1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 18 #include "llvm/CodeGen/LiveVariables.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/SlotIndexes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/ModuleSlotTracker.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 #define DEBUG_TYPE "codegen" 40 41 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 42 : BB(B), Number(-1), xParent(&MF) { 43 Insts.Parent = this; 44 } 45 46 MachineBasicBlock::~MachineBasicBlock() { 47 } 48 49 /// Return the MCSymbol for this basic block. 50 MCSymbol *MachineBasicBlock::getSymbol() const { 51 if (!CachedMCSymbol) { 52 const MachineFunction *MF = getParent(); 53 MCContext &Ctx = MF->getContext(); 54 const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 55 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 56 Twine(MF->getFunctionNumber()) + 57 "_" + Twine(getNumber())); 58 } 59 60 return CachedMCSymbol; 61 } 62 63 64 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 65 MBB.print(OS); 66 return OS; 67 } 68 69 /// When an MBB is added to an MF, we need to update the parent pointer of the 70 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 71 /// operand list for registers. 72 /// 73 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 74 /// gets the next available unique MBB number. If it is removed from a 75 /// MachineFunction, it goes back to being #-1. 76 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) { 77 MachineFunction &MF = *N->getParent(); 78 N->Number = MF.addToMBBNumbering(N); 79 80 // Make sure the instructions have their operands in the reginfo lists. 81 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 82 for (MachineBasicBlock::instr_iterator 83 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 84 I->AddRegOperandsToUseLists(RegInfo); 85 } 86 87 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) { 88 N->getParent()->removeFromMBBNumbering(N->Number); 89 N->Number = -1; 90 } 91 92 /// When we add an instruction to a basic block list, we update its parent 93 /// pointer and add its operands from reg use/def lists if appropriate. 94 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 95 assert(!N->getParent() && "machine instruction already in a basic block"); 96 N->setParent(Parent); 97 98 // Add the instruction's register operands to their corresponding 99 // use/def lists. 100 MachineFunction *MF = Parent->getParent(); 101 N->AddRegOperandsToUseLists(MF->getRegInfo()); 102 } 103 104 /// When we remove an instruction from a basic block list, we update its parent 105 /// pointer and remove its operands from reg use/def lists if appropriate. 106 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 107 assert(N->getParent() && "machine instruction not in a basic block"); 108 109 // Remove from the use/def lists. 110 if (MachineFunction *MF = N->getParent()->getParent()) 111 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 112 113 N->setParent(nullptr); 114 } 115 116 /// When moving a range of instructions from one MBB list to another, we need to 117 /// update the parent pointers and the use/def lists. 118 void ilist_traits<MachineInstr>:: 119 transferNodesFromList(ilist_traits<MachineInstr> &FromList, 120 ilist_iterator<MachineInstr> First, 121 ilist_iterator<MachineInstr> Last) { 122 assert(Parent->getParent() == FromList.Parent->getParent() && 123 "MachineInstr parent mismatch!"); 124 125 // Splice within the same MBB -> no change. 126 if (Parent == FromList.Parent) return; 127 128 // If splicing between two blocks within the same function, just update the 129 // parent pointers. 130 for (; First != Last; ++First) 131 First->setParent(Parent); 132 } 133 134 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) { 135 assert(!MI->getParent() && "MI is still in a block!"); 136 Parent->getParent()->DeleteMachineInstr(MI); 137 } 138 139 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 140 instr_iterator I = instr_begin(), E = instr_end(); 141 while (I != E && I->isPHI()) 142 ++I; 143 assert((I == E || !I->isInsideBundle()) && 144 "First non-phi MI cannot be inside a bundle!"); 145 return I; 146 } 147 148 MachineBasicBlock::iterator 149 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 150 iterator E = end(); 151 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue())) 152 ++I; 153 // FIXME: This needs to change if we wish to bundle labels / dbg_values 154 // inside the bundle. 155 assert((I == E || !I->isInsideBundle()) && 156 "First non-phi / non-label instruction is inside a bundle!"); 157 return I; 158 } 159 160 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 161 iterator B = begin(), E = end(), I = E; 162 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 163 ; /*noop */ 164 while (I != E && !I->isTerminator()) 165 ++I; 166 return I; 167 } 168 169 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 170 instr_iterator B = instr_begin(), E = instr_end(), I = E; 171 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 172 ; /*noop */ 173 while (I != E && !I->isTerminator()) 174 ++I; 175 return I; 176 } 177 178 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 179 // Skip over begin-of-block dbg_value instructions. 180 iterator I = begin(), E = end(); 181 while (I != E && I->isDebugValue()) 182 ++I; 183 return I; 184 } 185 186 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 187 // Skip over end-of-block dbg_value instructions. 188 instr_iterator B = instr_begin(), I = instr_end(); 189 while (I != B) { 190 --I; 191 // Return instruction that starts a bundle. 