1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SlotIndexes.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/ModuleSlotTracker.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/Support/DataTypes.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 #define DEBUG_TYPE "codegen" 40 41 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 42 : BB(B), Number(-1), xParent(&MF) { 43 Insts.Parent = this; 44 } 45 46 MachineBasicBlock::~MachineBasicBlock() { 47 } 48 49 /// Return the MCSymbol for this basic block. 50 MCSymbol *MachineBasicBlock::getSymbol() const { 51 if (!CachedMCSymbol) { 52 const MachineFunction *MF = getParent(); 53 MCContext &Ctx = MF->getContext(); 54 const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 55 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 56 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 57 Twine(MF->getFunctionNumber()) + 58 "_" + Twine(getNumber())); 59 } 60 61 return CachedMCSymbol; 62 } 63 64 65 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 66 MBB.print(OS); 67 return OS; 68 } 69 70 /// When an MBB is added to an MF, we need to update the parent pointer of the 71 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 72 /// operand list for registers. 73 /// 74 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 75 /// gets the next available unique MBB number. If it is removed from a 76 /// MachineFunction, it goes back to being #-1. 77 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 78 MachineBasicBlock *N) { 79 MachineFunction &MF = *N->getParent(); 80 N->Number = MF.addToMBBNumbering(N); 81 82 // Make sure the instructions have their operands in the reginfo lists. 83 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 84 for (MachineBasicBlock::instr_iterator 85 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 86 I->AddRegOperandsToUseLists(RegInfo); 87 } 88 89 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 90 MachineBasicBlock *N) { 91 N->getParent()->removeFromMBBNumbering(N->Number); 92 N->Number = -1; 93 } 94 95 /// When we add an instruction to a basic block list, we update its parent 96 /// pointer and add its operands from reg use/def lists if appropriate. 97 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 98 assert(!N->getParent() && "machine instruction already in a basic block"); 99 N->setParent(Parent); 100 101 // Add the instruction's register operands to their corresponding 102 // use/def lists. 103 MachineFunction *MF = Parent->getParent(); 104 N->AddRegOperandsToUseLists(MF->getRegInfo()); 105 } 106 107 /// When we remove an instruction from a basic block list, we update its parent 108 /// pointer and remove its operands from reg use/def lists if appropriate. 109 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 110 assert(N->getParent() && "machine instruction not in a basic block"); 111 112 // Remove from the use/def lists. 113 if (MachineFunction *MF = N->getParent()->getParent()) 114 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 115 116 N->setParent(nullptr); 117 } 118 119 /// When moving a range of instructions from one MBB list to another, we need to 120 /// update the parent pointers and the use/def lists. 121 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 122 instr_iterator First, 123 instr_iterator Last) { 124 assert(Parent->getParent() == FromList.Parent->getParent() && 125 "MachineInstr parent mismatch!"); 126 assert(this != &FromList && "Called without a real transfer..."); 127 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 128 129 // If splicing between two blocks within the same function, just update the 130 // parent pointers. 131 for (; First != Last; ++First) 132 First->setParent(Parent); 133 } 134 135 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 136 assert(!MI->getParent() && "MI is still in a block!"); 137 Parent->getParent()->DeleteMachineInstr(MI); 138 } 139 140 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 141 instr_iterator I = instr_begin(), E = instr_end(); 142 while (I != E && I->isPHI()) 143 ++I; 144 assert((I == E || !I->isInsideBundle()) && 145 "First non-phi MI cannot be inside a bundle!"); 146 return I; 147 } 148 149 MachineBasicBlock::iterator 150 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 151 iterator E = end(); 152 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue())) 153 ++I; 154 // FIXME: This needs to change if we wish to bundle labels / dbg_values 155 // inside the bundle. 156 assert((I == E || !I->isInsideBundle()) && 157 "First non-phi / non-label instruction is inside a bundle!"); 158 return I; 159 } 160 161 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 162 iterator B = begin(), E = end(), I = E; 163 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 164 ; /*noop */ 165 while (I != E && !I->isTerminator()) 166 ++I; 167 return I; 168 } 169 170 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 171 instr_iterator B = instr_begin(), E = instr_end(), I = E; 172 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 173 ; /*noop */ 174 while (I != E && !I->isTerminator()) 175 ++I; 176 return I; 177 } 178 179 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 180 // Skip over begin-of-block dbg_value instructions. 181 iterator I = begin(), E = end(); 182 while (I != E && I->isDebugValue()) 183 ++I; 184 return I; 185 } 186 187 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 188 // Skip over end-of-block dbg_value instructions. 