1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 18 #include "llvm/CodeGen/LiveVariables.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/SlotIndexes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/ModuleSlotTracker.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 #define DEBUG_TYPE "codegen" 40 41 MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb) 42 : BB(bb), Number(-1), xParent(&mf), Alignment(0), IsLandingPad(false), 43 AddressTaken(false), CachedMCSymbol(nullptr) { 44 Insts.Parent = this; 45 } 46 47 MachineBasicBlock::~MachineBasicBlock() { 48 } 49 50 /// Return the MCSymbol for this basic block. 51 MCSymbol *MachineBasicBlock::getSymbol() const { 52 if (!CachedMCSymbol) { 53 const MachineFunction *MF = getParent(); 54 MCContext &Ctx = MF->getContext(); 55 const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 56 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 57 Twine(MF->getFunctionNumber()) + 58 "_" + Twine(getNumber())); 59 } 60 61 return CachedMCSymbol; 62 } 63 64 65 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 66 MBB.print(OS); 67 return OS; 68 } 69 70 /// When an MBB is added to an MF, we need to update the parent pointer of the 71 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 72 /// operand list for registers. 73 /// 74 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 75 /// gets the next available unique MBB number. If it is removed from a 76 /// MachineFunction, it goes back to being #-1. 77 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) { 78 MachineFunction &MF = *N->getParent(); 79 N->Number = MF.addToMBBNumbering(N); 80 81 // Make sure the instructions have their operands in the reginfo lists. 82 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 83 for (MachineBasicBlock::instr_iterator 84 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 85 I->AddRegOperandsToUseLists(RegInfo); 86 } 87 88 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) { 89 N->getParent()->removeFromMBBNumbering(N->Number); 90 N->Number = -1; 91 } 92 93 /// When we add an instruction to a basic block list, we update its parent 94 /// pointer and add its operands from reg use/def lists if appropriate. 95 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 96 assert(!N->getParent() && "machine instruction already in a basic block"); 97 N->setParent(Parent); 98 99 // Add the instruction's register operands to their corresponding 100 // use/def lists. 101 MachineFunction *MF = Parent->getParent(); 102 N->AddRegOperandsToUseLists(MF->getRegInfo()); 103 } 104 105 /// When we remove an instruction from a basic block list, we update its parent 106 /// pointer and remove its operands from reg use/def lists if appropriate. 107 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 108 assert(N->getParent() && "machine instruction not in a basic block"); 109 110 // Remove from the use/def lists. 111 if (MachineFunction *MF = N->getParent()->getParent()) 112 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 113 114 N->setParent(nullptr); 115 } 116 117 /// When moving a range of instructions from one MBB list to another, we need to 118 /// update the parent pointers and the use/def lists. 119 void ilist_traits<MachineInstr>:: 120 transferNodesFromList(ilist_traits<MachineInstr> &fromList, 121 ilist_iterator<MachineInstr> first, 122 ilist_iterator<MachineInstr> last) { 123 assert(Parent->getParent() == fromList.Parent->getParent() && 124 "MachineInstr parent mismatch!"); 125 126 // Splice within the same MBB -> no change. 127 if (Parent == fromList.Parent) return; 128 129 // If splicing between two blocks within the same function, just update the 130 // parent pointers. 131 for (; first != last; ++first) 132 first->setParent(Parent); 133 } 134 135 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) { 136 assert(!MI->getParent() && "MI is still in a block!"); 137 Parent->getParent()->DeleteMachineInstr(MI); 138 } 139 140 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 141 instr_iterator I = instr_begin(), E = instr_end(); 142 while (I != E && I->isPHI()) 143 ++I; 144 assert((I == E || !I->isInsideBundle()) && 145 "First non-phi MI cannot be inside a bundle!"); 146 return I; 147 } 148 149 MachineBasicBlock::iterator 150 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 151 iterator E = end(); 152 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue())) 153 ++I; 154 // FIXME: This needs to change if we wish to bundle labels / dbg_values 155 // inside the bundle. 