192 if (I->isDebugValue() || I->isInsideBundle()) 193 continue; 194 return I; 195 } 196 // The block is all debug values. 197 return end(); 198 } 199 200 const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const { 201 // A block with a landing pad successor only has one other successor. 202 if (succ_size() > 2) 203 return nullptr; 204 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 205 if ((*I)->isEHPad()) 206 return *I; 207 return nullptr; 208 } 209 210 bool MachineBasicBlock::hasEHPadSuccessor() const { 211 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 212 if ((*I)->isEHPad()) 213 return true; 214 return false; 215 } 216 217 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 218 void MachineBasicBlock::dump() const { 219 print(dbgs()); 220 } 221 #endif 222 223 StringRef MachineBasicBlock::getName() const { 224 if (const BasicBlock *LBB = getBasicBlock()) 225 return LBB->getName(); 226 else 227 return "(null)"; 228 } 229 230 /// Return a hopefully unique identifier for this block. 231 std::string MachineBasicBlock::getFullName() const { 232 std::string Name; 233 if (getParent()) 234 Name = (getParent()->getName() + ":").str(); 235 if (getBasicBlock()) 236 Name += getBasicBlock()->getName(); 237 else 238 Name += ("BB" + Twine(getNumber())).str(); 239 return Name; 240 } 241 242 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const { 243 const MachineFunction *MF = getParent(); 244 if (!MF) { 245 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 246 << " is null\n"; 247 return; 248 } 249 const Function *F = MF->getFunction(); 250 const Module *M = F ? F->getParent() : nullptr; 251 ModuleSlotTracker MST(M); 252 print(OS, MST, Indexes); 253 } 254 255 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 256 SlotIndexes *Indexes) const { 257 const MachineFunction *MF = getParent(); 258 if (!MF) { 259 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 260 << " is null\n"; 261 return; 262 } 263 264 if (Indexes) 265 OS << Indexes->getMBBStartIdx(this) << '\t'; 266 267 OS << "BB#" << getNumber() << ": "; 268 269 const char *Comma = ""; 270 if (const BasicBlock *LBB = getBasicBlock()) { 271 OS << Comma << "derived from LLVM BB "; 272 LBB->printAsOperand(OS, /*PrintType=*/false, MST); 273 Comma = ", "; 274 } 275 if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 276 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 277 if (Alignment) 278 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 279 << " bytes)"; 280 281 OS << '\n'; 282 283 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 284 if (!livein_empty()) { 285 if (Indexes) OS << '\t'; 286 OS << " Live Ins:"; 287 for (const auto &LI : make_range(livein_begin(), livein_end())) { 288 OS << ' ' << PrintReg(LI.PhysReg, TRI); 289 if (LI.LaneMask != ~0u) 290 OS << ':' << PrintLaneMask(LI.LaneMask); 291 } 292 OS << '\n'; 293 } 294 // Print the preds of this block according to the CFG. 295 if (!pred_empty()) { 296 if (Indexes) OS << '\t'; 297 OS << " Predecessors according to CFG:"; 298 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 299 OS << " BB#" << (*PI)->getNumber(); 300 OS << '\n'; 301 } 302 303 for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) { 304 if (Indexes) { 305 if (Indexes->hasIndex(&*I)) 306 OS << Indexes->getInstructionIndex(&*I); 307 OS << '\t'; 308 } 309 OS << '\t'; 310 if (I->isInsideBundle()) 311 OS << " * "; 312 I->print(OS, MST); 313 } 314 315 // Print the successors of this block according to the CFG. 316 if (!succ_empty()) { 317 if (Indexes) OS << '\t'; 318 OS << " Successors according to CFG:"; 319 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 320 OS << " BB#" << (*SI)->getNumber(); 321 if (!Weights.empty()) 322 OS << '(' << *getWeightIterator(SI) << ')'; 323 } 324 OS << '\n'; 325 } 326 } 327 328 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 329 bool /*PrintType*/) const { 330 OS << "BB#" << getNumber(); 331 } 332 333 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 334 LiveInVector::iterator I = std::find_if( 335 LiveIns.begin(), LiveIns.end(), 336 [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 337 if (I == LiveIns.end()) 338 return; 339 340 I->LaneMask &= ~LaneMask; 341 if (I->LaneMask == 0) 342 LiveIns.erase(I); 343 } 344 345 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 346 livein_iterator I = std::find_if( 347 LiveIns.begin(), LiveIns.end(), 348 [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 349 return I != livein_end() && (I->LaneMask & LaneMask) != 0; 350 } 351 352 void MachineBasicBlock::sortUniqueLiveIns() { 353 std::sort(LiveIns.begin(), LiveIns.end(), 354 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 355 return LI0.PhysReg < LI1.PhysReg; 356 }); 357 // Liveins are sorted by physreg now we can merge their lanemasks. 358 LiveInVector::const_iterator I = LiveIns.begin(); 359 LiveInVector::const_iterator J; 360 LiveInVector::iterator Out = LiveIns.begin(); 361 for (; I != LiveIns.end(); ++Out, I = J) { 362 unsigned PhysReg = I->PhysReg; 363 LaneBitmask LaneMask = I->LaneMask; 364 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 365 LaneMask |= J->LaneMask; 366 Out->PhysReg = PhysReg; 367 Out->LaneMask = LaneMask; 368 } 369 LiveIns.erase(Out, LiveIns.end()); 370 } 371 372 unsigned 373 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 374 assert(getParent() && "MBB must be inserted in function"); 375 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 376 assert(RC && "Register class is required"); 377 assert((isEHPad() || this == &getParent()->front()) && 378 "Only the entry block and landing pads can have physreg live ins"); 379 380 bool LiveIn = isLiveIn(PhysReg); 381 iterator I = SkipPHIsAndLabels(begin()), E = end(); 382 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 383 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 384 385 // Look for an existing copy. 386 if (LiveIn) 387 for (;I != E && I->isCopy(); ++I) 388 if (I->getOperand(1).getReg() == PhysReg) { 389 unsigned VirtReg = I->getOperand(0).getReg(); 390 if (!MRI.constrainRegClass(VirtReg, RC)) 391 llvm_unreachable("Incompatible live-in register class."); 392 return VirtReg; 393 } 394 395 // No luck, create a virtual register. 