189 instr_iterator B = instr_begin(), I = instr_end(); 190 while (I != B) { 191 --I; 192 // Return instruction that starts a bundle. 193 if (I->isDebugValue() || I->isInsideBundle()) 194 continue; 195 return I; 196 } 197 // The block is all debug values. 198 return end(); 199 } 200 201 bool MachineBasicBlock::hasEHPadSuccessor() const { 202 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 203 if ((*I)->isEHPad()) 204 return true; 205 return false; 206 } 207 208 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 209 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 210 print(dbgs()); 211 } 212 #endif 213 214 StringRef MachineBasicBlock::getName() const { 215 if (const BasicBlock *LBB = getBasicBlock()) 216 return LBB->getName(); 217 else 218 return "(null)"; 219 } 220 221 /// Return a hopefully unique identifier for this block. 222 std::string MachineBasicBlock::getFullName() const { 223 std::string Name; 224 if (getParent()) 225 Name = (getParent()->getName() + ":").str(); 226 if (getBasicBlock()) 227 Name += getBasicBlock()->getName(); 228 else 229 Name += ("BB" + Twine(getNumber())).str(); 230 return Name; 231 } 232 233 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes) 234 const { 235 const MachineFunction *MF = getParent(); 236 if (!MF) { 237 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 238 << " is null\n"; 239 return; 240 } 241 const Function *F = MF->getFunction(); 242 const Module *M = F ? F->getParent() : nullptr; 243 ModuleSlotTracker MST(M); 244 print(OS, MST, Indexes); 245 } 246 247 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 248 const SlotIndexes *Indexes) const { 249 const MachineFunction *MF = getParent(); 250 if (!MF) { 251 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 252 << " is null\n"; 253 return; 254 } 255 256 if (Indexes) 257 OS << Indexes->getMBBStartIdx(this) << '\t'; 258 259 OS << "BB#" << getNumber() << ": "; 260 261 const char *Comma = ""; 262 if (const BasicBlock *LBB = getBasicBlock()) { 263 OS << Comma << "derived from LLVM BB "; 264 LBB->printAsOperand(OS, /*PrintType=*/false, MST); 265 Comma = ", "; 266 } 267 if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 268 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 269 if (Alignment) 270 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 271 << " bytes)"; 272 273 OS << '\n'; 274 275 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 276 if (!livein_empty()) { 277 if (Indexes) OS << '\t'; 278 OS << " Live Ins:"; 279 for (const auto &LI : make_range(livein_begin(), livein_end())) { 280 OS << ' ' << PrintReg(LI.PhysReg, TRI); 281 if (LI.LaneMask != ~0u) 282 OS << ':' << PrintLaneMask(LI.LaneMask); 283 } 284 OS << '\n'; 285 } 286 // Print the preds of this block according to the CFG. 287 if (!pred_empty()) { 288 if (Indexes) OS << '\t'; 289 OS << " Predecessors according to CFG:"; 290 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 291 OS << " BB#" << (*PI)->getNumber(); 292 OS << '\n'; 293 } 294 295 for (auto &I : instrs()) { 296 if (Indexes) { 297 if (Indexes->hasIndex(I)) 298 OS << Indexes->getInstructionIndex(I); 299 OS << '\t'; 300 } 301 OS << '\t'; 302 if (I.isInsideBundle()) 303 OS << " * "; 304 I.print(OS, MST); 305 } 306 307 // Print the successors of this block according to the CFG. 308 if (!succ_empty()) { 309 if (Indexes) OS << '\t'; 310 OS << " Successors according to CFG:"; 311 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 312 OS << " BB#" << (*SI)->getNumber(); 313 if (!Probs.empty()) 314 OS << '(' << *getProbabilityIterator(SI) << ')'; 315 } 316 OS << '\n'; 317 } 318 } 319 320 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 321 bool /*PrintType*/) const { 322 OS << "BB#" << getNumber(); 323 } 324 325 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 326 LiveInVector::iterator I = find_if( 327 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 328 if (I == LiveIns.end()) 329 return; 330 331 I->LaneMask &= ~LaneMask; 332 if (I->LaneMask == 0) 333 LiveIns.erase(I); 334 } 335 336 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 337 livein_iterator I = find_if( 338 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 339 return I != livein_end() && (I->LaneMask & LaneMask) != 0; 340 } 341 342 void MachineBasicBlock::sortUniqueLiveIns() { 343 std::sort(LiveIns.begin(), LiveIns.end(), 344 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 345 return LI0.PhysReg < LI1.PhysReg; 346 }); 347 // Liveins are sorted by physreg now we can merge their lanemasks. 348 LiveInVector::const_iterator I = LiveIns.begin(); 349 LiveInVector::const_iterator J; 350 LiveInVector::iterator Out = LiveIns.begin(); 351 for (; I != LiveIns.end(); ++Out, I = J) { 352 unsigned PhysReg = I->PhysReg; 353 LaneBitmask LaneMask = I->LaneMask; 354 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 355 LaneMask |= J->LaneMask; 356 Out->PhysReg = PhysReg; 357 Out->LaneMask = LaneMask; 358 } 359 LiveIns.erase(Out, LiveIns.end()); 360 } 361 362 unsigned 363 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 364 assert(getParent() && "MBB must be inserted in function"); 365 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 366 assert(RC && "Register class is required"); 367 assert((isEHPad() || this == &getParent()->front()) && 368 "Only the entry block and landing pads can have physreg live ins"); 369 370 bool LiveIn = isLiveIn(PhysReg); 371 iterator I = SkipPHIsAndLabels(begin()), E = end(); 372 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 373 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 374 375 // Look for an existing copy. 376 if (LiveIn) 377 for (;I != E && I->isCopy(); ++I) 378 if (I->getOperand(1).getReg() == PhysReg) { 379 unsigned VirtReg = I->getOperand(0).getReg(); 380 if (!MRI.constrainRegClass(VirtReg, RC)) 381 llvm_unreachable("Incompatible live-in register class."); 382 return VirtReg; 383 } 384 385 // No luck, create a virtual register. 