = E;
201   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
202     ; /*noop */
203   while (I != E && !I->isTerminator())
204     ++I;
205   return I;
206 }
207 
208 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
209   // Skip over begin-of-block dbg_value instructions.
210   return skipDebugInstructionsForward(begin(), end());
211 }
212 
213 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
214   // Skip over end-of-block dbg_value instructions.
215   instr_iterator B = instr_begin(), I = instr_end();
216   while (I != B) {
217     --I;
218     // Return instruction that starts a bundle.
219     if (I->isDebugInstr() || I->isInsideBundle())
220       continue;
221     return I;
222   }
223   // The block is all debug values.
224   return end();
225 }
226 
227 bool MachineBasicBlock::hasEHPadSuccessor() const {
228   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
229     if ((*I)->isEHPad())
230       return true;
231   return false;
232 }
233 
234 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
235 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
236   print(dbgs());
237 }
238 #endif
239 
240 bool MachineBasicBlock::isLegalToHoistInto() const {
241   if (isReturnBlock() || hasEHPadSuccessor())
242     return false;
243   return true;
244 }
245 
246 StringRef MachineBasicBlock::getName() const {
247   if (const BasicBlock *LBB = getBasicBlock())
248     return LBB->getName();
249   else
250     return StringRef("", 0);
251 }
252 
253 /// Return a hopefully unique identifier for this block.
254 std::string MachineBasicBlock::getFullName() const {
255   std::string Name;
256   if (getParent())
257     Name = (getParent()->getName() + ":").str();
258   if (getBasicBlock())
259     Name += getBasicBlock()->getName();
260   else
261     Name += ("BB" + Twine(getNumber())).str();
262   return Name;
263 }
264 
265 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
266                               bool IsStandalone) const {
267   const MachineFunction *MF = getParent();
268   if (!MF) {
269     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
270        << " is null\n";
271     return;
272   }
273   const Function &F = MF->getFunction();
274   const Module *M = F.getParent();
275   ModuleSlotTracker MST(M);
276   MST.incorporateFunction(F);
277   print(OS, MST, Indexes, IsStandalone);
278 }
279 
280 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
281                               const SlotIndexes *Indexes,
282                               bool IsStandalone) const {
283   const MachineFunction *MF = getParent();
284   if (!MF) {
285     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
286        << " is null\n";
287     return;
288   }
289 
290   if (Indexes)
291     OS << Indexes->getMBBStartIdx(this) << '\t';
292 
293   OS << "bb." << getNumber();
294   bool HasAttributes = false;
295   if (const auto *BB = getBasicBlock()) {
296     if (BB->hasName()) {
297       OS << "." << BB->getName();
298     } else {
299       HasAttributes = true;
300       OS << " (";
301       int Slot = MST.getLocalSlot(BB);
302       if (Slot == -1)
303         OS << "<ir-block badref>";
304       else
305         OS << (Twine("%ir-block.") + Twine(Slot)).str();
306     }
307   }
308 
309   if (hasAddressTaken()) {
310     OS << (HasAttributes ? ", " : " (");
311     OS << "address-taken";
312     HasAttributes = true;
313   }
314   if (isEHPad()) {
315     OS << (HasAttributes ? ", " : " (");
316     OS << "landing-pad";
317     HasAttributes = true;
318   }
319   if (getAlignment()) {
320     OS << (HasAttributes ? ", " : " (");
321     OS << "align " << getAlignment();
322     HasAttributes = true;
323   }
324   if (HasAttributes)
325     OS << ")";
326   OS << ":\n";
327 
328   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
329   const MachineRegisterInfo &MRI = MF->getRegInfo();
330   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
331   bool HasLineAttributes = false;
332 
333   // Print the preds of this block according to the CFG.
334   if (!pred_empty() && IsStandalone) {
335     if (Indexes) OS << '\t';
336     // Don't indent(2), align with previous line attributes.
337     OS << "; predecessors: ";
338     for (auto I = pred_begin(), E = pred_end(); I != E; ++I) {
339       if (I != pred_begin())
340         OS << ", ";
341       OS << printMBBReference(**I);
342     }
343     OS << '\n';
344     HasLineAttributes = true;
345   }
346 
347   if (!succ_empty()) {
348     if (Indexes) OS << '\t';
349     // Print the successors
350     OS.indent(2) << "successors: ";
351     for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
352       if (I != succ_begin())
353         OS << ", ";
354       OS << printMBBReference(**I);
355       if (!Probs.empty())
356         OS << '('
357            << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
358            << ')';
359     }
360     if (!Probs.empty() && IsStandalone) {
361       // Print human readable probabilities as comments.