396 unsigned VirtReg = MRI.createVirtualRegister(RC); 397 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 398 .addReg(PhysReg, RegState::Kill); 399 if (!LiveIn) 400 addLiveIn(PhysReg); 401 return VirtReg; 402 } 403 404 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 405 getParent()->splice(NewAfter->getIterator(), getIterator()); 406 } 407 408 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 409 getParent()->splice(++NewBefore->getIterator(), getIterator()); 410 } 411 412 void MachineBasicBlock::updateTerminator() { 413 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 414 // A block with no successors has no concerns with fall-through edges. 415 if (this->succ_empty()) return; 416 417 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 418 SmallVector<MachineOperand, 4> Cond; 419 DebugLoc DL; // FIXME: this is nowhere 420 bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond); 421 (void) B; 422 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 423 if (Cond.empty()) { 424 if (TBB) { 425 // The block has an unconditional branch. If its successor is now 426 // its layout successor, delete the branch. 427 if (isLayoutSuccessor(TBB)) 428 TII->RemoveBranch(*this); 429 } else { 430 // The block has an unconditional fallthrough. If its successor is not 431 // its layout successor, insert a branch. First we have to locate the 432 // only non-landing-pad successor, as that is the fallthrough block. 433 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 434 if ((*SI)->isEHPad()) 435 continue; 436 assert(!TBB && "Found more than one non-landing-pad successor!"); 437 TBB = *SI; 438 } 439 440 // If there is no non-landing-pad successor, the block has no 441 // fall-through edges to be concerned with. 442 if (!TBB) 443 return; 444 445 // Finally update the unconditional successor to be reached via a branch 446 // if it would not be reached by fallthrough. 447 if (!isLayoutSuccessor(TBB)) 448 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 449 } 450 } else { 451 if (FBB) { 452 // The block has a non-fallthrough conditional branch. If one of its 453 // successors is its layout successor, rewrite it to a fallthrough 454 // conditional branch. 455 if (isLayoutSuccessor(TBB)) { 456 if (TII->ReverseBranchCondition(Cond)) 457 return; 458 TII->RemoveBranch(*this); 459 TII->InsertBranch(*this, FBB, nullptr, Cond, DL); 460 } else if (isLayoutSuccessor(FBB)) { 461 TII->RemoveBranch(*this); 462 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 463 } 464 } else { 465 // Walk through the successors and find the successor which is not 466 // a landing pad and is not the conditional branch destination (in TBB) 467 // as the fallthrough successor. 468 MachineBasicBlock *FallthroughBB = nullptr; 469 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 470 if ((*SI)->isEHPad() || *SI == TBB) 471 continue; 472 assert(!FallthroughBB && "Found more than one fallthrough successor."); 473 FallthroughBB = *SI; 474 } 475 if (!FallthroughBB && canFallThrough()) { 476 // We fallthrough to the same basic block as the conditional jump 477 // targets. Remove the conditional jump, leaving unconditional 478 // fallthrough. 479 // FIXME: This does not seem like a reasonable pattern to support, but 480 // it has been seen in the wild coming out of degenerate ARM test cases. 481 TII->RemoveBranch(*this); 482 483 // Finally update the unconditional successor to be reached via a branch 484 // if it would not be reached by fallthrough. 485 if (!isLayoutSuccessor(TBB)) 486 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 487 return; 488 } 489 490 // The block has a fallthrough conditional branch. 491 if (isLayoutSuccessor(TBB)) { 492 if (TII->ReverseBranchCondition(Cond)) { 493 // We can't reverse the condition, add an unconditional branch. 494 Cond.clear(); 495 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL); 496 return; 497 } 498 TII->RemoveBranch(*this); 499 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL); 500 } else if (!isLayoutSuccessor(FallthroughBB)) { 501 TII->RemoveBranch(*this); 502 TII->InsertBranch(*this, TBB, FallthroughBB, Cond, DL); 503 } 504 } 505 } 506 } 507 508 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, uint32_t Weight) { 509 // Weight list is either empty (if successor list isn't empty, this means 510 // disabled optimization) or has the same size as successor list. 511 if (!(Weights.empty() && !Successors.empty())) 512 Weights.push_back(Weight); 513 Successors.push_back(Succ); 514 Succ->addPredecessor(this); 515 } 516 517 void MachineBasicBlock::addSuccessorWithoutWeight(MachineBasicBlock *Succ) { 518 // We need to make sure weight list is either empty or has the same size of 519 // successor list. When this function is called, we can safely delete all 520 // weight in the list. 521 Weights.clear(); 522 Successors.push_back(Succ); 523 Succ->addPredecessor(this); 524 } 525 526 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 527 BranchProbability Prob) { 528 // Probability list is either empty (if successor list isn't empty, this means 529 // disabled optimization) or has the same size as successor list. 530 if (!