386 unsigned VirtReg = MRI.createVirtualRegister(RC); 387 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 388 .addReg(PhysReg, RegState::Kill); 389 if (!LiveIn) 390 addLiveIn(PhysReg); 391 return VirtReg; 392 } 393 394 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 395 getParent()->splice(NewAfter->getIterator(), getIterator()); 396 } 397 398 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 399 getParent()->splice(++NewBefore->getIterator(), getIterator()); 400 } 401 402 void MachineBasicBlock::updateTerminator() { 403 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 404 // A block with no successors has no concerns with fall-through edges. 405 if (this->succ_empty()) 406 return; 407 408 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 409 SmallVector<MachineOperand, 4> Cond; 410 DebugLoc DL; // FIXME: this is nowhere 411 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 412 (void) B; 413 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 414 if (Cond.empty()) { 415 if (TBB) { 416 // The block has an unconditional branch. If its successor is now its 417 // layout successor, delete the branch. 418 if (isLayoutSuccessor(TBB)) 419 TII->removeBranch(*this); 420 } else { 421 // The block has an unconditional fallthrough. If its successor is not its 422 // layout successor, insert a branch. First we have to locate the only 423 // non-landing-pad successor, as that is the fallthrough block. 424 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 425 if ((*SI)->isEHPad()) 426 continue; 427 assert(!TBB && "Found more than one non-landing-pad successor!"); 428 TBB = *SI; 429 } 430 431 // If there is no non-landing-pad successor, the block has no fall-through 432 // edges to be concerned with. 433 if (!TBB) 434 return; 435 436 // Finally update the unconditional successor to be reached via a branch 437 // if it would not be reached by fallthrough. 438 if (!isLayoutSuccessor(TBB)) 439 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 440 } 441 return; 442 } 443 444 if (FBB) { 445 // The block has a non-fallthrough conditional branch. If one of its 446 // successors is its layout successor, rewrite it to a fallthrough 447 // conditional branch. 448 if (isLayoutSuccessor(TBB)) { 449 if (TII->reverseBranchCondition(Cond)) 450 return; 451 TII->removeBranch(*this); 452 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 453 } else if (isLayoutSuccessor(FBB)) { 454 TII->removeBranch(*this); 455 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 456 } 457 return; 458 } 459 460 // Walk through the successors and find the successor which is not a landing 461 // pad and is not the conditional branch destination (in TBB) as the 462 // fallthrough successor. 463 MachineBasicBlock *FallthroughBB = nullptr; 464 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 465 if ((*SI)->isEHPad() || *SI == TBB) 466 continue; 467 assert(!FallthroughBB && "Found more than one fallthrough successor."); 468 FallthroughBB = *SI; 469 } 470 471 if (!FallthroughBB) { 472 if (canFallThrough()) { 473 // We fallthrough to the same basic block as the conditional jump targets. 474 // Remove the conditional jump, leaving unconditional fallthrough. 475 // FIXME: This does not seem like a reasonable pattern to support, but it 476 // has been seen in the wild coming out of degenerate ARM test cases. 477 TII->removeBranch(*this); 478 479 // Finally update the unconditional successor to be reached via a branch if 480 // it would not be reached by fallthrough. 481 if (!isLayoutSuccessor(TBB)) 482 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 483 return; 484 } 485 486 // We enter here iff exactly one successor is TBB which cannot fallthrough 487 // and the rest successors if any are EHPads. In this case, we need to 488 // change the conditional branch into unconditional branch. 489 TII->removeBranch(*this); 490 Cond.clear(); 491 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 492 return; 493 } 494 495 // The block has a fallthrough conditional branch. 496 if (isLayoutSuccessor(TBB)) { 497 if (TII->reverseBranchCondition(Cond)) { 498 // We can't reverse the condition, add an unconditional branch. 499 Cond.clear(); 500 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 501 return; 502 } 503 TII->removeBranch(*this); 504 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 505 } else if (!isLayoutSuccessor(FallthroughBB)) { 506 TII->removeBranch(*this); 507 TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL); 508 } 509 } 510 511 void MachineBasicBlock::validateSuccProbs() const { 512 #ifndef NDEBUG 513 int64_t Sum = 0; 514 for (auto Prob : Probs) 515 Sum += Prob.getNumerator(); 516 // Due to precision issue, we assume that the sum of probabilities is one if 517 // the difference between the sum of their numerators and the denominator is 518 // no greater than the number of successors. 