362       OS << "; ";
363       for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
364         const BranchProbability &BP = getSuccProbability(I);
365         if (I != succ_begin())
366           OS << ", ";
367         OS << printMBBReference(**I) << '('
368            << format("%.2f%%",
369                      rint(((double)BP.getNumerator() / BP.getDenominator()) *
370                           100.0 * 100.0) /
371                          100.0)
372            << ')';
373       }
374     }
375 
376     OS << '\n';
377     HasLineAttributes = true;
378   }
379 
380   if (!livein_empty() && MRI.tracksLiveness()) {
381     if (Indexes) OS << '\t';
382     OS.indent(2) << "liveins: ";
383 
384     bool First = true;
385     for (const auto &LI : liveins()) {
386       if (!First)
387         OS << ", ";
388       First = false;
389       OS << printReg(LI.PhysReg, TRI);
390       if (!LI.LaneMask.all())
391         OS << ":0x" << PrintLaneMask(LI.LaneMask);
392     }
393     HasLineAttributes = true;
394   }
395 
396   if (HasLineAttributes)
397     OS << '\n';
398 
399   bool IsInBundle = false;
400   for (const MachineInstr &MI : instrs()) {
401     if (Indexes) {
402       if (Indexes->hasIndex(MI))
403         OS << Indexes->getInstructionIndex(MI);
404       OS << '\t';
405     }
406 
407     if (IsInBundle && !MI.isInsideBundle()) {
408       OS.indent(2) << "}\n";
409       IsInBundle = false;
410     }
411 
412     OS.indent(IsInBundle ? 4 : 2);
413     MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
414              /*AddNewLine=*/false, &TII);
415 
416     if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
417       OS << " {";
418       IsInBundle = true;
419     }
420     OS << '\n';
421   }
422 
423   if (IsInBundle)
424     OS.indent(2) << "}\n";
425 
426   if (IrrLoopHeaderWeight && IsStandalone) {
427     if (Indexes) OS << '\t';
428     OS.indent(2) << "; Irreducible loop header weight: "
429                  << IrrLoopHeaderWeight.getValue() << '\n';
430   }
431 }
432 
433 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
434                                        bool /*PrintType*/) const {
435   OS << "%bb." << getNumber();
436 }
437 
438 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
439   LiveInVector::iterator I = find_if(
440       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
441   if (I == LiveIns.end())
442     return;
443 
444   I->LaneMask &= ~LaneMask;
445   if (I->LaneMask.none())
446     LiveIns.erase(I);
447 }
448 
449 MachineBasicBlock::livein_iterator
450 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
451   // Get non-const version of iterator.
452   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
453   return LiveIns.erase(LI);
454 }
455 
456 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
457   livein_iterator I = find_if(
458       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
459   return I != livein_end() && (I->LaneMask & LaneMask).any();
460 }
461 
462 void MachineBasicBlock::sortUniqueLiveIns() {
463   llvm::sort(LiveIns,
464              [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
465                return LI0.PhysReg < LI1.PhysReg;
466              });
467   // Liveins are sorted by physreg now we can merge their lanemasks.
468   LiveInVector::const_iterator I = LiveIns.begin();
469   LiveInVector::const_iterator J;
470   LiveInVector::iterator Out = LiveIns.begin();
471   for (; I != LiveIns.end(); ++Out, I = J) {
472     unsigned PhysReg = I->PhysReg;
473     LaneBitmask LaneMask = I->LaneMask;
474     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
475       LaneMask |= J->LaneMask;
476     Out->PhysReg = PhysReg;
477     Out->LaneMask = LaneMask;
478   }
479   LiveIns.erase(Out, LiveIns.end());
480 }
481 
482 unsigned
483 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) {
484   assert(getParent() && "MBB must be inserted in function");
485   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
486   assert(RC && "Register class is required");
487   assert((isEHPad() || this == &getParent()->front()) &&
488          "Only the entry block and landing pads can have physreg live ins");
489 
490   bool LiveIn = isLiveIn(PhysReg);
491   iterator I = SkipPHIsAndLabels(begin()), E = end();
492   MachineRegisterInfo &MRI = getParent()->getRegInfo();
493   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
494 
495   // Look for an existing copy.
496   if (LiveIn)
497     for (;I != E && I->isCopy(); ++I)
498       if (I->getOperand(1).getReg() == PhysReg) {
499         unsigned VirtReg = I->getOperand(0).getReg();
500         if (!MRI.constrainRegClass(VirtReg, RC))
501           llvm_unreachable("Incompatible live-in register class.");
502         return VirtReg;
503       }
504 
505   // No luck, create a virtual register.
506   unsigned VirtReg = MRI.createVirtualRegister(RC);
507   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
508     .addReg(PhysReg, RegState::Kill);
509   if (!LiveIn)
510     addLiveIn(PhysReg);
511   return VirtReg;
512 }
513 
514 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
515   getParent()->splice(NewAfter->getIterator(), getIterator());
516 }
517 
518 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
519   getParent()->splice(++NewBefore->getIterator(), getIterator());
520 }
521 
522 void MachineBasicBlock::updateTerminator() {
523   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
524   // A block with no successors has no concerns with fall-through edges.
525   if (this->succ_empty())
526     return;
527 
528   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
529   SmallVector<MachineOperand, 4> Cond;
530   DebugLoc DL = findBranchDebugLoc();
531   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
532   (void) B;
533   assert(!B && "UpdateTerminators requires analyzable predecessors!");
534   if (Cond.empty()) {
535     if (TBB) {
536       // The block has an unconditional branch. If its successor is now its
537       // layout successor, delete the branch.
538       if (isLayoutSuccessor(TBB))
539         TII->removeBranch(*this);
540     } else {
541       // The block has an unconditional fallthrough. If its successor is not its
542       // layout successor, insert a branch. First we have to locate the only
543       // non-landing-pad successor, as that is the fallthrough block.