(Probs.empty() && !Successors.empty())) 531 Probs.push_back(Prob); 532 Successors.push_back(Succ); 533 Succ->addPredecessor(this); 534 } 535 536 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 537 // We need to make sure probability list is either empty or has the same size 538 // of successor list. When this function is called, we can safely delete all 539 // probability in the list. 540 Probs.clear(); 541 Successors.push_back(Succ); 542 Succ->addPredecessor(this); 543 } 544 545 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ) { 546 Succ->removePredecessor(this); 547 succ_iterator I = std::find(Successors.begin(), Successors.end(), Succ); 548 assert(I != Successors.end() && "Not a current successor!"); 549 550 // If Weight list is empty it means we don't use it (disabled optimization). 551 if (!Weights.empty()) { 552 weight_iterator WI = getWeightIterator(I); 553 Weights.erase(WI); 554 } 555 556 // If probability list is empty it means we don't use it (disabled 557 // optimization). 558 if (!Probs.empty()) { 559 probability_iterator WI = getProbabilityIterator(I); 560 Probs.erase(WI); 561 } 562 563 Successors.erase(I); 564 } 565 566 MachineBasicBlock::succ_iterator 567 MachineBasicBlock::removeSuccessor(succ_iterator I) { 568 assert(I != Successors.end() && "Not a current successor!"); 569 570 // If Weight list is empty it means we don't use it (disabled optimization). 571 if (!Weights.empty()) { 572 weight_iterator WI = getWeightIterator(I); 573 Weights.erase(WI); 574 } 575 576 // If probability list is empty it means we don't use it (disabled 577 // optimization). 578 if (!Probs.empty()) { 579 probability_iterator WI = getProbabilityIterator(I); 580 Probs.erase(WI); 581 } 582 583 (*I)->removePredecessor(this); 584 return Successors.erase(I); 585 } 586 587 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 588 MachineBasicBlock *New) { 589 if (Old == New) 590 return; 591 592 succ_iterator E = succ_end(); 593 succ_iterator NewI = E; 594 succ_iterator OldI = E; 595 for (succ_iterator I = succ_begin(); I != E; ++I) { 596 if (*I == Old) { 597 OldI = I; 598 if (NewI != E) 599 break; 600 } 601 if (*I == New) { 602 NewI = I; 603 if (OldI != E) 604 break; 605 } 606 } 607 assert(OldI != E && "Old is not a successor of this block"); 608 Old->removePredecessor(this); 609 610 // If New isn't already a successor, let it take Old's place. 611 if (NewI == E) { 612 New->addPredecessor(this); 613 *OldI = New; 614 return; 615 } 616 617 // New is already a successor. 618 // Update its weight instead of adding a duplicate edge. 619 if (!Weights.empty()) { 620 weight_iterator OldWI = getWeightIterator(OldI); 621 *getWeightIterator(NewI) += *OldWI; 622 Weights.erase(OldWI); 623 } 624 // Update its probability instead of adding a duplicate edge. 625 if (!Probs.empty()) { 626 probability_iterator OldPI = getProbabilityIterator(OldI); 627 *getProbabilityIterator(NewI) += *OldPI; 628 Probs.erase(OldPI); 629 } 630 Successors.erase(OldI); 631 } 632 633 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 634 Predecessors.push_back(Pred); 635 } 636 637 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 638 pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), Pred); 639 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 640 Predecessors.erase(I); 641 } 642 643 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 644 if (this == FromMBB) 645 return; 646 647 while (!FromMBB->succ_empty()) { 648 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 649 uint32_t Weight = 0; 650 651 // If Weight list is empty it means we don't use it (disabled optimization). 652 if (!FromMBB->Weights.empty()) 653 Weight = *FromMBB->Weights.begin(); 654 655 addSuccessor(Succ, Weight); 656 FromMBB->removeSuccessor(Succ); 657 } 658 } 659 660 void 661 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 662 if (this == FromMBB) 663 return; 664 665 while (!FromMBB->succ_empty()) { 666 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 667 uint32_t Weight = 0; 668 if (!FromMBB->Weights.empty()) 669 Weight = *FromMBB->Weights.begin(); 670 addSuccessor(Succ, Weight); 671 FromMBB->removeSuccessor(Succ); 672 673 // Fix up any PHI nodes in the successor. 674 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 675 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 676 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 677 MachineOperand &MO = MI->getOperand(i); 678 if (MO.getMBB() == FromMBB) 679 MO.setMBB(this); 680 } 681 } 682 } 683 684 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 685 return std::find(pred_begin(), pred_end(), MBB) != pred_end(); 686 } 687 688 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 689 return std::find(succ_begin(), succ_end(), MBB) != succ_end(); 690 } 691 692 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 693 MachineFunction::const_iterator I(this); 694 return std::next(I) == MachineFunction::const_iterator(MBB); 695 } 696 697 bool MachineBasicBlock::canFallThrough() { 698 MachineFunction::iterator Fallthrough = getIterator(); 699 ++Fallthrough; 700 // If FallthroughBlock is off the end of the function, it can't fall through. 701 if (Fallthrough == getParent()->end()) 702 return false; 703 704 // If FallthroughBlock isn't a successor, no fallthrough is possible. 705 if (!isSuccessor(&*Fallthrough)) 706 return false; 707 708 // Analyze the branches, if any, at the end of the block. 