156 assert((I == E || !I->isInsideBundle()) && 157 "First non-phi / non-label instruction is inside a bundle!"); 158 return I; 159 } 160 161 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 162 iterator B = begin(), E = end(), I = E; 163 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 164 ; /*noop */ 165 while (I != E && !I->isTerminator()) 166 ++I; 167 return I; 168 } 169 170 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 171 instr_iterator B = instr_begin(), E = instr_end(), I = E; 172 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 173 ; /*noop */ 174 while (I != E && !I->isTerminator()) 175 ++I; 176 return I; 177 } 178 179 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 180 // Skip over begin-of-block dbg_value instructions. 181 iterator I = begin(), E = end(); 182 while (I != E && I->isDebugValue()) 183 ++I; 184 return I; 185 } 186 187 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 188 // Skip over end-of-block dbg_value instructions. 189 instr_iterator B = instr_begin(), I = instr_end(); 190 while (I != B) { 191 --I; 192 // Return instruction that starts a bundle. 193 if (I->isDebugValue() || I->isInsideBundle()) 194 continue; 195 return I; 196 } 197 // The block is all debug values. 198 return end(); 199 } 200 201 const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const { 202 // A block with a landing pad successor only has one other successor. 203 if (succ_size() > 2) 204 return nullptr; 205 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 206 if ((*I)->isLandingPad()) 207 return *I; 208 return nullptr; 209 } 210 211 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 212 void MachineBasicBlock::dump() const { 213 print(dbgs()); 214 } 215 #endif 216 217 StringRef MachineBasicBlock::getName() const { 218 if (const BasicBlock *LBB = getBasicBlock()) 219 return LBB->getName(); 220 else 221 return "(null)"; 222 } 223 224 /// Return a hopefully unique identifier for this block. 225 std::string MachineBasicBlock::getFullName() const { 226 std::string Name; 227 if (getParent()) 228 Name = (getParent()->getName() + ":").str(); 229 if (getBasicBlock()) 230 Name += getBasicBlock()->getName(); 231 else 232 Name += ("BB" + Twine(getNumber())).str(); 233 return Name; 234 } 235 236 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const { 237 const MachineFunction *MF = getParent(); 238 if (!MF) { 239 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 240 << " is null\n"; 241 return; 242 } 243 const Function *F = MF->getFunction(); 244 const Module *M = F ? F->getParent() : nullptr; 245 ModuleSlotTracker MST(M); 246 print(OS, MST, Indexes); 247 } 248 249 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 250 SlotIndexes *Indexes) const { 251 const MachineFunction *MF = getParent(); 252 if (!MF) { 253 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 254 << " is null\n"; 255 return; 256 } 257 258 if (Indexes) 259 OS << Indexes->getMBBStartIdx(this) << '\t'; 260 261 OS << "BB#" << getNumber() << ": "; 262 263 const char *Comma = ""; 264 if (const BasicBlock *LBB = getBasicBlock()) { 265 OS << Comma << "derived from LLVM BB "; 266 LBB->printAsOperand(OS, /*PrintType=*/false, MST); 267 Comma = ", "; 268 } 269 if (isLandingPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 270 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 271 if (Alignment) 272 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 273 << " bytes)"; 274 275 OS << '\n'; 276 277 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 278 if (!livein_empty()) { 279 if (Indexes) OS << '\t'; 280 OS << " Live Ins:"; 281 for (unsigned LI : make_range(livein_begin(), livein_end())) { 282 OS << ' ' << PrintReg(LI, TRI); 283 } 284 OS << '\n'; 285 } 286 // Print the preds of this block according to the CFG. 287 if (!pred_empty()) { 288 if (Indexes) OS << '\t'; 289 OS << " Predecessors according to CFG:"; 290 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 291 OS << " BB#" << (*PI)->getNumber(); 292 OS << '\n'; 293 } 294 295 for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) { 296 if (Indexes) { 297 if (Indexes->hasIndex(I)) 298 OS << Indexes->getInstructionIndex(I); 299 OS << '\t'; 300 } 301 OS << '\t'; 302 if (I->isInsideBundle()) 303 OS << " * "; 304 I->print(OS, MST); 305 } 306 307 // Print the successors of this