1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Collect the sequence of machine instructions for a basic block. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineBasicBlock.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/CodeGen/LiveIntervals.h" 16 #include "llvm/CodeGen/LiveVariables.h" 17 #include "llvm/CodeGen/MachineDominators.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineLoopInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SlotIndexes.h" 23 #include "llvm/CodeGen/TargetInstrInfo.h" 24 #include "llvm/CodeGen/TargetRegisterInfo.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/ModuleSlotTracker.h" 31 #include "llvm/MC/MCAsmInfo.h" 32 #include "llvm/MC/MCContext.h" 33 #include "llvm/Support/DataTypes.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include <algorithm> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "codegen" 41 42 static cl::opt<bool> PrintSlotIndexes( 43 "print-slotindexes", 44 cl::desc("When printing machine IR, annotate instructions and blocks with " 45 "SlotIndexes when available"), 46 cl::init(true), cl::Hidden); 47 48 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 49 : BB(B), Number(-1), xParent(&MF) { 50 Insts.Parent = this; 51 if (B) 52 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); 53 } 54 55 MachineBasicBlock::~MachineBasicBlock() { 56 } 57 58 /// Return the MCSymbol for this basic block. 59 MCSymbol *MachineBasicBlock::getSymbol() const { 60 if (!CachedMCSymbol) { 61 const MachineFunction *MF = getParent(); 62 MCContext &Ctx = MF->getContext(); 63 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 64 65 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 66 67 // We emit a non-temporary symbol for every basic block if we have BBLabels 68 // or -- with basic block sections -- when a basic block begins a section. 69 // With basic block symbols, we use a unary encoding which can 70 // compress the symbol names significantly. For basic block sections where 71 // this block is the first in a cluster, we use a non-temp descriptive name. 72 // Otherwise we fall back to use temp label. 73 if (MF->hasBBLabels()) { 74 auto Iter = MF->getBBSectionsSymbolPrefix().begin(); 75 if (getNumber() < 0 || 76 getNumber() >= (int)MF->getBBSectionsSymbolPrefix().size()) 77 report_fatal_error("Unreachable MBB: " + Twine(getNumber())); 78 // The basic blocks for function foo are named a.BB.foo, aa.BB.foo, and 79 // so on. 80 std::string Prefix(Iter + 1, Iter + getNumber() + 1); 81 std::reverse(Prefix.begin(), Prefix.end()); 82 CachedMCSymbol = 83 Ctx.getOrCreateSymbol(Twine(Prefix) + ".BB." + Twine(MF->getName())); 84 } else if (MF->hasBBSections() && isBeginSection()) { 85 SmallString<5> Suffix; 86 if (SectionID == MBBSectionID::ColdSectionID) { 87 Suffix += ".cold"; 88 } else if (SectionID == MBBSectionID::ExceptionSectionID) { 89 Suffix += ".eh"; 90 } else { 91 Suffix += "." + std::to_string(SectionID.Number); 92 } 93 CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix); 94 } else { 95 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 96 Twine(MF->getFunctionNumber()) + 97 "_" + Twine(getNumber())); 98 } 99 } 100 return CachedMCSymbol; 101 } 102 103 MCSymbol *MachineBasicBlock::getEndSymbol() const { 104 if (!CachedEndMCSymbol) { 105 const MachineFunction *MF = getParent(); 106 MCContext &Ctx = MF->getContext(); 107 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 108 CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" + 109 Twine(MF->getFunctionNumber()) + 110 "_" + Twine(getNumber())); 111 } 112 return CachedEndMCSymbol; 113 } 114 115 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 116 MBB.print(OS); 117 return OS; 118 } 119 120 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { 121 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); 122 } 123 124 /// When an MBB is added to an MF, we need to update the parent pointer of the 125 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 126 /// operand list for registers. 127 /// 128 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 129 /// gets the next available unique MBB number. If it is removed from a 130 /// MachineFunction, it goes back to being #-1. 131 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 132 MachineBasicBlock *N) { 133 MachineFunction &MF = *N->getParent(); 134 N->Number = MF.addToMBBNumbering(N); 135 136 // Make sure the instructions have their operands in the reginfo lists. 137 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 138 for (MachineBasicBlock::instr_iterator 139 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 140 I->AddRegOperandsToUseLists(RegInfo); 141 } 142 143 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 144 MachineBasicBlock *N) { 145 N->getParent()->removeFromMBBNumbering(N->Number); 146 N->Number = -1; 147 } 148 149 /// When we add an instruction to a basic block list, we update its parent 150 /// pointer and add its operands from reg use/def lists if appropriate. 151 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 152 assert(!N->getParent() && "machine instruction already in a basic block"); 153 N->setParent(Parent); 154 155 // Add the instruction's register operands to their corresponding 156 // use/def lists. 157 MachineFunction *MF = Parent->getParent(); 158 N->AddRegOperandsToUseLists(MF->getRegInfo()); 159 MF->handleInsertion(*N); 160 } 161 162 /// When we remove an instruction from a basic block list, we update its parent 163 /// pointer and remove its operands from reg use/def lists if appropriate. 164 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 165 assert(N->getParent() && "machine instruction not in a basic block"); 166 167 // Remove from the use/def lists. 168 if (MachineFunction *MF = N->getMF()) { 169 MF->handleRemoval(*N); 170 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 171 } 172 173 N->setParent(nullptr); 174 } 175 176 /// When moving a range of instructions from one MBB list to another, we need to 177 /// update the parent pointers and the use/def lists. 178 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 179 instr_iterator First, 180 instr_iterator Last) { 181 assert(Parent->getParent() == FromList.Parent->getParent() && 182 "cannot transfer MachineInstrs between MachineFunctions"); 183 184 // If it's within the same BB, there's nothing to do. 185 if (this == &FromList) 186 return; 187 188 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 189 190 // If splicing between two blocks within the same function, just update the 191 // parent pointers. 