709 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 710 SmallVector<MachineOperand, 4> Cond; 711 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 712 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) { 713 // If we couldn't analyze the branch, examine the last instruction. 714 // If the block doesn't end in a known control barrier, assume fallthrough 715 // is possible. The isPredicated check is needed because this code can be 716 // called during IfConversion, where an instruction which is normally a 717 // Barrier is predicated and thus no longer an actual control barrier. 718 return empty() || !back().isBarrier() || TII->isPredicated(&back()); 719 } 720 721 // If there is no branch, control always falls through. 722 if (!TBB) return true; 723 724 // If there is some explicit branch to the fallthrough block, it can obviously 725 // reach, even though the branch should get folded to fall through implicitly. 726 if (MachineFunction::iterator(TBB) == Fallthrough || 727 MachineFunction::iterator(FBB) == Fallthrough) 728 return true; 729 730 // If it's an unconditional branch to some block not the fall through, it 731 // doesn't fall through. 732 if (Cond.empty()) return false; 733 734 // Otherwise, if it is conditional and has no explicit false block, it falls 735 // through. 736 return FBB == nullptr; 737 } 738 739 MachineBasicBlock * 740 MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) { 741 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 742 // it in this generic function. 743 if (Succ->isEHPad()) 744 return nullptr; 745 746 MachineFunction *MF = getParent(); 747 DebugLoc DL; // FIXME: this is nowhere 748 749 // Performance might be harmed on HW that implements branching using exec mask 750 // where both sides of the branches are always executed. 751 if (MF->getTarget().requiresStructuredCFG()) 752 return nullptr; 753 754 // We may need to update this's terminator, but we can't do that if 755 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 756 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 757 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 758 SmallVector<MachineOperand, 4> Cond; 759 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) 760 return nullptr; 761 762 // Avoid bugpoint weirdness: A block may end with a conditional branch but 763 // jumps to the same MBB is either case. We have duplicate CFG edges in that 764 // case that we can't handle. Since this never happens in properly optimized 765 // code, just skip those edges. 766 if (TBB && TBB == FBB) { 767 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 768 << getNumber() << '\n'); 769 return nullptr; 770 } 771 772 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 773 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 774 DEBUG(dbgs() << "Splitting critical edge:" 775 " BB#" << getNumber() 776 << " -- BB#" << NMBB->getNumber() 777 << " -- BB#" << Succ->getNumber() << '\n'); 778 779 LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>(); 780 SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>(); 781 if (LIS) 782 LIS->insertMBBInMaps(NMBB); 783 else if (Indexes) 784 Indexes->insertMBBInMaps(NMBB); 785 786 // On some targets like Mips, branches may kill virtual registers. Make sure 787 // that LiveVariables is properly updated after updateTerminator replaces the 788 // terminators. 789 LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>(); 790 791 // Collect a list of virtual registers killed by the terminators. 792 SmallVector<unsigned, 4> KilledRegs; 793 if (LV) 794 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 795 I != E; ++I) { 796 MachineInstr *MI = &*I; 797 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 798 OE = MI->operands_end(); OI != OE; ++OI) { 799 if (!OI->isReg() || OI->getReg() == 0 || 800 !OI->isUse() || !OI->isKill() || OI->isUndef()) 801 continue; 802 unsigned Reg = OI->getReg(); 803 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 804 LV->getVarInfo(Reg).removeKill(MI)) { 805 KilledRegs.push_back(Reg); 806 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 807 OI->setIsKill(false); 808 } 809 } 810 } 811 812 SmallVector<unsigned, 4> UsedRegs; 813 if (LIS) { 814 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 815 I != E; ++I) { 816 MachineInstr *MI = &*I; 817 818 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 819 OE = MI->operands_end(); OI != OE; ++OI) { 820 if (!OI->isReg() || OI->getReg() == 0) 821 continue; 822 823 unsigned Reg = OI->getReg(); 824 if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end()) 825 UsedRegs.push_back(Reg); 826 } 827 } 828 } 829 830 ReplaceUsesOfBlockWith(Succ, NMBB); 831 832 // If updateTerminator() removes instructions, we need to remove them from 833 // SlotIndexes. 834 SmallVector<MachineInstr*, 4> Terminators; 835 if (Indexes) { 836 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 837 I != E; ++I) 838 Terminators.push_back(&*I); 839 } 840 841 updateTerminator(); 842 843 if (Indexes) { 844 SmallVector<MachineInstr*, 4> NewTerminators; 845 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 846 I != E; ++I) 847 NewTerminators.push_back(&*I); 848 849 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 850 E = Terminators.end(); I != E; ++I) { 851 if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) == 852 NewTerminators.end()) 853 Indexes->removeMachineInstrFromMaps(*I); 854 } 855 } 856 857 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 858 NMBB->addSuccessor(Succ); 859 if (!NMBB->isLayoutSuccessor(Succ)) { 860 Cond.clear(); 861 TII->InsertBranch(*NMBB, Succ, nullptr, Cond, DL); 862 863 if (Indexes) { 864 for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end(); 865 I != E; ++I) { 866 // Some instructions may have been moved to NMBB by updateTerminator(), 867 // so we first remove any instruction that already has an index. 