block according to the CFG. 308 if (!succ_empty()) { 309 if (Indexes) OS << '\t'; 310 OS << " Successors according to CFG:"; 311 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 312 OS << " BB#" << (*SI)->getNumber(); 313 if (!Weights.empty()) 314 OS << '(' << *getWeightIterator(SI) << ')'; 315 } 316 OS << '\n'; 317 } 318 } 319 320 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 321 bool /*PrintType*/) const { 322 OS << "BB#" << getNumber(); 323 } 324 325 void MachineBasicBlock::removeLiveIn(unsigned Reg) { 326 std::vector<unsigned>::iterator I 327 = std::find(LiveIns.begin(), LiveIns.end(), Reg); 328 if (I != LiveIns.end()) 329 LiveIns.erase(I); 330 } 331 332 bool MachineBasicBlock::isLiveIn(unsigned Reg) const { 333 livein_iterator I = std::find(livein_begin(), livein_end(), Reg); 334 return I != livein_end(); 335 } 336 337 unsigned 338 MachineBasicBlock::addLiveIn(unsigned PhysReg, const TargetRegisterClass *RC) { 339 assert(getParent() && "MBB must be inserted in function"); 340 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 341 assert(RC && "Register class is required"); 342 assert((isLandingPad() || this == &getParent()->front()) && 343 "Only the entry block and landing pads can have physreg live ins"); 344 345 bool LiveIn = isLiveIn(PhysReg); 346 iterator I = SkipPHIsAndLabels(begin()), E = end(); 347 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 348 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 349 350 // Look for an existing copy. 351 if (LiveIn) 352 for (;I != E && I->isCopy(); ++I) 353 if (I->getOperand(1).getReg() == PhysReg) { 354 unsigned VirtReg = I->getOperand(0).getReg(); 355 if (!MRI.constrainRegClass(VirtReg, RC)) 356 llvm_unreachable("Incompatible live-in register class."); 357 return VirtReg; 358 } 359 360 // No luck, create a virtual register. 361 unsigned VirtReg = MRI.createVirtualRegister(RC); 362 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 363 .addReg(PhysReg, RegState::Kill); 364 if (!LiveIn) 365 addLiveIn(PhysReg); 366 return VirtReg; 367 } 368 369 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 370 getParent()->splice(NewAfter, this); 371 } 372 373 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 374 MachineFunction::iterator BBI = NewBefore; 375 getParent()->splice(++BBI, this); 376 } 377 378 void MachineBasicBlock::updateTerminator() { 379 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 380 // A block with no successors has no concerns with fall-through edges. 381 if (this->succ_empty()) return; 382 383 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 384 SmallVector<MachineOperand, 4> Cond; 385 DebugLoc dl; // FIXME: this is nowhere 386 bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond); 387 (void) B; 388 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 389 if (Cond.empty()) { 390 if (TBB) { 391 // The block has an unconditional branch. If its successor is now 392 // its layout successor, delete the branch. 393 if (isLayoutSuccessor(TBB)) 394 TII->RemoveBranch(*this); 395 } else { 396 // The block has an unconditional fallthrough. If its successor is not 397 // its layout successor, insert a branch. First we have to locate the 398 // only non-landing-pad successor, as that is the fallthrough block. 399 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 400 if ((*SI)->isLandingPad()) 401 continue; 402 assert(!TBB && "Found more than one non-landing-pad successor!"); 403 TBB = *SI; 404 } 405 406 // If there is no non-landing-pad successor, the block has no 407 // fall-through edges to be concerned with. 408 if (!TBB) 409 return; 410 411 // Finally update the unconditional successor to be reached via a branch 412 // if it would not be reached by fallthrough. 413 if (!isLayoutSuccessor(TBB)) 414 TII->InsertBranch(*this, TBB, nullptr, Cond, dl); 415 } 416 } else { 417 if (FBB) { 418 // The block has a non-fallthrough conditional branch. If one of its 419 // successors is its layout successor, rewrite it to a fallthrough 420 // conditional branch. 421 if (isLayoutSuccessor(TBB)) { 422 if (TII->ReverseBranchCondition(Cond)) 423 return; 424 TII->RemoveBranch(*this); 425 TII->InsertBranch(*this, FBB, nullptr, Cond, dl); 426 } else if (isLayoutSuccessor(FBB)) { 427 TII->RemoveBranch(*this); 428 TII->InsertBranch(*this, TBB, nullptr, Cond, dl); 429 } 430 } else { 431 // Walk through the successors and find the successor which is not 432 // a landing pad and is not the conditional branch destination (in TBB) 433 // as the fallthrough successor. 