192 for (; First != Last; ++First) 193 First->setParent(Parent); 194 } 195 196 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 197 assert(!MI->getParent() && "MI is still in a block!"); 198 Parent->getParent()->DeleteMachineInstr(MI); 199 } 200 201 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 202 instr_iterator I = instr_begin(), E = instr_end(); 203 while (I != E && I->isPHI()) 204 ++I; 205 assert((I == E || !I->isInsideBundle()) && 206 "First non-phi MI cannot be inside a bundle!"); 207 return I; 208 } 209 210 MachineBasicBlock::iterator 211 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 212 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 213 214 iterator E = end(); 215 while (I != E && (I->isPHI() || I->isPosition() || 216 TII->isBasicBlockPrologue(*I))) 217 ++I; 218 // FIXME: This needs to change if we wish to bundle labels 219 // inside the bundle. 220 assert((I == E || !I->isInsideBundle()) && 221 "First non-phi / non-label instruction is inside a bundle!"); 222 return I; 223 } 224 225 MachineBasicBlock::iterator 226 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) { 227 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 228 229 iterator E = end(); 230 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() || 231 TII->isBasicBlockPrologue(*I))) 232 ++I; 233 // FIXME: This needs to change if we wish to bundle labels / dbg_values 234 // inside the bundle. 235 assert((I == E || !I->isInsideBundle()) && 236 "First non-phi / non-label / non-debug " 237 "instruction is inside a bundle!"); 238 return I; 239 } 240 241 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 242 iterator B = begin(), E = end(), I = E; 243 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 244 ; /*noop */ 245 while (I != E && !I->isTerminator()) 246 ++I; 247 return I; 248 } 249 250 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 251 instr_iterator B = instr_begin(), E = instr_end(), I = E; 252 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 253 ; /*noop */ 254 while (I != E && !I->isTerminator()) 255 ++I; 256 return I; 257 } 258 259 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 260 // Skip over begin-of-block dbg_value instructions. 261 return skipDebugInstructionsForward(begin(), end()); 262 } 263 264 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 265 // Skip over end-of-block dbg_value instructions. 266 instr_iterator B = instr_begin(), I = instr_end(); 267 while (I != B) { 268 --I; 269 // Return instruction that starts a bundle. 270 if (I->isDebugInstr() || I->isInsideBundle()) 271 continue; 272 return I; 273 } 274 // The block is all debug values. 275 return end(); 276 } 277 278 bool MachineBasicBlock::hasEHPadSuccessor() const { 279 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 280 if ((*I)->isEHPad()) 281 return true; 282 return false; 283 } 284 285 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 286 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 287 print(dbgs()); 288 } 289 #endif 290 291 bool MachineBasicBlock::mayHaveInlineAsmBr() const { 292 for (const MachineBasicBlock *Succ : successors()) { 293 if (Succ->isInlineAsmBrIndirectTarget()) 294 return true; 295 } 296 return false; 297 } 298 299 bool MachineBasicBlock::isLegalToHoistInto() const { 300 if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr()) 301 return false; 302 return true; 303 } 304 305 StringRef MachineBasicBlock::getName() const { 306 if (const BasicBlock *LBB = getBasicBlock()) 307 return LBB->getName(); 308 else 309 return StringRef("", 0); 310 } 311 312 /// Return a hopefully unique identifier for this block. 313 std::string MachineBasicBlock::getFullName() const { 314 std::string Name; 315 if (getParent()) 316 Name = (getParent()->getName() + ":").str(); 317 if (getBasicBlock()) 318 Name += getBasicBlock()->getName(); 319 else 320 Name += ("BB" + Twine(getNumber())).str(); 321 return Name; 322 } 323 324 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, 325 bool IsStandalone) const { 326 const MachineFunction *MF = getParent(); 327 if (!MF) { 328 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 329 << " is null\n"; 330 return; 331 } 332 const Function &F = MF->getFunction(); 333 const Module *M = F.getParent(); 334 ModuleSlotTracker MST(M); 335 MST.incorporateFunction(F); 336 print(OS, MST, Indexes, IsStandalone); 337 } 338 339 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 340 const SlotIndexes *Indexes, 341 bool IsStandalone) const { 342 const MachineFunction *MF = getParent(); 343 if (!MF) { 344 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 345 << " is null\n"; 346 return; 347 } 348 349 if (Indexes && PrintSlotIndexes) 350 OS << Indexes->getMBBStartIdx(this) << '\t'; 351 352 printName(OS, PrintNameIr | PrintNameAttributes, &MST); 353 OS << ":\n"; 354 355 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 356 const MachineRegisterInfo &MRI = MF->getRegInfo(); 357 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 358 bool HasLineAttributes = false; 359 360 // Print the preds of this block according to the CFG. 361 if (!pred_empty() && IsStandalone) { 362 if (Indexes) OS << '\t'; 363 // Don't indent(2), align with previous line attributes. 364 OS << "; predecessors: "; 365 for (auto I = pred_begin(), E = pred_end(); I != E; ++I) { 366 if (I != pred_begin()) 367 OS << ", "; 368 OS << printMBBReference(**I); 369 } 370 OS << '\n'; 371 HasLineAttributes = true; 372 } 373 374 if (!succ_empty()) { 375 if (Indexes) OS << '\t'; 376 // Print the successors 377 OS.indent(2) << "successors: "; 378 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 379 if (I != succ_begin()) 380 OS << ", "; 381 OS << printMBBReference(**I); 382 if (!Probs.empty()) 383 OS << '(' 384 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator()) 385 << ')'; 386 } 387 if (!Probs.empty() && IsStandalone) { 388 // Print human readable probabilities as comments. 