519 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 520 Probs.size() && 521 "The sum of successors's probabilities exceeds one."); 522 #endif // NDEBUG 523 } 524 525 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 526 BranchProbability Prob) { 527 // Probability list is either empty (if successor list isn't empty, this means 528 // disabled optimization) or has the same size as successor list. 529 if (!(Probs.empty() && !Successors.empty())) 530 Probs.push_back(Prob); 531 Successors.push_back(Succ); 532 Succ->addPredecessor(this); 533 } 534 535 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 536 // We need to make sure probability list is either empty or has the same size 537 // of successor list. When this function is called, we can safely delete all 538 // probability in the list. 539 Probs.clear(); 540 Successors.push_back(Succ); 541 Succ->addPredecessor(this); 542 } 543 544 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 545 bool NormalizeSuccProbs) { 546 succ_iterator I = find(Successors, Succ); 547 removeSuccessor(I, NormalizeSuccProbs); 548 } 549 550 MachineBasicBlock::succ_iterator 551 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 552 assert(I != Successors.end() && "Not a current successor!"); 553 554 // If probability list is empty it means we don't use it (disabled 555 // optimization). 556 if (!Probs.empty()) { 557 probability_iterator WI = getProbabilityIterator(I); 558 Probs.erase(WI); 559 if (NormalizeSuccProbs) 560 normalizeSuccProbs(); 561 } 562 563 (*I)->removePredecessor(this); 564 return Successors.erase(I); 565 } 566 567 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 568 MachineBasicBlock *New) { 569 if (Old == New) 570 return; 571 572 succ_iterator E = succ_end(); 573 succ_iterator NewI = E; 574 succ_iterator OldI = E; 575 for (succ_iterator I = succ_begin(); I != E; ++I) { 576 if (*I == Old) { 577 OldI = I; 578 if (NewI != E) 579 break; 580 } 581 if (*I == New) { 582 NewI = I; 583 if (OldI != E) 584 break; 585 } 586 } 587 assert(OldI != E && "Old is not a successor of this block"); 588 589 // If New isn't already a successor, let it take Old's place. 590 if (NewI == E) { 591 Old->removePredecessor(this); 592 New->addPredecessor(this); 593 *OldI = New; 594 return; 595 } 596 597 // New is already a successor. 598 // Update its probability instead of adding a duplicate edge. 599 if (!Probs.empty()) { 600 auto ProbIter = getProbabilityIterator(NewI); 601 if (!ProbIter->isUnknown()) 602 *ProbIter += *getProbabilityIterator(OldI); 603 } 604 removeSuccessor(OldI); 605 } 606 607 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 608 Predecessors.push_back(Pred); 609 } 610 611 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 612 pred_iterator I = find(Predecessors, Pred); 613 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 614 Predecessors.erase(I); 615 } 616 617 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 618 if (this == FromMBB) 619 return; 620 621 while (!FromMBB->succ_empty()) { 622 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 623 624 // If probability list is empty it means we don't use it (disabled optimization). 625 if (!FromMBB->Probs.empty()) { 626 auto Prob = *FromMBB->Probs.begin(); 627 addSuccessor(Succ, Prob); 628 } else 629 addSuccessorWithoutProb(Succ); 630 631 FromMBB->removeSuccessor(Succ); 632 } 633 } 634 635 void 636 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 637 if (this == FromMBB) 638 return; 639 640 while (!FromMBB->succ_empty()) { 641 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 642 if (!FromMBB->Probs.empty()) { 643 auto Prob = *FromMBB->Probs.begin(); 644 addSuccessor(Succ, Prob); 645 } else 646 addSuccessorWithoutProb(Succ); 647 FromMBB->removeSuccessor(Succ); 648 649 // Fix up any PHI nodes in the successor. 650 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 651 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 652 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 653 MachineOperand &MO = MI->getOperand(i); 654 if (MO.getMBB() == FromMBB) 655 MO.setMBB(this); 656 } 657 } 658 normalizeSuccProbs(); 659 } 660 661 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 662 return is_contained(predecessors(), MBB); 663 } 664 665 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 666 return is_contained(successors(), MBB); 667 } 668 669 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 670 MachineFunction::const_iterator I(this); 671 return std::next(I) == MachineFunction::const_iterator(MBB); 672 } 673 674 bool MachineBasicBlock::canFallThrough() { 675 MachineFunction::iterator Fallthrough = getIterator(); 676 ++Fallthrough; 677 // If FallthroughBlock is off the end of the function, it can't fall through. 678 if (Fallthrough == getParent()->end()) 679 return false; 680 681 // If FallthroughBlock isn't a successor, no fallthrough is possible. 682 if (!isSuccessor(&*Fallthrough)) 683 return false; 684 685 // Analyze the branches, if any, at the end of the block. 686 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 687 SmallVector<MachineOperand, 4> Cond; 688 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 689 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 690 // If we couldn't analyze the branch, examine the last instruction. 