434 MachineBasicBlock *FallthroughBB = nullptr; 435 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 436 if ((*SI)->isLandingPad() || *SI == TBB) 437 continue; 438 assert(!FallthroughBB && "Found more than one fallthrough successor."); 439 FallthroughBB = *SI; 440 } 441 if (!FallthroughBB && canFallThrough()) { 442 // We fallthrough to the same basic block as the conditional jump 443 // targets. Remove the conditional jump, leaving unconditional 444 // fallthrough. 445 // FIXME: This does not seem like a reasonable pattern to support, but 446 // it has been seen in the wild coming out of degenerate ARM test cases. 447 TII->RemoveBranch(*this); 448 449 // Finally update the unconditional successor to be reached via a branch 450 // if it would not be reached by fallthrough. 451 if (!isLayoutSuccessor(TBB)) 452 TII->InsertBranch(*this, TBB, nullptr, Cond, dl); 453 return; 454 } 455 456 // The block has a fallthrough conditional branch. 457 if (isLayoutSuccessor(TBB)) { 458 if (TII->ReverseBranchCondition(Cond)) { 459 // We can't reverse the condition, add an unconditional branch. 460 Cond.clear(); 461 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, dl); 462 return; 463 } 464 TII->RemoveBranch(*this); 465 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, dl); 466 } else if (!isLayoutSuccessor(FallthroughBB)) { 467 TII->RemoveBranch(*this); 468 TII->InsertBranch(*this, TBB, FallthroughBB, Cond, dl); 469 } 470 } 471 } 472 } 473 474 void MachineBasicBlock::addSuccessor(MachineBasicBlock *succ, uint32_t weight) { 475 476 // If we see non-zero value for the first time it means we actually use Weight 477 // list, so we fill all Weights with 0's. 478 if (weight != 0 && Weights.empty()) 479 Weights.resize(Successors.size()); 480 481 if (weight != 0 || !Weights.empty()) 482 Weights.push_back(weight); 483 484 Successors.push_back(succ); 485 succ->addPredecessor(this); 486 } 487 488 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *succ) { 489 succ->removePredecessor(this); 490 succ_iterator I = std::find(Successors.begin(), Successors.end(), succ); 491 assert(I != Successors.end() && "Not a current successor!"); 492 493 // If Weight list is empty it means we don't use it (disabled optimization). 494 if (!Weights.empty()) { 495 weight_iterator WI = getWeightIterator(I); 496 Weights.erase(WI); 497 } 498 499 Successors.erase(I); 500 } 501 502 MachineBasicBlock::succ_iterator 503 MachineBasicBlock::removeSuccessor(succ_iterator I) { 504 assert(I != Successors.end() && "Not a current successor!"); 505 506 // If Weight list is empty it means we don't use it (disabled optimization). 507 if (!Weights.empty()) { 508 weight_iterator WI = getWeightIterator(I); 509 Weights.erase(WI); 510 } 511 512 (*I)->removePredecessor(this); 513 return Successors.erase(I); 514 } 515 516 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 517 MachineBasicBlock *New) { 518 if (Old == New) 519 return; 520 521 succ_iterator E = succ_end(); 522 succ_iterator NewI = E; 523 succ_iterator OldI = E; 524 for (succ_iterator I = succ_begin(); I != E; ++I) { 525 if (*I == Old) { 526 OldI = I; 527 if (NewI != E) 528 break; 529 } 530 if (*I == New) { 531 NewI = I; 532 if (OldI != E) 533 break; 534 } 535 } 536 assert(OldI != E && "Old is not a successor of this block"); 537 Old->removePredecessor(this); 538 539 // If New isn't already a successor, let it take Old's place. 540 if (NewI == E) { 541 New->addPredecessor(this); 542 *OldI = New; 543 return; 544 } 545 546 // New is already a successor. 547 // Update its weight instead of adding a duplicate edge. 548 if (!Weights.empty()) { 549 weight_iterator OldWI = getWeightIterator(OldI); 550 *getWeightIterator(NewI) += *OldWI; 551 Weights.erase(OldWI); 552 } 553 Successors.erase(OldI); 554 } 555 556 void MachineBasicBlock::addPredecessor(MachineBasicBlock *pred) { 557 Predecessors.push_back(pred); 558 } 559 560 void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) { 561 pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), pred); 562 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 563 Predecessors.erase(I); 564 } 565 566 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) { 567 if (this == fromMBB) 568 return; 569 570 while (!fromMBB->succ_empty()) { 571 MachineBasicBlock *Succ = *fromMBB->succ_begin(); 572 uint32_t Weight = 0; 573 574 // If Weight list is empty it means we don't use it (disabled optimization). 