389 OS << "; "; 390 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 391 const BranchProbability &BP = getSuccProbability(I); 392 if (I != succ_begin()) 393 OS << ", "; 394 OS << printMBBReference(**I) << '(' 395 << format("%.2f%%", 396 rint(((double)BP.getNumerator() / BP.getDenominator()) * 397 100.0 * 100.0) / 398 100.0) 399 << ')'; 400 } 401 } 402 403 OS << '\n'; 404 HasLineAttributes = true; 405 } 406 407 if (!livein_empty() && MRI.tracksLiveness()) { 408 if (Indexes) OS << '\t'; 409 OS.indent(2) << "liveins: "; 410 411 bool First = true; 412 for (const auto &LI : liveins()) { 413 if (!First) 414 OS << ", "; 415 First = false; 416 OS << printReg(LI.PhysReg, TRI); 417 if (!LI.LaneMask.all()) 418 OS << ":0x" << PrintLaneMask(LI.LaneMask); 419 } 420 HasLineAttributes = true; 421 } 422 423 if (HasLineAttributes) 424 OS << '\n'; 425 426 bool IsInBundle = false; 427 for (const MachineInstr &MI : instrs()) { 428 if (Indexes && PrintSlotIndexes) { 429 if (Indexes->hasIndex(MI)) 430 OS << Indexes->getInstructionIndex(MI); 431 OS << '\t'; 432 } 433 434 if (IsInBundle && !MI.isInsideBundle()) { 435 OS.indent(2) << "}\n"; 436 IsInBundle = false; 437 } 438 439 OS.indent(IsInBundle ? 4 : 2); 440 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false, 441 /*AddNewLine=*/false, &TII); 442 443 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) { 444 OS << " {"; 445 IsInBundle = true; 446 } 447 OS << '\n'; 448 } 449 450 if (IsInBundle) 451 OS.indent(2) << "}\n"; 452 453 if (IrrLoopHeaderWeight && IsStandalone) { 454 if (Indexes) OS << '\t'; 455 OS.indent(2) << "; Irreducible loop header weight: " 456 << IrrLoopHeaderWeight.getValue() << '\n'; 457 } 458 } 459 460 /// Print the basic block's name as: 461 /// 462 /// bb.{number}[.{ir-name}] [(attributes...)] 463 /// 464 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed 465 /// (which is the default). If the IR block has no name, it is identified 466 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})". 467 /// 468 /// When the \ref PrintNameAttributes flag is passed, additional attributes 469 /// of the block are printed when set. 470 /// 471 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating 472 /// the parts to print. 473 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will 474 /// incorporate its own tracker when necessary to 475 /// determine the block's IR name. 476 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags, 477 ModuleSlotTracker *moduleSlotTracker) const { 478 os << "bb." << getNumber(); 479 bool hasAttributes = false; 480 481 if (printNameFlags & PrintNameIr) { 482 if (const auto *bb = getBasicBlock()) { 483 if (bb->hasName()) { 484 os << '.' << bb->getName(); 485 } else { 486 hasAttributes = true; 487 os << " ("; 488 489 int slot = -1; 490 491 if (moduleSlotTracker) { 492 slot = moduleSlotTracker->getLocalSlot(bb); 493 } else if (bb->getParent()) { 494 ModuleSlotTracker tmpTracker(bb->getModule(), false); 495 tmpTracker.incorporateFunction(*bb->getParent()); 496 slot = tmpTracker.getLocalSlot(bb); 497 } 498 499 if (slot == -1) 500 os << "<ir-block badref>"; 501 else 502 os << (Twine("%ir-block.") + Twine(slot)).str(); 503 } 504 } 505 } 506 507 if (printNameFlags & PrintNameAttributes) { 508 if (hasAddressTaken()) { 509 os << (hasAttributes ? ", " : " ("); 510 os << "address-taken"; 511 hasAttributes = true; 512 } 513 if (isEHPad()) { 514 os << (hasAttributes ? ", " : " ("); 515 os << "landing-pad"; 516 hasAttributes = true; 517 } 518 if (isEHFuncletEntry()) { 519 os << (hasAttributes ? ", " : " ("); 520 os << "ehfunclet-entry"; 521 hasAttributes = true; 522 } 523 if (getAlignment() != Align(1)) { 524 os << (hasAttributes ? ", " : " ("); 525 os << "align " << getAlignment().value(); 526 hasAttributes = true; 527 } 528 if (getSectionID() != MBBSectionID(0)) { 529 os << (hasAttributes ? ", " : " ("); 530 os << "bbsections "; 531 switch (getSectionID().Type) { 532 case MBBSectionID::SectionType::Exception: 533 os << "Exception"; 534 break; 535 case MBBSectionID::SectionType::Cold: 536 os << "Cold"; 537 break; 538 default: 539 os << getSectionID().Number; 540 } 541 hasAttributes = true; 542 } 543 } 544 545 if (hasAttributes) 546 os << ')'; 547 } 548 549 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 550 bool /*PrintType*/) const { 551 OS << '%'; 552 printName(OS, 0); 553 } 554 555 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 556 LiveInVector::iterator I = find_if( 557 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 558 if (I == LiveIns.end()) 559 return; 560 561 I->LaneMask &= ~LaneMask; 562 if (I->LaneMask.none()) 563 LiveIns.erase(I); 564 } 565 566 MachineBasicBlock::livein_iterator 567 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 568 // Get non-const version of iterator. 569 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 570 return LiveIns.erase(LI); 571 } 572 573 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 574 livein_iterator I = find_if( 575 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 576 return I != livein_end() && (I->LaneMask & LaneMask).any(); 577 } 578 579 void MachineBasicBlock::sortUniqueLiveIns() { 580 llvm::sort(LiveIns, 581 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 582 return LI0.PhysReg < LI1.PhysReg; 583 }); 584 // Liveins are sorted by physreg now we can merge their lanemasks. 585 LiveInVector::const_iterator I = LiveIns.begin(); 586 LiveInVector::const_iterator J; 587 LiveInVector::iterator Out = LiveIns.begin(); 588 for (; I != LiveIns.end(); ++Out, I = J) { 589 MCRegister PhysReg = I->PhysReg; 590 LaneBitmask LaneMask = I->LaneMask; 591 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 592 LaneMask |= J->LaneMask; 593 Out->PhysReg = PhysReg; 594 Out->LaneMask = LaneMask; 595 } 596 LiveIns.erase(Out, LiveIns.end()); 597 } 598 599 Register 600 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) { 601 assert(getParent() && "MBB must be inserted in function"); 602 assert(PhysReg.isPhysical() && "Expected physreg"); 603 assert(RC && "Register class is required"); 604 assert((isEHPad() || this == &getParent()->front()) && 605 "Only the entry block and landing pads can have physreg live ins"); 606 607 bool LiveIn = isLiveIn(PhysReg); 608 iterator I = SkipPHIsAndLabels(begin()), E = end(); 609 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 610 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 611 612 // Look for an existing copy. 613 if (LiveIn) 614 for (;I != E && I->isCopy(); ++I) 615 if (I->getOperand(1).getReg() == PhysReg) { 616 Register VirtReg = I->getOperand(0).getReg(); 617 if (!MRI.constrainRegClass(VirtReg, RC)) 618 llvm_unreachable("Incompatible live-in register class."); 619 return VirtReg; 620 } 621 622 // No luck, create a virtual register. 