691 // If the block doesn't end in a known control barrier, assume fallthrough 692 // is possible. The isPredicated check is needed because this code can be 693 // called during IfConversion, where an instruction which is normally a 694 // Barrier is predicated and thus no longer an actual control barrier. 695 return empty() || !back().isBarrier() || TII->isPredicated(back()); 696 } 697 698 // If there is no branch, control always falls through. 699 if (!TBB) return true; 700 701 // If there is some explicit branch to the fallthrough block, it can obviously 702 // reach, even though the branch should get folded to fall through implicitly. 703 if (MachineFunction::iterator(TBB) == Fallthrough || 704 MachineFunction::iterator(FBB) == Fallthrough) 705 return true; 706 707 // If it's an unconditional branch to some block not the fall through, it 708 // doesn't fall through. 709 if (Cond.empty()) return false; 710 711 // Otherwise, if it is conditional and has no explicit false block, it falls 712 // through. 713 return FBB == nullptr; 714 } 715 716 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, 717 Pass &P) { 718 if (!canSplitCriticalEdge(Succ)) 719 return nullptr; 720 721 MachineFunction *MF = getParent(); 722 DebugLoc DL; // FIXME: this is nowhere 723 724 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 725 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 726 DEBUG(dbgs() << "Splitting critical edge:" 727 " BB#" << getNumber() 728 << " -- BB#" << NMBB->getNumber() 729 << " -- BB#" << Succ->getNumber() << '\n'); 730 731 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 732 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 733 if (LIS) 734 LIS->insertMBBInMaps(NMBB); 735 else if (Indexes) 736 Indexes->insertMBBInMaps(NMBB); 737 738 // On some targets like Mips, branches may kill virtual registers. Make sure 739 // that LiveVariables is properly updated after updateTerminator replaces the 740 // terminators. 741 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 742 743 // Collect a list of virtual registers killed by the terminators. 744 SmallVector<unsigned, 4> KilledRegs; 745 if (LV) 746 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 747 I != E; ++I) { 748 MachineInstr *MI = &*I; 749 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 750 OE = MI->operands_end(); OI != OE; ++OI) { 751 if (!OI->isReg() || OI->getReg() == 0 || 752 !OI->isUse() || !OI->isKill() || OI->isUndef()) 753 continue; 754 unsigned Reg = OI->getReg(); 755 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 756 LV->getVarInfo(Reg).removeKill(*MI)) { 757 KilledRegs.push_back(Reg); 758 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 759 OI->setIsKill(false); 760 } 761 } 762 } 763 764 SmallVector<unsigned, 4> UsedRegs; 765 if (LIS) { 766 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 767 I != E; ++I) { 768 MachineInstr *MI = &*I; 769 770 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 771 OE = MI->operands_end(); OI != OE; ++OI) { 772 if (!OI->isReg() || OI->getReg() == 0) 773 continue; 774 775 unsigned Reg = OI->getReg(); 776 if (!is_contained(UsedRegs, Reg)) 777 UsedRegs.push_back(Reg); 778 } 779 } 780 } 781 782 ReplaceUsesOfBlockWith(Succ, NMBB); 783 784 // If updateTerminator() removes instructions, we need to remove them from 785 // SlotIndexes. 786 SmallVector<MachineInstr*, 4> Terminators; 787 if (Indexes) { 788 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 789 I != E; ++I) 790 Terminators.push_back(&*I); 791 } 792 793 updateTerminator(); 794 795 if (Indexes) { 796 SmallVector<MachineInstr*, 4> NewTerminators; 797 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 798 I != E; ++I) 799 NewTerminators.push_back(&*I); 800 801 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 802 E = Terminators.end(); I != E; ++I) { 803 if (!is_contained(NewTerminators, *I)) 804 Indexes->removeMachineInstrFromMaps(**I); 805 } 806 } 807 808 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 809 NMBB->addSuccessor(Succ); 810 if (!NMBB->isLayoutSuccessor(Succ)) { 811 SmallVector<MachineOperand, 4> Cond; 812 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 813 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 814 815 if (Indexes) { 816 for (MachineInstr &MI : NMBB->instrs()) { 817 // Some instructions may have been moved to NMBB by updateTerminator(), 818 // so we first remove any instruction that already has an index. 819 if (Indexes->hasIndex(MI)) 820 Indexes->removeMachineInstrFromMaps(MI); 821 Indexes->insertMachineInstrInMaps(MI); 822 } 823 } 824 } 825 826 // Fix PHI nodes in Succ so they refer to NMBB instead of this 827 for (MachineBasicBlock::instr_iterator 828 i = Succ->instr_begin(),e = Succ->instr_end(); 829 i != e && i->isPHI(); ++i) 830 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 831 if (i->getOperand(ni+1).getMBB() == this) 832 i->getOperand(ni+1).setMBB(NMBB); 833 834 // Inherit live-ins from the successor 835 for (const auto &LI : Succ->liveins()) 836 NMBB->addLiveIn(LI); 837 838 // Update LiveVariables. 839 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 840 if (LV) { 841 // Restore kills of virtual registers that were killed by the terminators. 842 while (!KilledRegs.empty()) { 843 unsigned Reg = KilledRegs.pop_back_val(); 844 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 845 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 846 continue; 847 if (TargetRegisterInfo::isVirtualRegister(Reg)) 848 LV->getVarInfo(Reg).Kills.push_back(&*I); 849 DEBUG(dbgs() << "Restored terminator kill: " << *I); 850 break; 851 } 852 } 853 // Update relevant live-through information. 