868 if (Indexes->hasIndex(&*I)) 869 Indexes->removeMachineInstrFromMaps(&*I); 870 Indexes->insertMachineInstrInMaps(&*I); 871 } 872 } 873 } 874 875 // Fix PHI nodes in Succ so they refer to NMBB instead of this 876 for (MachineBasicBlock::instr_iterator 877 i = Succ->instr_begin(),e = Succ->instr_end(); 878 i != e && i->isPHI(); ++i) 879 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 880 if (i->getOperand(ni+1).getMBB() == this) 881 i->getOperand(ni+1).setMBB(NMBB); 882 883 // Inherit live-ins from the successor 884 for (const auto &LI : Succ->liveins()) 885 NMBB->addLiveIn(LI); 886 887 // Update LiveVariables. 888 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 889 if (LV) { 890 // Restore kills of virtual registers that were killed by the terminators. 891 while (!KilledRegs.empty()) { 892 unsigned Reg = KilledRegs.pop_back_val(); 893 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 894 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 895 continue; 896 if (TargetRegisterInfo::isVirtualRegister(Reg)) 897 LV->getVarInfo(Reg).Kills.push_back(&*I); 898 DEBUG(dbgs() << "Restored terminator kill: " << *I); 899 break; 900 } 901 } 902 // Update relevant live-through information. 903 LV->addNewBlock(NMBB, this, Succ); 904 } 905 906 if (LIS) { 907 // After splitting the edge and updating SlotIndexes, live intervals may be 908 // in one of two situations, depending on whether this block was the last in 909 // the function. If the original block was the last in the function, all 910 // live intervals will end prior to the beginning of the new split block. If 911 // the original block was not at the end of the function, all live intervals 912 // will extend to the end of the new split block. 913 914 bool isLastMBB = 915 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 916 917 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 918 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 919 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 920 921 // Find the registers used from NMBB in PHIs in Succ. 922 SmallSet<unsigned, 8> PHISrcRegs; 923 for (MachineBasicBlock::instr_iterator 924 I = Succ->instr_begin(), E = Succ->instr_end(); 925 I != E && I->isPHI(); ++I) { 926 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 927 if (I->getOperand(ni+1).getMBB() == NMBB) { 928 MachineOperand &MO = I->getOperand(ni); 929 unsigned Reg = MO.getReg(); 930 PHISrcRegs.insert(Reg); 931 if (MO.isUndef()) 932 continue; 933 934 LiveInterval &LI = LIS->getInterval(Reg); 935 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 936 assert(VNI && 937 "PHI sources should be live out of their predecessors."); 938 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 939 } 940 } 941 } 942 943 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 944 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 945 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 946 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 947 continue; 948 949 LiveInterval &LI = LIS->getInterval(Reg); 950 if (!LI.liveAt(PrevIndex)) 951 continue; 952 953 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 954 if (isLiveOut && isLastMBB) { 955 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 956 assert(VNI && "LiveInterval should have VNInfo where it is live."); 957 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 958 } else if (!isLiveOut && !isLastMBB) { 959 LI.removeSegment(StartIndex, EndIndex); 960 } 961 } 962 963 // Update all intervals for registers whose uses may have been modified by 964 // updateTerminator(). 965 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 966 } 967 968 if (MachineDominatorTree *MDT = 969 P->getAnalysisIfAvailable<MachineDominatorTree>()) 970 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 971 972 if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>()) 973 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 974 // If one or the other blocks were not in a loop, the new block is not 975 // either, and thus LI doesn't need to be updated. 976 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 977 if (TIL == DestLoop) { 978 // Both in the same loop, the NMBB joins loop. 979 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 980 } else if (TIL->contains(DestLoop)) { 981 // Edge from an outer loop to an inner loop. Add to the outer loop. 982 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 983 } else if (DestLoop->contains(TIL)) { 984 // Edge from an inner loop to an outer loop. Add to the outer loop. 985 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 986 } else { 987 // Edge from two loops with no containment relation. Because these 988 // are natural loops, we know that the destination block must be the 989 // header of its loop (adding a branch into a loop elsewhere would 990 // create an irreducible loop). 991 assert(DestLoop->getHeader() == Succ && 992 "Should not create irreducible loops!"); 993 if (MachineLoop *P = DestLoop->getParentLoop()) 994 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 995 } 996 } 997 } 998 999 return NMBB; 1000 } 1001 1002 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1003 /// neighboring instructions so the bundle won't be broken by removing MI. 1004 static void unbundleSingleMI(MachineInstr *MI) { 1005 // Removing the first instruction in a bundle. 