544       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
545         if ((*SI)->isEHPad())
546           continue;
547         assert(!TBB && "Found more than one non-landing-pad successor!");
548         TBB = *SI;
549       }
550 
551       // If there is no non-landing-pad successor, the block has no fall-through
552       // edges to be concerned with.
553       if (!TBB)
554         return;
555 
556       // Finally update the unconditional successor to be reached via a branch
557       // if it would not be reached by fallthrough.
558       if (!isLayoutSuccessor(TBB))
559         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
560     }
561     return;
562   }
563 
564   if (FBB) {
565     // The block has a non-fallthrough conditional branch. If one of its
566     // successors is its layout successor, rewrite it to a fallthrough
567     // conditional branch.
568     if (isLayoutSuccessor(TBB)) {
569       if (TII->reverseBranchCondition(Cond))
570         return;
571       TII->removeBranch(*this);
572       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
573     } else if (isLayoutSuccessor(FBB)) {
574       TII->removeBranch(*this);
575       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
576     }
577     return;
578   }
579 
580   // Walk through the successors and find the successor which is not a landing
581   // pad and is not the conditional branch destination (in TBB) as the
582   // fallthrough successor.
583   MachineBasicBlock *FallthroughBB = nullptr;
584   for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
585     if ((*SI)->isEHPad() || *SI == TBB)
586       continue;
587     assert(!FallthroughBB && "Found more than one fallthrough successor.");
588     FallthroughBB = *SI;
589   }
590 
591   if (!FallthroughBB) {
592     if (canFallThrough()) {
593       // We fallthrough to the same basic block as the conditional jump targets.
594       // Remove the conditional jump, leaving unconditional fallthrough.
595       // FIXME: This does not seem like a reasonable pattern to support, but it
596       // has been seen in the wild coming out of degenerate ARM test cases.
597       TII->removeBranch(*this);
598 
599       // Finally update the unconditional successor to be reached via a branch if
600       // it would not be reached by fallthrough.
601       if (!isLayoutSuccessor(TBB))
602         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
603       return;
604     }
605 
606     // We enter here iff exactly one successor is TBB which cannot fallthrough
607     // and the rest successors if any are EHPads.  In this case, we need to
608     // change the conditional branch into unconditional branch.
609     TII->removeBranch(*this);
610     Cond.clear();
611     TII->insertBranch(*this, TBB, nullptr, Cond, DL);
612     return;
613   }
614 
615   // The block has a fallthrough conditional branch.
616   if (isLayoutSuccessor(TBB)) {
617     if (TII->reverseBranchCondition(Cond)) {
618       // We can't reverse the condition, add an unconditional branch.
619       Cond.clear();
620       TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
621       return;
622     }
623     TII->removeBranch(*this);
624     TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
625   } else if (!isLayoutSuccessor(FallthroughBB)) {
626     TII->removeBranch(*this);
627     TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL);
628   }
629 }
630 
631 void MachineBasicBlock::validateSuccProbs() const {
632 #ifndef NDEBUG
633   int64_t Sum = 0;
634   for (auto Prob : Probs)
635     Sum += Prob.getNumerator();
636   // Due to precision issue, we assume that the sum of probabilities is one if
637   // the difference between the sum of their numerators and the denominator is
638   // no greater than the number of successors.
639   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
640              Probs.size() &&
641          "The sum of successors's probabilities exceeds one.");
642 #endif // NDEBUG
643 }
644 
645 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
646                                      BranchProbability Prob) {
647   // Probability list is either empty (if successor list isn't empty, this means
648   // disabled optimization) or has the same size as successor list.
649   if (!(Probs.empty() && !Successors.empty()))
650     Probs.push_back(Prob);
651   Successors.push_back(Succ);
652   Succ->addPredecessor(this);
653 }
654 
655 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
656   // We need to make sure probability list is either empty or has the same size
657   // of successor list. When this function is called, we can safely delete all
658   // probability in the list.
659   Probs.clear();
660   Successors.push_back(Succ);
661   Succ->addPredecessor(this);
662 }
663 
664 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
665                                        MachineBasicBlock *New,
666                                        bool NormalizeSuccProbs) {
667   succ_iterator OldI = llvm::find(successors(), Old);
668   assert(OldI != succ_end() && "Old is not a successor of this block!");
669   assert(llvm::find(successors(), New) == succ_end() &&
670          "New is already a successor of this block!");
671 
672   // Add a new successor with equal probability as the original one. Note
673   // that we directly copy the probability using the iterator rather than
674   // getting a potentially synthetic probability computed when unknown. This
675   // preserves the probabilities as-is and then we can renormalize them and
676   // query them effectively afterward.
677   addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
678                                   : *getProbabilityIterator(OldI));
679   if (NormalizeSuccProbs)
680     normalizeSuccProbs();
681 }
682 
683 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
684                                         bool NormalizeSuccProbs) {
685   succ_iterator I = find(Successors, Succ);
686   removeSuccessor(I, NormalizeSuccProbs);
687 }
688 
689 MachineBasicBlock::succ_iterator
690 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
691   assert(I != Successors.end() && "Not a current successor!");
692 
693   // If probability list is empty it means we don't use it (disabled
694   // optimization).