854 LV->addNewBlock(NMBB, this, Succ); 855 } 856 857 if (LIS) { 858 // After splitting the edge and updating SlotIndexes, live intervals may be 859 // in one of two situations, depending on whether this block was the last in 860 // the function. If the original block was the last in the function, all 861 // live intervals will end prior to the beginning of the new split block. If 862 // the original block was not at the end of the function, all live intervals 863 // will extend to the end of the new split block. 864 865 bool isLastMBB = 866 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 867 868 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 869 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 870 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 871 872 // Find the registers used from NMBB in PHIs in Succ. 873 SmallSet<unsigned, 8> PHISrcRegs; 874 for (MachineBasicBlock::instr_iterator 875 I = Succ->instr_begin(), E = Succ->instr_end(); 876 I != E && I->isPHI(); ++I) { 877 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 878 if (I->getOperand(ni+1).getMBB() == NMBB) { 879 MachineOperand &MO = I->getOperand(ni); 880 unsigned Reg = MO.getReg(); 881 PHISrcRegs.insert(Reg); 882 if (MO.isUndef()) 883 continue; 884 885 LiveInterval &LI = LIS->getInterval(Reg); 886 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 887 assert(VNI && 888 "PHI sources should be live out of their predecessors."); 889 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 890 } 891 } 892 } 893 894 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 895 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 896 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 897 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 898 continue; 899 900 LiveInterval &LI = LIS->getInterval(Reg); 901 if (!LI.liveAt(PrevIndex)) 902 continue; 903 904 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 905 if (isLiveOut && isLastMBB) { 906 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 907 assert(VNI && "LiveInterval should have VNInfo where it is live."); 908 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 909 } else if (!isLiveOut && !isLastMBB) { 910 LI.removeSegment(StartIndex, EndIndex); 911 } 912 } 913 914 // Update all intervals for registers whose uses may have been modified by 915 // updateTerminator(). 916 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 917 } 918 919 if (MachineDominatorTree *MDT = 920 P.getAnalysisIfAvailable<MachineDominatorTree>()) 921 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 922 923 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 924 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 925 // If one or the other blocks were not in a loop, the new block is not 926 // either, and thus LI doesn't need to be updated. 927 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 928 if (TIL == DestLoop) { 929 // Both in the same loop, the NMBB joins loop. 930 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 931 } else if (TIL->contains(DestLoop)) { 932 // Edge from an outer loop to an inner loop. Add to the outer loop. 933 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 934 } else if (DestLoop->contains(TIL)) { 935 // Edge from an inner loop to an outer loop. Add to the outer loop. 936 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 937 } else { 938 // Edge from two loops with no containment relation. Because these 939 // are natural loops, we know that the destination block must be the 940 // header of its loop (adding a branch into a loop elsewhere would 941 // create an irreducible loop). 942 assert(DestLoop->getHeader() == Succ && 943 "Should not create irreducible loops!"); 944 if (MachineLoop *P = DestLoop->getParentLoop()) 945 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 946 } 947 } 948 } 949 950 return NMBB; 951 } 952 953 bool MachineBasicBlock::canSplitCriticalEdge( 954 const MachineBasicBlock *Succ) const { 955 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 956 // it in this generic function. 957 if (Succ->isEHPad()) 958 return false; 959 960 const MachineFunction *MF = getParent(); 961 962 // Performance might be harmed on HW that implements branching using exec mask 963 // where both sides of the branches are always executed. 964 if (MF->getTarget().requiresStructuredCFG()) 965 return false; 966 967 // We may need to update this's terminator, but we can't do that if 968 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 969 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 970 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 971 SmallVector<MachineOperand, 4> Cond; 972 // AnalyzeBanch should modify this, since we did not allow modification. 973 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 974 /*AllowModify*/ false)) 975 return false; 976 977 // Avoid bugpoint weirdness: A block may end with a conditional branch but 978 // jumps to the same MBB is either case. We have duplicate CFG edges in that 979 // case that we can't handle. Since this never happens in properly optimized 980 // code, just skip those edges. 981 if (TBB && TBB == FBB) { 982 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 983 << getNumber() << '\n'); 984 return false; 985 } 986 return true; 987 } 988 989 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 990 /// neighboring instructions so the bundle won't be broken by removing MI. 991 static void unbundleSingleMI(MachineInstr *MI) { 992 // Removing the first instruction in a bundle. 