623 Register VirtReg = MRI.createVirtualRegister(RC); 624 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 625 .addReg(PhysReg, RegState::Kill); 626 if (!LiveIn) 627 addLiveIn(PhysReg); 628 return VirtReg; 629 } 630 631 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 632 getParent()->splice(NewAfter->getIterator(), getIterator()); 633 } 634 635 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 636 getParent()->splice(++NewBefore->getIterator(), getIterator()); 637 } 638 639 void MachineBasicBlock::updateTerminator( 640 MachineBasicBlock *PreviousLayoutSuccessor) { 641 LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this) 642 << "\n"); 643 644 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 645 // A block with no successors has no concerns with fall-through edges. 646 if (this->succ_empty()) 647 return; 648 649 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 650 SmallVector<MachineOperand, 4> Cond; 651 DebugLoc DL = findBranchDebugLoc(); 652 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 653 (void) B; 654 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 655 if (Cond.empty()) { 656 if (TBB) { 657 // The block has an unconditional branch. If its successor is now its 658 // layout successor, delete the branch. 659 if (isLayoutSuccessor(TBB)) 660 TII->removeBranch(*this); 661 } else { 662 // The block has an unconditional fallthrough, or the end of the block is 663 // unreachable. 664 665 // Unfortunately, whether the end of the block is unreachable is not 666 // immediately obvious; we must fall back to checking the successor list, 667 // and assuming that if the passed in block is in the succesor list and 668 // not an EHPad, it must be the intended target. 669 if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) || 670 PreviousLayoutSuccessor->isEHPad()) 671 return; 672 673 // If the unconditional successor block is not the current layout 674 // successor, insert a branch to jump to it. 675 if (!isLayoutSuccessor(PreviousLayoutSuccessor)) 676 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 677 } 678 return; 679 } 680 681 if (FBB) { 682 // The block has a non-fallthrough conditional branch. If one of its 683 // successors is its layout successor, rewrite it to a fallthrough 684 // conditional branch. 685 if (isLayoutSuccessor(TBB)) { 686 if (TII->reverseBranchCondition(Cond)) 687 return; 688 TII->removeBranch(*this); 689 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 690 } else if (isLayoutSuccessor(FBB)) { 691 TII->removeBranch(*this); 692 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 693 } 694 return; 695 } 696 697 // We now know we're going to fallthrough to PreviousLayoutSuccessor. 698 assert(PreviousLayoutSuccessor); 699 assert(!PreviousLayoutSuccessor->isEHPad()); 700 assert(isSuccessor(PreviousLayoutSuccessor)); 701 702 if (PreviousLayoutSuccessor == TBB) { 703 // We had a fallthrough to the same basic block as the conditional jump 704 // targets. Remove the conditional jump, leaving an unconditional 705 // fallthrough or an unconditional jump. 706 TII->removeBranch(*this); 707 if (!isLayoutSuccessor(TBB)) { 708 Cond.clear(); 709 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 710 } 711 return; 712 } 713 714 // The block has a fallthrough conditional branch. 715 if (isLayoutSuccessor(TBB)) { 716 if (TII->reverseBranchCondition(Cond)) { 717 // We can't reverse the condition, add an unconditional branch. 718 Cond.clear(); 719 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 720 return; 721 } 722 TII->removeBranch(*this); 723 TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); 724 } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) { 725 TII->removeBranch(*this); 726 TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL); 727 } 728 } 729 730 void MachineBasicBlock::validateSuccProbs() const { 731 #ifndef NDEBUG 732 int64_t Sum = 0; 733 for (auto Prob : Probs) 734 Sum += Prob.getNumerator(); 735 // Due to precision issue, we assume that the sum of probabilities is one if 736 // the difference between the sum of their numerators and the denominator is 737 // no greater than the number of successors. 738 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 739 Probs.size() && 740 "The sum of successors's probabilities exceeds one."); 741 #endif // NDEBUG 742 } 743 744 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 745 BranchProbability Prob) { 746 // Probability list is either empty (if successor list isn't empty, this means 747 // disabled optimization) or has the same size as successor list. 748 if (!(Probs.empty() && !Successors.empty())) 749 Probs.push_back(Prob); 750 Successors.push_back(Succ); 751 Succ->addPredecessor(this); 752 } 753 754 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 755 // We need to make sure probability list is either empty or has the same size 756 // of successor list. When this function is called, we can safely delete all 757 // probability in the list. 758 Probs.clear(); 759 Successors.push_back(Succ); 760 Succ->addPredecessor(this); 761 } 762 763 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old, 764 MachineBasicBlock *New, 765 bool NormalizeSuccProbs) { 766 succ_iterator OldI = llvm::find(successors(), Old); 767 assert(OldI != succ_end() && "Old is not a successor of this block!"); 768 assert(llvm::find(successors(), New) == succ_end() && 769 "New is already a successor of this block!"); 770 771 // Add a new successor with equal probability as the original one. Note 772 // that we directly copy the probability using the iterator rather than 773 // getting a potentially synthetic probability computed when unknown. This 774 // preserves the probabilities as-is and then we can renormalize them and 775 // query them effectively afterward. 776 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown() 777 : *getProbabilityIterator(OldI)); 778 if (NormalizeSuccProbs) 779 normalizeSuccProbs(); 780 } 781 782 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 783 bool NormalizeSuccProbs) { 784 succ_iterator I = find(Successors, Succ); 785 removeSuccessor(I, NormalizeSuccProbs); 786 } 787 788 MachineBasicBlock::succ_iterator 789 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 790 assert(I != Successors.end() && "Not a current successor!"); 791 792 // If probability list is empty it means we don't use it (disabled 793 // optimization). 