575 if (!fromMBB->Weights.empty()) 576 Weight = *fromMBB->Weights.begin(); 577 578 addSuccessor(Succ, Weight); 579 fromMBB->removeSuccessor(Succ); 580 } 581 } 582 583 void 584 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB) { 585 if (this == fromMBB) 586 return; 587 588 while (!fromMBB->succ_empty()) { 589 MachineBasicBlock *Succ = *fromMBB->succ_begin(); 590 uint32_t Weight = 0; 591 if (!fromMBB->Weights.empty()) 592 Weight = *fromMBB->Weights.begin(); 593 addSuccessor(Succ, Weight); 594 fromMBB->removeSuccessor(Succ); 595 596 // Fix up any PHI nodes in the successor. 597 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 598 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 599 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 600 MachineOperand &MO = MI->getOperand(i); 601 if (MO.getMBB() == fromMBB) 602 MO.setMBB(this); 603 } 604 } 605 } 606 607 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 608 return std::find(pred_begin(), pred_end(), MBB) != pred_end(); 609 } 610 611 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 612 return std::find(succ_begin(), succ_end(), MBB) != succ_end(); 613 } 614 615 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 616 MachineFunction::const_iterator I(this); 617 return std::next(I) == MachineFunction::const_iterator(MBB); 618 } 619 620 bool MachineBasicBlock::canFallThrough() { 621 MachineFunction::iterator Fallthrough = this; 622 ++Fallthrough; 623 // If FallthroughBlock is off the end of the function, it can't fall through. 624 if (Fallthrough == getParent()->end()) 625 return false; 626 627 // If FallthroughBlock isn't a successor, no fallthrough is possible. 628 if (!isSuccessor(Fallthrough)) 629 return false; 630 631 // Analyze the branches, if any, at the end of the block. 632 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 633 SmallVector<MachineOperand, 4> Cond; 634 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 635 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) { 636 // If we couldn't analyze the branch, examine the last instruction. 637 // If the block doesn't end in a known control barrier, assume fallthrough 638 // is possible. The isPredicated check is needed because this code can be 639 // called during IfConversion, where an instruction which is normally a 640 // Barrier is predicated and thus no longer an actual control barrier. 641 return empty() || !back().isBarrier() || TII->isPredicated(&back()); 642 } 643 644 // If there is no branch, control always falls through. 645 if (!TBB) return true; 646 647 // If there is some explicit branch to the fallthrough block, it can obviously 648 // reach, even though the branch should get folded to fall through implicitly. 649 if (MachineFunction::iterator(TBB) == Fallthrough || 650 MachineFunction::iterator(FBB) == Fallthrough) 651 return true; 652 653 // If it's an unconditional branch to some block not the fall through, it 654 // doesn't fall through. 655 if (Cond.empty()) return false; 656 657 // Otherwise, if it is conditional and has no explicit false block, it falls 658 // through. 659 return FBB == nullptr; 660 } 661 662 MachineBasicBlock * 663 MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) { 664 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 665 // it in this generic function. 666 if (Succ->isLandingPad()) 667 return nullptr; 668 669 MachineFunction *MF = getParent(); 670 DebugLoc dl; // FIXME: this is nowhere 671 672 // Performance might be harmed on HW that implements branching using exec mask 673 // where both sides of the branches are always executed. 674 if (MF->getTarget().requiresStructuredCFG()) 675 return nullptr; 676 677 // We may need to update this's terminator, but we can't do that if 678 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 679 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 680 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 681 SmallVector<MachineOperand, 4> Cond; 682 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) 683 return nullptr; 684 685 // Avoid bugpoint weirdness: A block may end with a conditional branch but 686 // jumps to the same MBB is either case. We have duplicate CFG edges in that 687 // case that we can't handle. Since this never happens in properly optimized 688 // code, just skip those edges. 