695   if (!Probs.empty()) {
696     probability_iterator WI = getProbabilityIterator(I);
697     Probs.erase(WI);
698     if (NormalizeSuccProbs)
699       normalizeSuccProbs();
700   }
701 
702   (*I)->removePredecessor(this);
703   return Successors.erase(I);
704 }
705 
706 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
707                                          MachineBasicBlock *New) {
708   if (Old == New)
709     return;
710 
711   succ_iterator E = succ_end();
712   succ_iterator NewI = E;
713   succ_iterator OldI = E;
714   for (succ_iterator I = succ_begin(); I != E; ++I) {
715     if (*I == Old) {
716       OldI = I;
717       if (NewI != E)
718         break;
719     }
720     if (*I == New) {
721       NewI = I;
722       if (OldI != E)
723         break;
724     }
725   }
726   assert(OldI != E && "Old is not a successor of this block");
727 
728   // If New isn't already a successor, let it take Old's place.
729   if (NewI == E) {
730     Old->removePredecessor(this);
731     New->addPredecessor(this);
732     *OldI = New;
733     return;
734   }
735 
736   // New is already a successor.
737   // Update its probability instead of adding a duplicate edge.
738   if (!Probs.empty()) {
739     auto ProbIter = getProbabilityIterator(NewI);
740     if (!ProbIter->isUnknown())
741       *ProbIter += *getProbabilityIterator(OldI);
742   }
743   removeSuccessor(OldI);
744 }
745 
746 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
747                                       succ_iterator I) {
748   if (Orig->Probs.empty())
749     addSuccessor(*I, Orig->getSuccProbability(I));
750   else
751     addSuccessorWithoutProb(*I);
752 }
753 
754 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
755   Predecessors.push_back(Pred);
756 }
757 
758 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
759   pred_iterator I = find(Predecessors, Pred);
760   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
761   Predecessors.erase(I);
762 }
763 
764 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
765   if (this == FromMBB)
766     return;
767 
768   while (!FromMBB->succ_empty()) {
769     MachineBasicBlock *Succ = *FromMBB->succ_begin();
770 
771     // If probability list is empty it means we don't use it (disabled optimization).
772     if (!FromMBB->Probs.empty()) {
773       auto Prob = *FromMBB->Probs.begin();
774       addSuccessor(Succ, Prob);
775     } else
776       addSuccessorWithoutProb(Succ);
777 
778     FromMBB->removeSuccessor(Succ);
779   }
780 }
781 
782 void
783 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
784   if (this == FromMBB)
785     return;
786 
787   while (!FromMBB->succ_empty()) {
788     MachineBasicBlock *Succ = *FromMBB->succ_begin();
789     if (!FromMBB->Probs.empty()) {
790       auto Prob = *FromMBB->Probs.begin();
791       addSuccessor(Succ, Prob);
792     } else
793       addSuccessorWithoutProb(Succ);
794     FromMBB->removeSuccessor(Succ);
795 
796     // Fix up any PHI nodes in the successor.
797     for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
798            ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
799       for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
800         MachineOperand &MO = MI->getOperand(i);
801         if (MO.getMBB() == FromMBB)
802           MO.setMBB(this);
803       }
804   }
805   normalizeSuccProbs();
806 }
807 
808 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
809   return is_contained(predecessors(), MBB);
810 }
811 
812 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
813   return is_contained(successors(), MBB);
814 }
815 
816 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
817   MachineFunction::const_iterator I(this);
818   return std::next(I) == MachineFunction::const_iterator(MBB);
819 }
820 
821 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
822   MachineFunction::iterator Fallthrough = getIterator();
823   ++Fallthrough;
824   // If FallthroughBlock is off the end of the function, it can't fall through.
825   if (Fallthrough == getParent()->end())
826     return nullptr;
827 
828   // If FallthroughBlock isn't a successor, no fallthrough is possible.
829   if (!isSuccessor(&*Fallthrough))
830     return nullptr;
831 
832   // Analyze the branches, if any, at the end of the block.
833   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
834   SmallVector<MachineOperand, 4> Cond;
835   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
836   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
837     // If we couldn't analyze the branch, examine the last instruction.
838     // If the block doesn't end in a known control barrier, assume fallthrough
839     // is possible. The isPredicated check is needed because this code can be
840     // called during IfConversion, where an instruction which is normally a
841     // Barrier is predicated and thus no longer an actual control barrier.
842     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
843                ? &*Fallthrough
844                : nullptr;
845   }
846 
847   // If there is no branch, control always falls through.
848   if (!TBB) return &*Fallthrough;
849 
850   // If there is some explicit branch to the fallthrough block, it can obviously
851   // reach, even though the branch should get folded to fall through implicitly.
852   if (MachineFunction::iterator(TBB) == Fallthrough ||
853       MachineFunction::iterator(FBB) == Fallthrough)
854     return &*Fallthrough;
855 
856   // If it's an unconditional branch to some block not the fall through, it
857   // doesn't fall through.
858   if (Cond.empty()) return nullptr;
859 
860   // Otherwise, if it is conditional and has no explicit false block, it falls
861   // through.