794 if (!Probs.empty()) { 795 probability_iterator WI = getProbabilityIterator(I); 796 Probs.erase(WI); 797 if (NormalizeSuccProbs) 798 normalizeSuccProbs(); 799 } 800 801 (*I)->removePredecessor(this); 802 return Successors.erase(I); 803 } 804 805 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 806 MachineBasicBlock *New) { 807 if (Old == New) 808 return; 809 810 succ_iterator E = succ_end(); 811 succ_iterator NewI = E; 812 succ_iterator OldI = E; 813 for (succ_iterator I = succ_begin(); I != E; ++I) { 814 if (*I == Old) { 815 OldI = I; 816 if (NewI != E) 817 break; 818 } 819 if (*I == New) { 820 NewI = I; 821 if (OldI != E) 822 break; 823 } 824 } 825 assert(OldI != E && "Old is not a successor of this block"); 826 827 // If New isn't already a successor, let it take Old's place. 828 if (NewI == E) { 829 Old->removePredecessor(this); 830 New->addPredecessor(this); 831 *OldI = New; 832 return; 833 } 834 835 // New is already a successor. 836 // Update its probability instead of adding a duplicate edge. 837 if (!Probs.empty()) { 838 auto ProbIter = getProbabilityIterator(NewI); 839 if (!ProbIter->isUnknown()) 840 *ProbIter += *getProbabilityIterator(OldI); 841 } 842 removeSuccessor(OldI); 843 } 844 845 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig, 846 succ_iterator I) { 847 if (Orig->Probs.empty()) 848 addSuccessor(*I, Orig->getSuccProbability(I)); 849 else 850 addSuccessorWithoutProb(*I); 851 } 852 853 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 854 Predecessors.push_back(Pred); 855 } 856 857 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 858 pred_iterator I = find(Predecessors, Pred); 859 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 860 Predecessors.erase(I); 861 } 862 863 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 864 if (this == FromMBB) 865 return; 866 867 while (!FromMBB->succ_empty()) { 868 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 869 870 // If probability list is empty it means we don't use it (disabled 871 // optimization). 872 if (!FromMBB->Probs.empty()) { 873 auto Prob = *FromMBB->Probs.begin(); 874 addSuccessor(Succ, Prob); 875 } else 876 addSuccessorWithoutProb(Succ); 877 878 FromMBB->removeSuccessor(Succ); 879 } 880 } 881 882 void 883 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 884 if (this == FromMBB) 885 return; 886 887 while (!FromMBB->succ_empty()) { 888 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 889 if (!FromMBB->Probs.empty()) { 890 auto Prob = *FromMBB->Probs.begin(); 891 addSuccessor(Succ, Prob); 892 } else 893 addSuccessorWithoutProb(Succ); 894 FromMBB->removeSuccessor(Succ); 895 896 // Fix up any PHI nodes in the successor. 897 Succ->replacePhiUsesWith(FromMBB, this); 898 } 899 normalizeSuccProbs(); 900 } 901 902 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 903 return is_contained(predecessors(), MBB); 904 } 905 906 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 907 return is_contained(successors(), MBB); 908 } 909 910 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 911 MachineFunction::const_iterator I(this); 912 return std::next(I) == MachineFunction::const_iterator(MBB); 913 } 914 915 MachineBasicBlock *MachineBasicBlock::getFallThrough() { 916 MachineFunction::iterator Fallthrough = getIterator(); 917 ++Fallthrough; 918 // If FallthroughBlock is off the end of the function, it can't fall through. 919 if (Fallthrough == getParent()->end()) 920 return nullptr; 921 922 // If FallthroughBlock isn't a successor, no fallthrough is possible. 923 if (!isSuccessor(&*Fallthrough)) 924 return nullptr; 925 926 // Analyze the branches, if any, at the end of the block. 927 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 928 SmallVector<MachineOperand, 4> Cond; 929 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 930 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 931 // If we couldn't analyze the branch, examine the last instruction. 932 // If the block doesn't end in a known control barrier, assume fallthrough 933 // is possible. The isPredicated check is needed because this code can be 934 // called during IfConversion, where an instruction which is normally a 935 // Barrier is predicated and thus no longer an actual control barrier. 936 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 937 ? &*Fallthrough 938 : nullptr; 939 } 940 941 // If there is no branch, control always falls through. 942 if (!TBB) return &*Fallthrough; 943 944 // If there is some explicit branch to the fallthrough block, it can obviously 945 // reach, even though the branch should get folded to fall through implicitly. 946 if (MachineFunction::iterator(TBB) == Fallthrough || 947 MachineFunction::iterator(FBB) == Fallthrough) 948 return &*Fallthrough; 949 950 // If it's an unconditional branch to some block not the fall through, it 951 // doesn't fall through. 952 if (Cond.empty()) return nullptr; 953 954 // Otherwise, if it is conditional and has no explicit false block, it falls 955 // through. 956 return (FBB == nullptr) ? &*Fallthrough : nullptr; 957 } 958 959 bool MachineBasicBlock::canFallThrough() { 960 return getFallThrough() != nullptr; 961 } 962 963 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge( 964 MachineBasicBlock *Succ, Pass &P, 965 std::vector<SparseBitVector<>> *LiveInSets) { 966 if (!canSplitCriticalEdge(Succ)) 967 return nullptr; 968 969 MachineFunction *MF = getParent(); 970 MachineBasicBlock *PrevFallthrough = getNextNode(); 971 DebugLoc DL; // FIXME: this is nowhere 972 973 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 974 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 975 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) 976 << " -- " << printMBBReference(*NMBB) << " -- " 977 << printMBBReference(*Succ) << '\n'); 978 979 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 980 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 981 if (LIS) 982 LIS->insertMBBInMaps(NMBB); 983 else if (Indexes) 984 Indexes->insertMBBInMaps(NMBB); 985 986 // On some targets like Mips, branches may kill virtual registers. Make sure 987 // that LiveVariables is properly updated after updateTerminator replaces the 988 // terminators. 989 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 990 991 // Collect a list of virtual registers killed by the terminators. 