689 if (TBB && TBB == FBB) { 690 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 691 << getNumber() << '\n'); 692 return nullptr; 693 } 694 695 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 696 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 697 DEBUG(dbgs() << "Splitting critical edge:" 698 " BB#" << getNumber() 699 << " -- BB#" << NMBB->getNumber() 700 << " -- BB#" << Succ->getNumber() << '\n'); 701 702 LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>(); 703 SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>(); 704 if (LIS) 705 LIS->insertMBBInMaps(NMBB); 706 else if (Indexes) 707 Indexes->insertMBBInMaps(NMBB); 708 709 // On some targets like Mips, branches may kill virtual registers. Make sure 710 // that LiveVariables is properly updated after updateTerminator replaces the 711 // terminators. 712 LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>(); 713 714 // Collect a list of virtual registers killed by the terminators. 715 SmallVector<unsigned, 4> KilledRegs; 716 if (LV) 717 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 718 I != E; ++I) { 719 MachineInstr *MI = I; 720 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 721 OE = MI->operands_end(); OI != OE; ++OI) { 722 if (!OI->isReg() || OI->getReg() == 0 || 723 !OI->isUse() || !OI->isKill() || OI->isUndef()) 724 continue; 725 unsigned Reg = OI->getReg(); 726 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 727 LV->getVarInfo(Reg).removeKill(MI)) { 728 KilledRegs.push_back(Reg); 729 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 730 OI->setIsKill(false); 731 } 732 } 733 } 734 735 SmallVector<unsigned, 4> UsedRegs; 736 if (LIS) { 737 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 738 I != E; ++I) { 739 MachineInstr *MI = I; 740 741 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 742 OE = MI->operands_end(); OI != OE; ++OI) { 743 if (!OI->isReg() || OI->getReg() == 0) 744 continue; 745 746 unsigned Reg = OI->getReg(); 747 if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end()) 748 UsedRegs.push_back(Reg); 749 } 750 } 751 } 752 753 ReplaceUsesOfBlockWith(Succ, NMBB); 754 755 // If updateTerminator() removes instructions, we need to remove them from 756 // SlotIndexes. 757 SmallVector<MachineInstr*, 4> Terminators; 758 if (Indexes) { 759 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 760 I != E; ++I) 761 Terminators.push_back(I); 762 } 763 764 updateTerminator(); 765 766 if (Indexes) { 767 SmallVector<MachineInstr*, 4> NewTerminators; 768 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 769 I != E; ++I) 770 NewTerminators.push_back(I); 771 772 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 773 E = Terminators.end(); I != E; ++I) { 774 if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) == 775 NewTerminators.end()) 776 Indexes->removeMachineInstrFromMaps(*I); 777 } 778 } 779 780 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 781 NMBB->addSuccessor(Succ); 782 if (!NMBB->isLayoutSuccessor(Succ)) { 783 Cond.clear(); 784 MF->getSubtarget().getInstrInfo()->InsertBranch(*NMBB, Succ, nullptr, Cond, 785 dl); 786 787 if (Indexes) { 788 for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end(); 789 I != E; ++I) { 790 // Some instructions may have been moved to NMBB by updateTerminator(), 791 // so we first remove any instruction that already has an index. 792 if (Indexes->hasIndex(I)) 793 Indexes->removeMachineInstrFromMaps(I); 794 Indexes->insertMachineInstrInMaps(I); 795 } 796 } 797 } 798 799 // Fix PHI nodes in Succ so they refer to NMBB instead of this 800 for (MachineBasicBlock::instr_iterator 801 i = Succ->instr_begin(),e = Succ->instr_end(); 802 i != e && i->isPHI(); ++i) 803 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 804 if (i->getOperand(ni+1).getMBB() == this) 805 i->getOperand(ni+1).setMBB(NMBB); 806 807 // Inherit live-ins from the successor 808 for (unsigned LI : Succ->liveins()) 809 NMBB->addLiveIn(LI); 810 811 // Update LiveVariables. 812 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 813 if (LV) { 814 // Restore kills of virtual registers that were killed by the terminators. 815 while (!KilledRegs.empty()) { 816 unsigned Reg = KilledRegs.pop_back_val(); 817 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 818 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 819 continue; 820 if (TargetRegisterInfo::isVirtualRegister(Reg)) 821 LV->getVarInfo(Reg).Kills.push_back(I); 822 DEBUG(dbgs() << "Restored terminator kill: " << *I); 823 break; 824 } 825 } 826 // Update relevant live-through information. 