1006 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1007 MI->unbundleFromSucc(); 1008 // Removing the last instruction in a bundle. 1009 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1010 MI->unbundleFromPred(); 1011 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1012 // are already fine. 1013 } 1014 1015 MachineBasicBlock::instr_iterator 1016 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1017 unbundleSingleMI(&*I); 1018 return Insts.erase(I); 1019 } 1020 1021 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1022 unbundleSingleMI(MI); 1023 MI->clearFlag(MachineInstr::BundledPred); 1024 MI->clearFlag(MachineInstr::BundledSucc); 1025 return Insts.remove(MI); 1026 } 1027 1028 MachineBasicBlock::instr_iterator 1029 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1030 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1031 "Cannot insert instruction with bundle flags"); 1032 // Set the bundle flags when inserting inside a bundle. 1033 if (I != instr_end() && I->isBundledWithPred()) { 1034 MI->setFlag(MachineInstr::BundledPred); 1035 MI->setFlag(MachineInstr::BundledSucc); 1036 } 1037 return Insts.insert(I, MI); 1038 } 1039 1040 /// This method unlinks 'this' from the containing function, and returns it, but 1041 /// does not delete it. 1042 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1043 assert(getParent() && "Not embedded in a function!"); 1044 getParent()->remove(this); 1045 return this; 1046 } 1047 1048 /// This method unlinks 'this' from the containing function, and deletes it. 1049 void MachineBasicBlock::eraseFromParent() { 1050 assert(getParent() && "Not embedded in a function!"); 1051 getParent()->erase(this); 1052 } 1053 1054 /// Given a machine basic block that branched to 'Old', change the code and CFG 1055 /// so that it branches to 'New' instead. 1056 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1057 MachineBasicBlock *New) { 1058 assert(Old != New && "Cannot replace self with self!"); 1059 1060 MachineBasicBlock::instr_iterator I = instr_end(); 1061 while (I != instr_begin()) { 1062 --I; 1063 if (!I->isTerminator()) break; 1064 1065 // Scan the operands of this machine instruction, replacing any uses of Old 1066 // with New. 1067 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1068 if (I->getOperand(i).isMBB() && 1069 I->getOperand(i).getMBB() == Old) 1070 I->getOperand(i).setMBB(New); 1071 } 1072 1073 // Update the successor information. 1074 replaceSuccessor(Old, New); 1075 } 1076 1077 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1078 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1079 /// MBB successors from the CFG. DestA and DestB can be null. 1080 /// 1081 /// Besides DestA and DestB, retain other edges leading to LandingPads 1082 /// (currently there can be only one; we don't check or require that here). 1083 /// Note it is possible that DestA and/or DestB are LandingPads. 1084 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1085 MachineBasicBlock *DestB, 1086 bool IsCond) { 1087 // The values of DestA and DestB frequently come from a call to the 1088 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1089 // values from there. 1090 // 1091 // 1. If both DestA and DestB are null, then the block ends with no branches 1092 // (it falls through to its successor). 1093 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1094 // with only an unconditional branch. 1095 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1096 // with a conditional branch that falls through to a successor (DestB). 1097 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1098 // conditional branch followed by an unconditional branch. DestA is the 1099 // 'true' destination and DestB is the 'false' destination. 1100 1101 bool Changed = false; 1102 1103 MachineFunction::iterator FallThru = std::next(getIterator()); 1104 1105 if (!DestA && !DestB) { 1106 // Block falls through to successor. 1107 DestA = &*FallThru; 1108 DestB = &*FallThru; 1109 } else if (DestA && !DestB) { 1110 if (IsCond) 1111 // Block ends in conditional jump that falls through to successor. 1112 DestB = &*FallThru; 1113 } else { 1114 assert(DestA && DestB && IsCond && 1115 "CFG in a bad state. Cannot correct CFG edges"); 1116 } 1117 1118 // Remove superfluous edges. I.e., those which aren't destinations of this 1119 // basic block, duplicate edges, or landing pads. 1120 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1121 MachineBasicBlock::succ_iterator SI = succ_begin(); 1122 while (SI != succ_end()) { 1123 const MachineBasicBlock *MBB = *SI; 1124 if (!SeenMBBs.insert(MBB).second || 1125 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1126 // This is a superfluous edge, remove it. 1127 SI = removeSuccessor(SI); 1128 Changed = true; 1129 } else { 1130 ++SI; 1131 } 1132 } 1133 1134 return Changed; 1135 } 1136 1137 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1138 /// instructions. Return UnknownLoc if there is none. 1139 DebugLoc 1140 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1141 DebugLoc DL; 1142 instr_iterator E = instr_end(); 1143 if (MBBI == E) 1144 return DL; 1145 1146 // Skip debug declarations, we don't want a DebugLoc from them. 1147 while (MBBI != E && MBBI->isDebugValue()) 1148 MBBI++; 1149 if (MBBI != E) 1150 DL = MBBI->getDebugLoc(); 1151 return DL; 1152 } 1153 1154 /// Return weight of the edge from this block to MBB. 1155 uint32_t MachineBasicBlock::getSuccWeight(const_succ_iterator Succ) const { 1156 if (Weights.empty()) 1157 return 0; 1158 1159 return *getWeightIterator(Succ); 1160 } 1161 1162 /// Return probability of the edge from this block to MBB. If probability list 1163 /// is empty, return a default probability which is 1/N, where N is the number 1164 /// of successors. If the probability of the given successor is unknown, then 1165 /// sum up all known probabilities and return the complement of the sum divided 1166 /// by the number of unknown probabilities. 