862   return (FBB == nullptr) ? &*Fallthrough : nullptr;
863 }
864 
865 bool MachineBasicBlock::canFallThrough() {
866   return getFallThrough() != nullptr;
867 }
868 
869 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ,
870                                                         Pass &P) {
871   if (!canSplitCriticalEdge(Succ))
872     return nullptr;
873 
874   MachineFunction *MF = getParent();
875   DebugLoc DL;  // FIXME: this is nowhere
876 
877   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
878   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
879   LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
880                     << " -- " << printMBBReference(*NMBB) << " -- "
881                     << printMBBReference(*Succ) << '\n');
882 
883   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
884   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
885   if (LIS)
886     LIS->insertMBBInMaps(NMBB);
887   else if (Indexes)
888     Indexes->insertMBBInMaps(NMBB);
889 
890   // On some targets like Mips, branches may kill virtual registers. Make sure
891   // that LiveVariables is properly updated after updateTerminator replaces the
892   // terminators.
893   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
894 
895   // Collect a list of virtual registers killed by the terminators.
896   SmallVector<unsigned, 4> KilledRegs;
897   if (LV)
898     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
899          I != E; ++I) {
900       MachineInstr *MI = &*I;
901       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
902            OE = MI->operands_end(); OI != OE; ++OI) {
903         if (!OI->isReg() || OI->getReg() == 0 ||
904             !OI->isUse() || !OI->isKill() || OI->isUndef())
905           continue;
906         unsigned Reg = OI->getReg();
907         if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
908             LV->getVarInfo(Reg).removeKill(*MI)) {
909           KilledRegs.push_back(Reg);
910           LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI);
911           OI->setIsKill(false);
912         }
913       }
914     }
915 
916   SmallVector<unsigned, 4> UsedRegs;
917   if (LIS) {
918     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
919          I != E; ++I) {
920       MachineInstr *MI = &*I;
921 
922       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
923            OE = MI->operands_end(); OI != OE; ++OI) {
924         if (!OI->isReg() || OI->getReg() == 0)
925           continue;
926 
927         unsigned Reg = OI->getReg();
928         if (!is_contained(UsedRegs, Reg))
929           UsedRegs.push_back(Reg);
930       }
931     }
932   }
933 
934   ReplaceUsesOfBlockWith(Succ, NMBB);
935 
936   // If updateTerminator() removes instructions, we need to remove them from
937   // SlotIndexes.
938   SmallVector<MachineInstr*, 4> Terminators;
939   if (Indexes) {
940     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
941          I != E; ++I)
942       Terminators.push_back(&*I);
943   }
944 
945   updateTerminator();
946 
947   if (Indexes) {
948     SmallVector<MachineInstr*, 4> NewTerminators;
949     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
950          I != E; ++I)
951       NewTerminators.push_back(&*I);
952 
953     for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
954         E = Terminators.end(); I != E; ++I) {
955       if (!is_contained(NewTerminators, *I))
956         Indexes->removeMachineInstrFromMaps(**I);
957     }
958   }
959 
960   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
961   NMBB->addSuccessor(Succ);
962   if (!NMBB->isLayoutSuccessor(Succ)) {
963     SmallVector<MachineOperand, 4> Cond;
964     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
965     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
966 
967     if (Indexes) {
968       for (MachineInstr &MI : NMBB->instrs()) {
969         // Some instructions may have been moved to NMBB by updateTerminator(),
970         // so we first remove any instruction that already has an index.
971         if (Indexes->hasIndex(MI))
972           Indexes->removeMachineInstrFromMaps(MI);
973         Indexes->insertMachineInstrInMaps(MI);
974       }
975     }
976   }
977 
978   // Fix PHI nodes in Succ so they refer to NMBB instead of this
979   for (MachineBasicBlock::instr_iterator
980          i = Succ->instr_begin(),e = Succ->instr_end();
981        i != e && i->isPHI(); ++i)
982     for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
983       if (i->getOperand(ni+1).getMBB() == this)
984         i->getOperand(ni+1).setMBB(NMBB);
985 
986   // Inherit live-ins from the successor
987   for (const auto &LI : Succ->liveins())
988     NMBB->addLiveIn(LI);
989 
990   // Update LiveVariables.
991   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
992   if (LV) {
993     // Restore kills of virtual registers that were killed by the terminators.
994     while (!KilledRegs.empty()) {
995       unsigned Reg = KilledRegs.pop_back_val();
996       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
997         if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
998           continue;
999         if (TargetRegisterInfo::isVirtualRegister(Reg))
1000           LV->getVarInfo(Reg).Kills.push_back(&*I);
1001         LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1002         break;
1003       }
1004     }
1005     // Update relevant live-through information.
1006     LV->addNewBlock(NMBB, this, Succ);
1007   }
1008 
1009   if (LIS) {
1010     // After splitting the edge and updating SlotIndexes, live intervals may be
1011     // in one of two situations, depending on whether this block was the last in
1012     // the function. If the original block was the last in the function, all
1013     // live intervals will end prior to the beginning of the new split block. If
1014     // the original block was not at the end of the function, all live intervals
1015     // will extend to the end of the new split block.
1016 
1017     bool isLastMBB =
1018       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1019 
1020     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1021     SlotIndex PrevIndex = StartIndex.getPrevSlot();
1022     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1023 
1024     // Find the registers used from NMBB in PHIs in Succ.