993 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 994 MI->unbundleFromSucc(); 995 // Removing the last instruction in a bundle. 996 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 997 MI->unbundleFromPred(); 998 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 999 // are already fine. 1000 } 1001 1002 MachineBasicBlock::instr_iterator 1003 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1004 unbundleSingleMI(&*I); 1005 return Insts.erase(I); 1006 } 1007 1008 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1009 unbundleSingleMI(MI); 1010 MI->clearFlag(MachineInstr::BundledPred); 1011 MI->clearFlag(MachineInstr::BundledSucc); 1012 return Insts.remove(MI); 1013 } 1014 1015 MachineBasicBlock::instr_iterator 1016 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1017 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1018 "Cannot insert instruction with bundle flags"); 1019 // Set the bundle flags when inserting inside a bundle. 1020 if (I != instr_end() && I->isBundledWithPred()) { 1021 MI->setFlag(MachineInstr::BundledPred); 1022 MI->setFlag(MachineInstr::BundledSucc); 1023 } 1024 return Insts.insert(I, MI); 1025 } 1026 1027 /// This method unlinks 'this' from the containing function, and returns it, but 1028 /// does not delete it. 1029 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1030 assert(getParent() && "Not embedded in a function!"); 1031 getParent()->remove(this); 1032 return this; 1033 } 1034 1035 /// This method unlinks 'this' from the containing function, and deletes it. 1036 void MachineBasicBlock::eraseFromParent() { 1037 assert(getParent() && "Not embedded in a function!"); 1038 getParent()->erase(this); 1039 } 1040 1041 /// Given a machine basic block that branched to 'Old', change the code and CFG 1042 /// so that it branches to 'New' instead. 1043 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1044 MachineBasicBlock *New) { 1045 assert(Old != New && "Cannot replace self with self!"); 1046 1047 MachineBasicBlock::instr_iterator I = instr_end(); 1048 while (I != instr_begin()) { 1049 --I; 1050 if (!I->isTerminator()) break; 1051 1052 // Scan the operands of this machine instruction, replacing any uses of Old 1053 // with New. 1054 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1055 if (I->getOperand(i).isMBB() && 1056 I->getOperand(i).getMBB() == Old) 1057 I->getOperand(i).setMBB(New); 1058 } 1059 1060 // Update the successor information. 1061 replaceSuccessor(Old, New); 1062 } 1063 1064 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1065 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1066 /// MBB successors from the CFG. DestA and DestB can be null. 1067 /// 1068 /// Besides DestA and DestB, retain other edges leading to LandingPads 1069 /// (currently there can be only one; we don't check or require that here). 1070 /// Note it is possible that DestA and/or DestB are LandingPads. 1071 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1072 MachineBasicBlock *DestB, 1073 bool IsCond) { 1074 // The values of DestA and DestB frequently come from a call to the 1075 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1076 // values from there. 1077 // 1078 // 1. If both DestA and DestB are null, then the block ends with no branches 1079 // (it falls through to its successor). 1080 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1081 // with only an unconditional branch. 1082 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1083 // with a conditional branch that falls through to a successor (DestB). 1084 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1085 // conditional branch followed by an unconditional branch. DestA is the 1086 // 'true' destination and DestB is the 'false' destination. 1087 1088 bool Changed = false; 1089 1090 MachineBasicBlock *FallThru = getNextNode(); 1091 1092 if (!DestA && !DestB) { 1093 // Block falls through to successor. 1094 DestA = FallThru; 1095 DestB = FallThru; 1096 } else if (DestA && !DestB) { 1097 if (IsCond) 1098 // Block ends in conditional jump that falls through to successor. 1099 DestB = FallThru; 1100 } else { 1101 assert(DestA && DestB && IsCond && 1102 "CFG in a bad state. Cannot correct CFG edges"); 1103 } 1104 1105 // Remove superfluous edges. I.e., those which aren't destinations of this 1106 // basic block, duplicate edges, or landing pads. 1107 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1108 MachineBasicBlock::succ_iterator SI = succ_begin(); 1109 while (SI != succ_end()) { 1110 const MachineBasicBlock *MBB = *SI; 1111 if (!SeenMBBs.insert(MBB).second || 1112 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1113 // This is a superfluous edge, remove it. 1114 SI = removeSuccessor(SI); 1115 Changed = true; 1116 } else { 1117 ++SI; 1118 } 1119 } 1120 1121 if (Changed) 1122 normalizeSuccProbs(); 1123 return Changed; 1124 } 1125 1126 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1127 /// instructions. Return UnknownLoc if there is none. 1128 DebugLoc 1129 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1130 DebugLoc DL; 1131 instr_iterator E = instr_end(); 1132 if (MBBI == E) 1133 return DL; 1134 1135 // Skip debug declarations, we don't want a DebugLoc from them. 1136 while (MBBI != E && MBBI->isDebugValue()) 1137 MBBI++; 1138 if (MBBI != E) 1139 DL = MBBI->getDebugLoc(); 1140 return DL; 1141 } 1142 1143 /// Return probability of the edge from this block to MBB. 1144 BranchProbability 1145 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1146 if (Probs.empty()) 1147 return BranchProbability(1, succ_size()); 1148 1149 const auto &Prob = *getProbabilityIterator(Succ); 1150 if (Prob.isUnknown()) { 1151 // For unknown probabilities, collect the sum of all known ones, and evenly 1152 // ditribute the complemental of the sum to each unknown probability. 