1167 BranchProbability 1168 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1169 if (Probs.empty()) 1170 return BranchProbability(1, succ_size()); 1171 1172 auto Prob = *getProbabilityIterator(Succ); 1173 assert(!Prob.isUnknown()); 1174 return Prob; 1175 } 1176 1177 /// Set successor weight of a given iterator. 1178 void MachineBasicBlock::setSuccWeight(succ_iterator I, uint32_t Weight) { 1179 if (Weights.empty()) 1180 return; 1181 *getWeightIterator(I) = Weight; 1182 } 1183 1184 /// Set successor probability of a given iterator. 1185 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1186 BranchProbability Prob) { 1187 assert(!Prob.isUnknown()); 1188 if (Probs.empty()) 1189 return; 1190 *getProbabilityIterator(I) = Prob; 1191 } 1192 1193 /// Return wight iterator corresonding to the I successor iterator. 1194 MachineBasicBlock::weight_iterator MachineBasicBlock:: 1195 getWeightIterator(MachineBasicBlock::succ_iterator I) { 1196 assert(Weights.size() == Successors.size() && "Async weight list!"); 1197 size_t index = std::distance(Successors.begin(), I); 1198 assert(index < Weights.size() && "Not a current successor!"); 1199 return Weights.begin() + index; 1200 } 1201 1202 /// Return wight iterator corresonding to the I successor iterator. 1203 MachineBasicBlock::const_weight_iterator MachineBasicBlock:: 1204 getWeightIterator(MachineBasicBlock::const_succ_iterator I) const { 1205 assert(Weights.size() == Successors.size() && "Async weight list!"); 1206 const size_t index = std::distance(Successors.begin(), I); 1207 assert(index < Weights.size() && "Not a current successor!"); 1208 return Weights.begin() + index; 1209 } 1210 1211 /// Return probability iterator corresonding to the I successor iterator. 1212 MachineBasicBlock::probability_iterator 1213 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1214 assert(Probs.size() == Successors.size() && "Async probability list!"); 1215 const size_t index = std::distance(Successors.begin(), I); 1216 assert(index < Probs.size() && "Not a current successor!"); 1217 return Probs.begin() + index; 1218 } 1219 1220 /// Return probability iterator corresonding to the I successor iterator 1221 MachineBasicBlock::const_probability_iterator 1222 MachineBasicBlock::getProbabilityIterator( 1223 MachineBasicBlock::const_succ_iterator I) const { 1224 assert(Probs.size() == Successors.size() && "Async probability list!"); 1225 const size_t index = std::distance(Successors.begin(), I); 1226 assert(index < Probs.size() && "Not a current successor!"); 1227 return Probs.begin() + index; 1228 } 1229 1230 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1231 /// as of just before "MI". 1232 /// 1233 /// Search is localised to a neighborhood of 1234 /// Neighborhood instructions before (searching for defs or kills) and N 1235 /// instructions after (searching just for defs) MI. 1236 MachineBasicBlock::LivenessQueryResult 1237 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1238 unsigned Reg, const_iterator Before, 1239 unsigned Neighborhood) const { 1240 unsigned N = Neighborhood; 1241 1242 // Start by searching backwards from Before, looking for kills, reads or defs. 1243 const_iterator I(Before); 1244 // If this is the first insn in the block, don't search backwards. 1245 if (I != begin()) { 1246 do { 1247 --I; 1248 1249 MachineOperandIteratorBase::PhysRegInfo Analysis = 1250 ConstMIOperands(I).analyzePhysReg(Reg, TRI); 1251 1252 if (Analysis.Defines) 1253 // Outputs happen after inputs so they take precedence if both are 1254 // present. 1255 return Analysis.DefinesDead ? LQR_Dead : LQR_Live; 1256 1257 if (Analysis.Kills || Analysis.Clobbers) 1258 // Register killed, so isn't live. 1259 return LQR_Dead; 1260 1261 else if (Analysis.ReadsOverlap) 1262 // Defined or read without a previous kill - live. 1263 return Analysis.Reads ? LQR_Live : LQR_OverlappingLive; 1264 1265 } while (I != begin() && --N > 0); 1266 } 1267 1268 // Did we get to the start of the block? 1269 if (I == begin()) { 1270 // If so, the register's state is definitely defined by the live-in state. 1271 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); 1272 RAI.isValid(); ++RAI) { 1273 if (isLiveIn(*RAI)) 1274 return (*RAI == Reg) ? LQR_Live : LQR_OverlappingLive; 1275 } 1276 1277 return LQR_Dead; 1278 } 1279 1280 N = Neighborhood; 1281 1282 // Try searching forwards from Before, looking for reads or defs. 1283 I = const_iterator(Before); 1284 // If this is the last insn in the block, don't search forwards. 1285 if (I != end()) { 1286 for (++I; I != end() && N > 0; ++I, --N) { 1287 MachineOperandIteratorBase::PhysRegInfo Analysis = 1288 ConstMIOperands(I).analyzePhysReg(Reg, TRI); 1289 1290 if (Analysis.ReadsOverlap) 1291 // Used, therefore must have been live. 1292 return (Analysis.Reads) ? 1293 LQR_Live : LQR_OverlappingLive; 1294 1295 else if (Analysis.Clobbers || Analysis.Defines) 1296 // Defined (but not read) therefore cannot have been live. 1297 return LQR_Dead; 1298 } 1299 } 1300 1301 // At this point we have no idea of the liveness of the register. 1302 return LQR_Unknown; 1303 } 1304