992 SmallVector<Register, 4> KilledRegs; 993 if (LV) 994 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 995 I != E; ++I) { 996 MachineInstr *MI = &*I; 997 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 998 OE = MI->operands_end(); OI != OE; ++OI) { 999 if (!OI->isReg() || OI->getReg() == 0 || 1000 !OI->isUse() || !OI->isKill() || OI->isUndef()) 1001 continue; 1002 Register Reg = OI->getReg(); 1003 if (Register::isPhysicalRegister(Reg) || 1004 LV->getVarInfo(Reg).removeKill(*MI)) { 1005 KilledRegs.push_back(Reg); 1006 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI); 1007 OI->setIsKill(false); 1008 } 1009 } 1010 } 1011 1012 SmallVector<Register, 4> UsedRegs; 1013 if (LIS) { 1014 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 1015 I != E; ++I) { 1016 MachineInstr *MI = &*I; 1017 1018 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 1019 OE = MI->operands_end(); OI != OE; ++OI) { 1020 if (!OI->isReg() || OI->getReg() == 0) 1021 continue; 1022 1023 Register Reg = OI->getReg(); 1024 if (!is_contained(UsedRegs, Reg)) 1025 UsedRegs.push_back(Reg); 1026 } 1027 } 1028 } 1029 1030 ReplaceUsesOfBlockWith(Succ, NMBB); 1031 1032 // If updateTerminator() removes instructions, we need to remove them from 1033 // SlotIndexes. 1034 SmallVector<MachineInstr*, 4> Terminators; 1035 if (Indexes) { 1036 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 1037 I != E; ++I) 1038 Terminators.push_back(&*I); 1039 } 1040 1041 // Since we replaced all uses of Succ with NMBB, that should also be treated 1042 // as the fallthrough successor 1043 if (Succ == PrevFallthrough) 1044 PrevFallthrough = NMBB; 1045 updateTerminator(PrevFallthrough); 1046 1047 if (Indexes) { 1048 SmallVector<MachineInstr*, 4> NewTerminators; 1049 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 1050 I != E; ++I) 1051 NewTerminators.push_back(&*I); 1052 1053 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 1054 E = Terminators.end(); I != E; ++I) { 1055 if (!is_contained(NewTerminators, *I)) 1056 Indexes->removeMachineInstrFromMaps(**I); 1057 } 1058 } 1059 1060 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 1061 NMBB->addSuccessor(Succ); 1062 if (!NMBB->isLayoutSuccessor(Succ)) { 1063 SmallVector<MachineOperand, 4> Cond; 1064 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 1065 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 1066 1067 if (Indexes) { 1068 for (MachineInstr &MI : NMBB->instrs()) { 1069 // Some instructions may have been moved to NMBB by updateTerminator(), 1070 // so we first remove any instruction that already has an index. 1071 if (Indexes->hasIndex(MI)) 1072 Indexes->removeMachineInstrFromMaps(MI); 1073 Indexes->insertMachineInstrInMaps(MI); 1074 } 1075 } 1076 } 1077 1078 // Fix PHI nodes in Succ so they refer to NMBB instead of this. 1079 Succ->replacePhiUsesWith(this, NMBB); 1080 1081 // Inherit live-ins from the successor 1082 for (const auto &LI : Succ->liveins()) 1083 NMBB->addLiveIn(LI); 1084 1085 // Update LiveVariables. 1086 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 1087 if (LV) { 1088 // Restore kills of virtual registers that were killed by the terminators. 1089 while (!KilledRegs.empty()) { 1090 Register Reg = KilledRegs.pop_back_val(); 1091 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 1092 if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false)) 1093 continue; 1094 if (Register::isVirtualRegister(Reg)) 1095 LV->getVarInfo(Reg).Kills.push_back(&*I); 1096 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I); 1097 break; 1098 } 1099 } 1100 // Update relevant live-through information. 1101 if (LiveInSets != nullptr) 1102 LV->addNewBlock(NMBB, this, Succ, *LiveInSets); 1103 else 1104 LV->addNewBlock(NMBB, this, Succ); 1105 } 1106 1107 if (LIS) { 1108 // After splitting the edge and updating SlotIndexes, live intervals may be 1109 // in one of two situations, depending on whether this block was the last in 1110 // the function. If the original block was the last in the function, all 1111 // live intervals will end prior to the beginning of the new split block. If 1112 // the original block was not at the end of the function, all live intervals 1113 // will extend to the end of the new split block. 1114 1115 bool isLastMBB = 1116 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 1117 1118 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 1119 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 1120 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 1121 1122 // Find the registers used from NMBB in PHIs in Succ. 1123 SmallSet<Register, 8> PHISrcRegs; 1124 for (MachineBasicBlock::instr_iterator 1125 I = Succ->instr_begin(), E = Succ->instr_end(); 1126 I != E && I->isPHI(); ++I) { 1127 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 1128 if (I->getOperand(ni+1).getMBB() == NMBB) { 1129 MachineOperand &MO = I->getOperand(ni); 1130 Register Reg = MO.getReg(); 1131 PHISrcRegs.insert(Reg); 1132 if (MO.isUndef()) 1133 continue; 1134 1135 LiveInterval &LI = LIS->getInterval(Reg); 1136 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1137 assert(VNI && 1138 "PHI sources should be live out of their predecessors."); 1139 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1140 } 1141 } 1142 } 1143 1144 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 1145 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1146 Register Reg = Register::index2VirtReg(i); 1147 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 1148 continue; 1149 1150 LiveInterval &LI = LIS->getInterval(Reg); 1151 if (!LI.liveAt(PrevIndex)) 1152 continue; 1153 1154 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 1155 if (isLiveOut && isLastMBB) { 1156 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1157 assert(VNI && "LiveInterval should have VNInfo where it is live."); 1158 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1159 } else if (!isLiveOut && !isLastMBB) { 1160 LI.removeSegment(StartIndex, EndIndex); 1161 } 1162 } 1163 1164 // Update all intervals for registers whose uses may have been modified by 1165 // updateTerminator(). 1166 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 1167 } 1168 1169 if (MachineDominatorTree *MDT = 1170 P.getAnalysisIfAvailable<MachineDominatorTree>()) 1171 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 1172 1173 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 1174 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 1175 // If one or the other blocks were not in a loop, the new block is not 1176 // either, and thus LI doesn't need to be updated. 1177 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 1178 if (TIL == DestLoop) { 1179 // Both in the same loop, the NMBB joins loop. 1180 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1181 } else if (TIL->contains(DestLoop)) { 1182 // Edge from an outer loop to an inner loop. Add to the outer loop. 1183 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 1184 } else if (DestLoop->contains(TIL)) { 1185 // Edge from an inner loop to an outer loop. Add to the outer loop. 1186 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1187 } else { 1188 // Edge from two loops with no containment relation. Because these 1189 // are natural loops, we know that the destination block must be the 1190 // header of its loop (adding a branch into a loop elsewhere would 1191 // create an irreducible loop). 