827 LV->addNewBlock(NMBB, this, Succ); 828 } 829 830 if (LIS) { 831 // After splitting the edge and updating SlotIndexes, live intervals may be 832 // in one of two situations, depending on whether this block was the last in 833 // the function. If the original block was the last in the function, all 834 // live intervals will end prior to the beginning of the new split block. If 835 // the original block was not at the end of the function, all live intervals 836 // will extend to the end of the new split block. 837 838 bool isLastMBB = 839 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 840 841 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 842 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 843 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 844 845 // Find the registers used from NMBB in PHIs in Succ. 846 SmallSet<unsigned, 8> PHISrcRegs; 847 for (MachineBasicBlock::instr_iterator 848 I = Succ->instr_begin(), E = Succ->instr_end(); 849 I != E && I->isPHI(); ++I) { 850 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 851 if (I->getOperand(ni+1).getMBB() == NMBB) { 852 MachineOperand &MO = I->getOperand(ni); 853 unsigned Reg = MO.getReg(); 854 PHISrcRegs.insert(Reg); 855 if (MO.isUndef()) 856 continue; 857 858 LiveInterval &LI = LIS->getInterval(Reg); 859 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 860 assert(VNI && 861 "PHI sources should be live out of their predecessors."); 862 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 863 } 864 } 865 } 866 867 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 868 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 869 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 870 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 871 continue; 872 873 LiveInterval &LI = LIS->getInterval(Reg); 874 if (!LI.liveAt(PrevIndex)) 875 continue; 876 877 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 878 if (isLiveOut && isLastMBB) { 879 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 880 assert(VNI && "LiveInterval should have VNInfo where it is live."); 881 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 882 } else if (!isLiveOut && !isLastMBB) { 883 LI.removeSegment(StartIndex, EndIndex); 884 } 885 } 886 887 // Update all intervals for registers whose uses may have been modified by 888 // updateTerminator(). 889 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 890 } 891 892 if (MachineDominatorTree *MDT = 893 P->getAnalysisIfAvailable<MachineDominatorTree>()) 894 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 895 896 if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>()) 897 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 898 // If one or the other blocks were not in a loop, the new block is not 899 // either, and thus LI doesn't need to be updated. 900 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 901 if (TIL == DestLoop) { 902 // Both in the same loop, the NMBB joins loop. 903 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 904 } else if (TIL->contains(DestLoop)) { 905 // Edge from an outer loop to an inner loop. Add to the outer loop. 906 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 907 } else if (DestLoop->contains(TIL)) { 908 // Edge from an inner loop to an outer loop. Add to the outer loop. 909 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 910 } else { 911 // Edge from two loops with no containment relation. Because these 912 // are natural loops, we know that the destination block must be the 913 // header of its loop (adding a branch into a loop elsewhere would 914 // create an irreducible loop). 915 assert(DestLoop->getHeader() == Succ && 916 "Should not create irreducible loops!"); 917 if (MachineLoop *P = DestLoop->getParentLoop()) 918 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 919 } 920 } 921 } 922 923 return NMBB; 924 } 925 926 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 927 /// neighboring instructions so the bundle won't be broken by removing MI. 928 static void unbundleSingleMI(MachineInstr *MI) { 929 // Removing the first instruction in a bundle. 930 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 931 MI->unbundleFromSucc(); 932 // Removing the last instruction in a bundle. 