1153 unsigned KnownProbNum = 0; 1154 auto Sum = BranchProbability::getZero(); 1155 for (auto &P : Probs) { 1156 if (!P.isUnknown()) { 1157 Sum += P; 1158 KnownProbNum++; 1159 } 1160 } 1161 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1162 } else 1163 return Prob; 1164 } 1165 1166 /// Set successor probability of a given iterator. 1167 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1168 BranchProbability Prob) { 1169 assert(!Prob.isUnknown()); 1170 if (Probs.empty()) 1171 return; 1172 *getProbabilityIterator(I) = Prob; 1173 } 1174 1175 /// Return probability iterator corresonding to the I successor iterator 1176 MachineBasicBlock::const_probability_iterator 1177 MachineBasicBlock::getProbabilityIterator( 1178 MachineBasicBlock::const_succ_iterator I) const { 1179 assert(Probs.size() == Successors.size() && "Async probability list!"); 1180 const size_t index = std::distance(Successors.begin(), I); 1181 assert(index < Probs.size() && "Not a current successor!"); 1182 return Probs.begin() + index; 1183 } 1184 1185 /// Return probability iterator corresonding to the I successor iterator. 1186 MachineBasicBlock::probability_iterator 1187 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1188 assert(Probs.size() == Successors.size() && "Async probability list!"); 1189 const size_t index = std::distance(Successors.begin(), I); 1190 assert(index < Probs.size() && "Not a current successor!"); 1191 return Probs.begin() + index; 1192 } 1193 1194 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1195 /// as of just before "MI". 1196 /// 1197 /// Search is localised to a neighborhood of 1198 /// Neighborhood instructions before (searching for defs or kills) and N 1199 /// instructions after (searching just for defs) MI. 1200 MachineBasicBlock::LivenessQueryResult 1201 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1202 unsigned Reg, const_iterator Before, 1203 unsigned Neighborhood) const { 1204 unsigned N = Neighborhood; 1205 1206 // Start by searching backwards from Before, looking for kills, reads or defs. 1207 const_iterator I(Before); 1208 // If this is the first insn in the block, don't search backwards. 1209 if (I != begin()) { 1210 do { 1211 --I; 1212 1213 MachineOperandIteratorBase::PhysRegInfo Info = 1214 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1215 1216 // Defs happen after uses so they take precedence if both are present. 1217 1218 // Register is dead after a dead def of the full register. 1219 if (Info.DeadDef) 1220 return LQR_Dead; 1221 // Register is (at least partially) live after a def. 1222 if (Info.Defined) { 1223 if (!Info.PartialDeadDef) 1224 return LQR_Live; 1225 // As soon as we saw a partial definition (dead or not), 1226 // we cannot tell if the value is partial live without 1227 // tracking the lanemasks. We are not going to do this, 1228 // so fall back on the remaining of the analysis. 1229 break; 1230 } 1231 // Register is dead after a full kill or clobber and no def. 1232 if (Info.Killed || Info.Clobbered) 1233 return LQR_Dead; 1234 // Register must be live if we read it. 1235 if (Info.Read) 1236 return LQR_Live; 1237 } while (I != begin() && --N > 0); 1238 } 1239 1240 // Did we get to the start of the block? 1241 if (I == begin()) { 1242 // If so, the register's state is definitely defined by the live-in state. 1243 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid(); 1244 ++RAI) 1245 if (isLiveIn(*RAI)) 1246 return LQR_Live; 1247 1248 return LQR_Dead; 1249 } 1250 1251 N = Neighborhood; 1252 1253 // Try searching forwards from Before, looking for reads or defs. 1254 I = const_iterator(Before); 1255 // If this is the last insn in the block, don't search forwards. 1256 if (I != end()) { 1257 for (++I; I != end() && N > 0; ++I, --N) { 1258 MachineOperandIteratorBase::PhysRegInfo Info = 1259 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1260 1261 // Register is live when we read it here. 1262 if (Info.Read) 1263 return LQR_Live; 1264 // Register is dead if we can fully overwrite or clobber it here. 1265 if (Info.FullyDefined || Info.Clobbered) 1266 return LQR_Dead; 1267 } 1268 } 1269 1270 // At this point we have no idea of the liveness of the register. 1271 return LQR_Unknown; 1272 } 1273 1274 const uint32_t * 1275 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1276 // EH funclet entry does not preserve any registers. 1277 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1278 } 1279 1280 const uint32_t * 1281 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1282 // If we see a return block with successors, this must be a funclet return, 1283 // which does not preserve any registers. If there are no successors, we don't 1284 // care what kind of return it is, putting a mask after it is a no-op. 1285 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1286 } 1287