1025     SmallSet<unsigned, 8> PHISrcRegs;
1026     for (MachineBasicBlock::instr_iterator
1027          I = Succ->instr_begin(), E = Succ->instr_end();
1028          I != E && I->isPHI(); ++I) {
1029       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1030         if (I->getOperand(ni+1).getMBB() == NMBB) {
1031           MachineOperand &MO = I->getOperand(ni);
1032           unsigned Reg = MO.getReg();
1033           PHISrcRegs.insert(Reg);
1034           if (MO.isUndef())
1035             continue;
1036 
1037           LiveInterval &LI = LIS->getInterval(Reg);
1038           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1039           assert(VNI &&
1040                  "PHI sources should be live out of their predecessors.");
1041           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1042         }
1043       }
1044     }
1045 
1046     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1047     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1048       unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1049       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1050         continue;
1051 
1052       LiveInterval &LI = LIS->getInterval(Reg);
1053       if (!LI.liveAt(PrevIndex))
1054         continue;
1055 
1056       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1057       if (isLiveOut && isLastMBB) {
1058         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1059         assert(VNI && "LiveInterval should have VNInfo where it is live.");
1060         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1061       } else if (!isLiveOut && !isLastMBB) {
1062         LI.removeSegment(StartIndex, EndIndex);
1063       }
1064     }
1065 
1066     // Update all intervals for registers whose uses may have been modified by
1067     // updateTerminator().
1068     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1069   }
1070 
1071   if (MachineDominatorTree *MDT =
1072           P.getAnalysisIfAvailable<MachineDominatorTree>())
1073     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1074 
1075   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1076     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1077       // If one or the other blocks were not in a loop, the new block is not
1078       // either, and thus LI doesn't need to be updated.
1079       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1080         if (TIL == DestLoop) {
1081           // Both in the same loop, the NMBB joins loop.
1082           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1083         } else if (TIL->contains(DestLoop)) {
1084           // Edge from an outer loop to an inner loop.  Add to the outer loop.
1085           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1086         } else if (DestLoop->contains(TIL)) {
1087           // Edge from an inner loop to an outer loop.  Add to the outer loop.
1088           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1089         } else {
1090           // Edge from two loops with no containment relation.  Because these
1091           // are natural loops, we know that the destination block must be the
1092           // header of its loop (adding a branch into a loop elsewhere would
1093           // create an irreducible loop).
1094           assert(DestLoop->getHeader() == Succ &&
1095                  "Should not create irreducible loops!");
1096           if (MachineLoop *P = DestLoop->getParentLoop())
1097             P->addBasicBlockToLoop(NMBB, MLI->getBase());
1098         }
1099       }
1100     }
1101 
1102   return NMBB;
1103 }
1104 
1105 bool MachineBasicBlock::canSplitCriticalEdge(
1106     const MachineBasicBlock *Succ) const {
1107   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1108   // it in this generic function.
1109   if (Succ->isEHPad())
1110     return false;
1111 
1112   const MachineFunction *MF = getParent();
1113 
1114   // Performance might be harmed on HW that implements branching using exec mask
1115   // where both sides of the branches are always executed.
1116   if (MF->getTarget().requiresStructuredCFG())
1117     return false;
1118 
1119   // We may need to update this's terminator, but we can't do that if
1120   // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
1121   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1122   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1123   SmallVector<MachineOperand, 4> Cond;
1124   // AnalyzeBanch should modify this, since we did not allow modification.
1125   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1126                          /*AllowModify*/ false))
1127     return false;
1128 
1129   // Avoid bugpoint weirdness: A block may end with a conditional branch but
1130   // jumps to the same MBB is either case. We have duplicate CFG edges in that
1131   // case that we can't handle. Since this never happens in properly optimized
1132   // code, just skip those edges.
1133   if (TBB && TBB == FBB) {
1134     LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1135                       << printMBBReference(*this) << '\n');
1136     return false;
1137   }
1138   return true;
1139 }
1140 
1141 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1142 /// neighboring instructions so the bundle won't be broken by removing MI.
1143 static void unbundleSingleMI(MachineInstr *MI) {
1144   // Removing the first instruction in a bundle.
1145   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1146     MI->unbundleFromSucc();
1147   // Removing the last instruction in a bundle.
1148   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1149     MI->unbundleFromPred();
1150   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1151   // are already fine.
1152 }
1153 
1154 MachineBasicBlock::instr_iterator
1155 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1156   unbundleSingleMI(&*I);
1157   return Insts.erase(I);
1158 }
1159 
1160 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1161   unbundleSingleMI(MI);
1162   MI->clearFlag(MachineInstr::BundledPred);
1163   MI->clearFlag(MachineInstr::BundledSucc);
1164   return Insts.remove(MI);
1165 }
1166 
1167 MachineBasicBlock::instr_iterator
1168 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1169   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1170          "Cannot insert instruction with bundle flags");
1171   // Set the bundle flags when inserting inside a bundle.
1172   if (I != instr_end() && I->isBundledWithPred()) {
1173     MI->setFlag(MachineInstr::BundledPred);
1174     MI->setFlag(MachineInstr::BundledSucc);
1175   }
1176   return Insts.insert(I, MI);
1177 }
1178 
1179 /// This method unlinks 'this' from the containing function, and returns it, but
1180 /// does not delete it.
1181 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1182   assert(getParent() && "Not embedded in a function!");
1183   getParent()->remove(this);
1184   return this;
1185 }
1186 
1187 /// This method unlinks 'this' from the containing function, and deletes it.