1192 assert(DestLoop->getHeader() == Succ && 1193 "Should not create irreducible loops!"); 1194 if (MachineLoop *P = DestLoop->getParentLoop()) 1195 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 1196 } 1197 } 1198 } 1199 1200 return NMBB; 1201 } 1202 1203 bool MachineBasicBlock::canSplitCriticalEdge( 1204 const MachineBasicBlock *Succ) const { 1205 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 1206 // it in this generic function. 1207 if (Succ->isEHPad()) 1208 return false; 1209 1210 // Splitting the critical edge to a callbr's indirect block isn't advised. 1211 // Don't do it in this generic function. 1212 if (Succ->isInlineAsmBrIndirectTarget()) 1213 return false; 1214 1215 const MachineFunction *MF = getParent(); 1216 // Performance might be harmed on HW that implements branching using exec mask 1217 // where both sides of the branches are always executed. 1218 if (MF->getTarget().requiresStructuredCFG()) 1219 return false; 1220 1221 // We may need to update this's terminator, but we can't do that if 1222 // analyzeBranch fails. If this uses a jump table, we won't touch it. 1223 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1224 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1225 SmallVector<MachineOperand, 4> Cond; 1226 // AnalyzeBanch should modify this, since we did not allow modification. 1227 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1228 /*AllowModify*/ false)) 1229 return false; 1230 1231 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1232 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1233 // case that we can't handle. Since this never happens in properly optimized 1234 // code, just skip those edges. 1235 if (TBB && TBB == FBB) { 1236 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate " 1237 << printMBBReference(*this) << '\n'); 1238 return false; 1239 } 1240 return true; 1241 } 1242 1243 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1244 /// neighboring instructions so the bundle won't be broken by removing MI. 1245 static void unbundleSingleMI(MachineInstr *MI) { 1246 // Removing the first instruction in a bundle. 1247 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1248 MI->unbundleFromSucc(); 1249 // Removing the last instruction in a bundle. 1250 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1251 MI->unbundleFromPred(); 1252 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1253 // are already fine. 1254 } 1255 1256 MachineBasicBlock::instr_iterator 1257 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1258 unbundleSingleMI(&*I); 1259 return Insts.erase(I); 1260 } 1261 1262 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1263 unbundleSingleMI(MI); 1264 MI->clearFlag(MachineInstr::BundledPred); 1265 MI->clearFlag(MachineInstr::BundledSucc); 1266 return Insts.remove(MI); 1267 } 1268 1269 MachineBasicBlock::instr_iterator 1270 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1271 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1272 "Cannot insert instruction with bundle flags"); 1273 // Set the bundle flags when inserting inside a bundle. 1274 if (I != instr_end() && I->isBundledWithPred()) { 1275 MI->setFlag(MachineInstr::BundledPred); 1276 MI->setFlag(MachineInstr::BundledSucc); 1277 } 1278 return Insts.insert(I, MI); 1279 } 1280 1281 /// This method unlinks 'this' from the containing function, and returns it, but 1282 /// does not delete it. 1283 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1284 assert(getParent() && "Not embedded in a function!"); 1285 getParent()->remove(this); 1286 return this; 1287 } 1288 1289 /// This method unlinks 'this' from the containing function, and deletes it. 1290 void MachineBasicBlock::eraseFromParent() { 1291 assert(getParent() && "Not embedded in a function!"); 1292 getParent()->erase(this); 1293 } 1294 1295 /// Given a machine basic block that branched to 'Old', change the code and CFG 1296 /// so that it branches to 'New' instead. 1297 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1298 MachineBasicBlock *New) { 1299 assert(Old != New && "Cannot replace self with self!"); 1300 1301 MachineBasicBlock::instr_iterator I = instr_end(); 1302 while (I != instr_begin()) { 1303 --I; 1304 if (!I->isTerminator()) break; 1305 1306 // Scan the operands of this machine instruction, replacing any uses of Old 1307 // with New. 1308 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1309 if (I->getOperand(i).isMBB() && 1310 I->getOperand(i).getMBB() == Old) 1311 I->getOperand(i).setMBB(New); 1312 } 1313 1314 // Update the successor information. 1315 replaceSuccessor(Old, New); 1316 } 1317 1318 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old, 1319 MachineBasicBlock *New) { 1320 for (MachineInstr &MI : phis()) 1321 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 1322 MachineOperand &MO = MI.getOperand(i); 1323 if (MO.getMBB() == Old) 1324 MO.setMBB(New); 1325 } 1326 } 1327 1328 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1329 /// instructions. Return UnknownLoc if there is none. 1330 DebugLoc 1331 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1332 // Skip debug declarations, we don't want a DebugLoc from them. 1333 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1334 if (MBBI != instr_end()) 1335 return MBBI->getDebugLoc(); 1336 return {}; 1337 } 1338 1339 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE 1340 /// instructions. Return UnknownLoc if there is none. 1341 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) { 1342 if (MBBI == instr_begin()) return {}; 1343 // Skip debug instructions, we don't want a DebugLoc from them. 1344 MBBI = prev_nodbg(MBBI, instr_begin()); 1345 if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc(); 1346 return {}; 1347 } 1348 1349 /// Find and return the merged DebugLoc of the branch instructions of the block. 