1188 void MachineBasicBlock::eraseFromParent() {
1189   assert(getParent() && "Not embedded in a function!");
1190   getParent()->erase(this);
1191 }
1192 
1193 /// Given a machine basic block that branched to 'Old', change the code and CFG
1194 /// so that it branches to 'New' instead.
1195 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1196                                                MachineBasicBlock *New) {
1197   assert(Old != New && "Cannot replace self with self!");
1198 
1199   MachineBasicBlock::instr_iterator I = instr_end();
1200   while (I != instr_begin()) {
1201     --I;
1202     if (!I->isTerminator()) break;
1203 
1204     // Scan the operands of this machine instruction, replacing any uses of Old
1205     // with New.
1206     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1207       if (I->getOperand(i).isMBB() &&
1208           I->getOperand(i).getMBB() == Old)
1209         I->getOperand(i).setMBB(New);
1210   }
1211 
1212   // Update the successor information.
1213   replaceSuccessor(Old, New);
1214 }
1215 
1216 /// Various pieces of code can cause excess edges in the CFG to be inserted.  If
1217 /// we have proven that MBB can only branch to DestA and DestB, remove any other
1218 /// MBB successors from the CFG.  DestA and DestB can be null.
1219 ///
1220 /// Besides DestA and DestB, retain other edges leading to LandingPads
1221 /// (currently there can be only one; we don't check or require that here).
1222 /// Note it is possible that DestA and/or DestB are LandingPads.
1223 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1224                                              MachineBasicBlock *DestB,
1225                                              bool IsCond) {
1226   // The values of DestA and DestB frequently come from a call to the
1227   // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1228   // values from there.
1229   //
1230   // 1. If both DestA and DestB are null, then the block ends with no branches
1231   //    (it falls through to its successor).
1232   // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends
1233   //    with only an unconditional branch.
1234   // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends
1235   //    with a conditional branch that falls through to a successor (DestB).
1236   // 4. If DestA and DestB is set and IsCond is true, then the block ends with a
1237   //    conditional branch followed by an unconditional branch. DestA is the
1238   //    'true' destination and DestB is the 'false' destination.
1239 
1240   bool Changed = false;
1241 
1242   MachineBasicBlock *FallThru = getNextNode();
1243 
1244   if (!DestA && !DestB) {
1245     // Block falls through to successor.
1246     DestA = FallThru;
1247     DestB = FallThru;
1248   } else if (DestA && !DestB) {
1249     if (IsCond)
1250       // Block ends in conditional jump that falls through to successor.
1251       DestB = FallThru;
1252   } else {
1253     assert(DestA && DestB && IsCond &&
1254            "CFG in a bad state. Cannot correct CFG edges");
1255   }
1256 
1257   // Remove superfluous edges. I.e., those which aren't destinations of this
1258   // basic block, duplicate edges, or landing pads.
1259   SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1260   MachineBasicBlock::succ_iterator SI = succ_begin();
1261   while (SI != succ_end()) {
1262     const MachineBasicBlock *MBB = *SI;
1263     if (!SeenMBBs.insert(MBB).second ||
1264         (MBB != DestA && MBB != DestB && !MBB->isEHPad())) {
1265       // This is a superfluous edge, remove it.
1266       SI = removeSuccessor(SI);
1267       Changed = true;
1268     } else {
1269       ++SI;
1270     }
1271   }
1272 
1273   if (Changed)
1274     normalizeSuccProbs();
1275   return Changed;
1276 }
1277 
1278 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1279 /// instructions.  Return UnknownLoc if there is none.
1280 DebugLoc
1281 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1282   // Skip debug declarations, we don't want a DebugLoc from them.
1283   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1284   if (MBBI != instr_end())
1285     return MBBI->getDebugLoc();
1286   return {};
1287 }
1288 
1289 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1290 /// instructions.  Return UnknownLoc if there is none.
1291 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1292   if (MBBI == instr_begin()) return {};
1293   // Skip debug declarations, we don't want a DebugLoc from them.
1294   MBBI = skipDebugInstructionsBackward(std::prev(MBBI), instr_begin());
1295   if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
1296   return {};
1297 }
1298 
1299 /// Find and return the merged DebugLoc of the branch instructions of the block.
1300 /// Return UnknownLoc if there is none.
1301 DebugLoc
1302 MachineBasicBlock::findBranchDebugLoc() {
1303   DebugLoc DL;
1304   auto TI = getFirstTerminator();
1305   while (TI != end() && !TI->isBranch())
1306     ++TI;
1307 
1308   if (TI != end()) {
1309     DL = TI->getDebugLoc();
1310     for (++TI ; TI != end() ; ++TI)
1311       if (TI->isBranch())
1312         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1313   }
1314   return DL;
1315 }
1316 
1317 /// Return probability of the edge from this block to MBB.
1318 BranchProbability
1319 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1320   if (Probs.empty())
1321     return BranchProbability(1, succ_size());
1322 
1323   const auto &Prob = *getProbabilityIterator(Succ);
1324   if (Prob.isUnknown()) {
1325     // For unknown probabilities, collect the sum of all known ones, and evenly
1326     // ditribute the complemental of the sum to each unknown probability.
1327     unsigned KnownProbNum = 0;
1328     auto Sum = BranchProbability::getZero();
1329     for (auto &P : Probs) {
1330       if (!P.isUnknown()) {
1331         Sum += P;
1332         KnownProbNum++;
1333       }
1334     }
1335     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1336   } else
1337     return Prob;
1338 }
1339 
1340 /// Set successor probability of a given iterator.
1341 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1342                                            BranchProbability Prob) {
1343   assert(!Prob.isUnknown());
1344   if (Probs.empty())
1345     return;
1346   *getProbabilityIterator(I) = Prob;
1347 }
1348 
1349 /// Return probability iterator corresonding to the I successor iterator
1350 MachineBasicBlock::const_probability_iterator
1351 MachineBasicBlock::getProbabilityIterator(
1352     MachineBasicBlock::const_succ_iterator I) const {
1353   assert(Probs.size() == Successors.size() && "Async probability list!");
1354   const size_t index = std::distance(Successors.begin(), I);
1355   assert(index < Probs.size() && "Not a current successor!");
1356   return Probs.begin() + index;
1357 }
1358 
1359 /// Return probability iterator corresonding to the I successor iterator.
1360 MachineBasicBlock::probability_iterator
1361 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1362   assert(Probs.size() == Successors.size() && "Async probability list!");
1363   const size_t index = std::distance(Successors.begin(), I);
1364   assert(index < Probs.size() && "Not a current successor!");
1365   return Probs.begin() + index;
1366 }
1367 
1368 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1369 /// as of just before "MI".
1370 ///
1371 /// Search is localised to a neighborhood of
1372 /// Neighborhood instructions before (searching for defs or kills) and N
1373 /// instructions after (searching just for defs) MI.
1374 MachineBasicBlock::LivenessQueryResult
1375 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1376                                            unsigned Reg, const_iterator Before,
1377                                            unsigned Neighborhood) const {
1378   unsigned N = Neighborhood;
1379 
1380   // Try searching forwards from Before, looking for reads or defs.
1381   const_iterator I(Before);
1382   for (; I != end() && N > 0; ++I) {
1383     if (I->isDebugInstr())
1384       continue;
1385 
1386     --N;
1387 
1388     MachineOperandIteratorBase::PhysRegInfo Info =
1389         ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1390 
1391     // Register is live when we read it here.
1392     if (Info.Read)
1393       return LQR_Live;
1394     // Register is dead if we can fully overwrite or clobber it here.
1395     if (Info.FullyDefined || Info.Clobbered)
1396       return LQR_Dead;
1397   }
1398 
1399   // If we reached the end, it is safe to clobber Reg at the end of a block of
1400   // no successor has it live in.
1401   if (I == end()) {
1402     for (MachineBasicBlock *S : successors()) {
1403       for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1404         if (TRI->regsOverlap(LI.PhysReg, Reg))
1405           return LQR_Live;
1406       }
1407     }
1408 
1409     return LQR_Dead;
1410   }
1411 
1412 
1413   N = Neighborhood;
1414 
1415   // Start by searching backwards from Before, looking for kills, reads or defs.
1416   I = const_iterator(Before);
1417   // If this is the first insn in the block, don't search backwards.
1418   if (I != begin()) {
1419     do {
1420       --I;
1421 
1422       if (I->isDebugInstr())
1423         continue;
1424 
1425       --N;
1426 
1427       MachineOperandIteratorBase::PhysRegInfo Info =
1428           ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1429 
1430       // Defs happen after uses so they take precedence if both are present.
1431 
1432       // Register is dead after a dead def of the full register.
1433       if (Info.DeadDef)
1434         return LQR_Dead;
1435       // Register is (at least partially) live after a def.
1436       if (Info.Defined) {
1437         if (!Info.PartialDeadDef)
1438           return LQR_Live;
1439         // As soon as we saw a partial definition (dead or not),
1440         // we cannot tell if the value is partial live without
1441         // tracking the lanemasks. We are not going to do this,
1442         // so fall back on the remaining of the analysis.
1443         break;
1444       }
1445       // Register is dead after a full kill or clobber and no def.
1446       if (Info.Killed || Info.Clobbered)
1447         return LQR_Dead;
1448       // Register must be live if we read it.
1449       if (Info.Read)
1450         return LQR_Live;
1451 
1452     } while (I != begin() && N > 0);
1453   }
1454 
1455   // Did we get to the start of the block?
1456   if (I == begin()) {
1457     // If so, the register's state is definitely defined by the live-in state.
1458     for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1459       if (TRI->regsOverlap(LI.PhysReg, Reg))
1460         return LQR_Live;
1461 
1462     return LQR_Dead;
1463   }
1464 
1465   // At this point we have no idea of the liveness of the register.
1466   return LQR_Unknown;
1467 }
1468 
1469 const uint32_t *
1470 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1471   // EH funclet entry does not preserve any registers.
1472   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1473 }
1474 
1475 const uint32_t *
1476 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1477   // If we see a return block with successors, this must be a funclet return,
1478   // which does not preserve any registers. If there are no successors, we don't
1479   // care what kind of return it is, putting a mask after it is a no-op.
1480   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1481 }
1482 
1483 void MachineBasicBlock::clearLiveIns() {
1484   LiveIns.clear();
1485 }
1486 
1487 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1488   assert(getParent()->getProperties().hasProperty(
1489       MachineFunctionProperties::Property::TracksLiveness) &&
1490       "Liveness information is accurate");
1491   return LiveIns.begin();
1492 }
1493