1350 /// Return UnknownLoc if there is none. 1351 DebugLoc 1352 MachineBasicBlock::findBranchDebugLoc() { 1353 DebugLoc DL; 1354 auto TI = getFirstTerminator(); 1355 while (TI != end() && !TI->isBranch()) 1356 ++TI; 1357 1358 if (TI != end()) { 1359 DL = TI->getDebugLoc(); 1360 for (++TI ; TI != end() ; ++TI) 1361 if (TI->isBranch()) 1362 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1363 } 1364 return DL; 1365 } 1366 1367 /// Return probability of the edge from this block to MBB. 1368 BranchProbability 1369 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1370 if (Probs.empty()) 1371 return BranchProbability(1, succ_size()); 1372 1373 const auto &Prob = *getProbabilityIterator(Succ); 1374 if (Prob.isUnknown()) { 1375 // For unknown probabilities, collect the sum of all known ones, and evenly 1376 // ditribute the complemental of the sum to each unknown probability. 1377 unsigned KnownProbNum = 0; 1378 auto Sum = BranchProbability::getZero(); 1379 for (auto &P : Probs) { 1380 if (!P.isUnknown()) { 1381 Sum += P; 1382 KnownProbNum++; 1383 } 1384 } 1385 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1386 } else 1387 return Prob; 1388 } 1389 1390 /// Set successor probability of a given iterator. 1391 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1392 BranchProbability Prob) { 1393 assert(!Prob.isUnknown()); 1394 if (Probs.empty()) 1395 return; 1396 *getProbabilityIterator(I) = Prob; 1397 } 1398 1399 /// Return probability iterator corresonding to the I successor iterator 1400 MachineBasicBlock::const_probability_iterator 1401 MachineBasicBlock::getProbabilityIterator( 1402 MachineBasicBlock::const_succ_iterator I) const { 1403 assert(Probs.size() == Successors.size() && "Async probability list!"); 1404 const size_t index = std::distance(Successors.begin(), I); 1405 assert(index < Probs.size() && "Not a current successor!"); 1406 return Probs.begin() + index; 1407 } 1408 1409 /// Return probability iterator corresonding to the I successor iterator. 1410 MachineBasicBlock::probability_iterator 1411 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1412 assert(Probs.size() == Successors.size() && "Async probability list!"); 1413 const size_t index = std::distance(Successors.begin(), I); 1414 assert(index < Probs.size() && "Not a current successor!"); 1415 return Probs.begin() + index; 1416 } 1417 1418 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1419 /// as of just before "MI". 1420 /// 1421 /// Search is localised to a neighborhood of 1422 /// Neighborhood instructions before (searching for defs or kills) and N 1423 /// instructions after (searching just for defs) MI. 1424 MachineBasicBlock::LivenessQueryResult 1425 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1426 MCRegister Reg, const_iterator Before, 1427 unsigned Neighborhood) const { 1428 unsigned N = Neighborhood; 1429 1430 // Try searching forwards from Before, looking for reads or defs. 1431 const_iterator I(Before); 1432 for (; I != end() && N > 0; ++I) { 1433 if (I->isDebugInstr()) 1434 continue; 1435 1436 --N; 1437 1438 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1439 1440 // Register is live when we read it here. 1441 if (Info.Read) 1442 return LQR_Live; 1443 // Register is dead if we can fully overwrite or clobber it here. 1444 if (Info.FullyDefined || Info.Clobbered) 1445 return LQR_Dead; 1446 } 1447 1448 // If we reached the end, it is safe to clobber Reg at the end of a block of 1449 // no successor has it live in. 1450 if (I == end()) { 1451 for (MachineBasicBlock *S : successors()) { 1452 for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) { 1453 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1454 return LQR_Live; 1455 } 1456 } 1457 1458 return LQR_Dead; 1459 } 1460 1461 1462 N = Neighborhood; 1463 1464 // Start by searching backwards from Before, looking for kills, reads or defs. 1465 I = const_iterator(Before); 1466 // If this is the first insn in the block, don't search backwards. 1467 if (I != begin()) { 1468 do { 1469 --I; 1470 1471 if (I->isDebugInstr()) 1472 continue; 1473 1474 --N; 1475 1476 PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); 1477 1478 // Defs happen after uses so they take precedence if both are present. 1479 1480 // Register is dead after a dead def of the full register. 1481 if (Info.DeadDef) 1482 return LQR_Dead; 1483 // Register is (at least partially) live after a def. 1484 if (Info.Defined) { 1485 if (!Info.PartialDeadDef) 1486 return LQR_Live; 1487 // As soon as we saw a partial definition (dead or not), 1488 // we cannot tell if the value is partial live without 1489 // tracking the lanemasks. We are not going to do this, 1490 // so fall back on the remaining of the analysis. 1491 break; 1492 } 1493 // Register is dead after a full kill or clobber and no def. 1494 if (Info.Killed || Info.Clobbered) 1495 return LQR_Dead; 1496 // Register must be live if we read it. 1497 if (Info.Read) 1498 return LQR_Live; 1499 1500 } while (I != begin() && N > 0); 1501 } 1502 1503 // If all the instructions before this in the block are debug instructions, 1504 // skip over them. 1505 while (I != begin() && std::prev(I)->isDebugInstr()) 1506 --I; 1507 1508 // Did we get to the start of the block? 1509 if (I == begin()) { 1510 // If so, the register's state is definitely defined by the live-in state. 1511 for (const MachineBasicBlock::RegisterMaskPair &LI : liveins()) 1512 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1513 return LQR_Live; 1514 1515 return LQR_Dead; 1516 } 1517 1518 // At this point we have no idea of the liveness of the register. 1519 return LQR_Unknown; 1520 } 1521 1522 const uint32_t * 1523 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1524 // EH funclet entry does not preserve any registers. 1525 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1526 } 1527 1528 const uint32_t * 1529 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1530 // If we see a return block with successors, this must be a funclet return, 1531 // which does not preserve any registers. If there are no successors, we don't 1532 // care what kind of return it is, putting a mask after it is a no-op. 1533 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1534 } 1535 1536 void MachineBasicBlock::clearLiveIns() { 1537 LiveIns.clear(); 1538 } 1539 1540 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1541 assert(getParent()->getProperties().hasProperty( 1542 MachineFunctionProperties::Property::TracksLiveness) && 1543 "Liveness information is accurate"); 1544 return LiveIns.begin(); 1545 } 1546 1547 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold); 1548 const MBBSectionID 1549 MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception); 1550