933 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 934 MI->unbundleFromPred(); 935 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 936 // are already fine. 937 } 938 939 MachineBasicBlock::instr_iterator 940 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 941 unbundleSingleMI(I); 942 return Insts.erase(I); 943 } 944 945 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 946 unbundleSingleMI(MI); 947 MI->clearFlag(MachineInstr::BundledPred); 948 MI->clearFlag(MachineInstr::BundledSucc); 949 return Insts.remove(MI); 950 } 951 952 MachineBasicBlock::instr_iterator 953 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 954 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 955 "Cannot insert instruction with bundle flags"); 956 // Set the bundle flags when inserting inside a bundle. 957 if (I != instr_end() && I->isBundledWithPred()) { 958 MI->setFlag(MachineInstr::BundledPred); 959 MI->setFlag(MachineInstr::BundledSucc); 960 } 961 return Insts.insert(I, MI); 962 } 963 964 /// This method unlinks 'this' from the containing function, and returns it, but 965 /// does not delete it. 966 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 967 assert(getParent() && "Not embedded in a function!"); 968 getParent()->remove(this); 969 return this; 970 } 971 972 /// This method unlinks 'this' from the containing function, and deletes it. 973 void MachineBasicBlock::eraseFromParent() { 974 assert(getParent() && "Not embedded in a function!"); 975 getParent()->erase(this); 976 } 977 978 /// Given a machine basic block that branched to 'Old', change the code and CFG 979 /// so that it branches to 'New' instead. 980 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 981 MachineBasicBlock *New) { 982 assert(Old != New && "Cannot replace self with self!"); 983 984 MachineBasicBlock::instr_iterator I = instr_end(); 985 while (I != instr_begin()) { 986 --I; 987 if (!I->isTerminator()) break; 988 989 // Scan the operands of this machine instruction, replacing any uses of Old 990 // with New. 991 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 992 if (I->getOperand(i).isMBB() && 993 I->getOperand(i).getMBB() == Old) 994 I->getOperand(i).setMBB(New); 995 } 996 997 // Update the successor information. 998 replaceSuccessor(Old, New); 999 } 1000 1001 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1002 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1003 /// MBB successors from the CFG. DestA and DestB can be null. 1004 /// 1005 /// Besides DestA and DestB, retain other edges leading to LandingPads 1006 /// (currently there can be only one; we don't check or require that here). 1007 /// Note it is possible that DestA and/or DestB are LandingPads. 1008 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1009 MachineBasicBlock *DestB, 1010 bool isCond) { 1011 // The values of DestA and DestB frequently come from a call to the 1012 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1013 // values from there. 1014 // 1015 // 1. If both DestA and DestB are null, then the block ends with no branches 1016 // (it falls through to its successor). 1017 // 2. If DestA is set, DestB is null, and isCond is false, then the block ends 1018 // with only an unconditional branch. 1019 // 3. If DestA is set, DestB is null, and isCond is true, then the block ends 1020 // with a conditional branch that falls through to a successor (DestB). 1021 // 4. If DestA and DestB is set and isCond is true, then the block ends with a 1022 // conditional branch followed by an unconditional branch. DestA is the 1023 // 'true' destination and DestB is the 'false' destination. 1024 1025 bool Changed = false; 1026 1027 MachineFunction::iterator FallThru = 1028 std::next(MachineFunction::iterator(this)); 1029 1030 if (!DestA && !DestB) { 1031 // Block falls through to successor. 1032 DestA = FallThru; 1033 DestB = FallThru; 1034 } else if (DestA && !DestB) { 1035 if (isCond) 1036 // Block ends in conditional jump that falls through to successor. 1037 DestB = FallThru; 1038 } else { 1039 assert(DestA && DestB && isCond && 1040 "CFG in a bad state. Cannot correct CFG edges"); 1041 } 1042 1043 // Remove superfluous edges. I.e., those which aren't destinations of this 1044 // basic block, duplicate edges, or landing pads. 1045 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1046 MachineBasicBlock::succ_iterator SI = succ_begin(); 1047 while (SI != succ_end()) { 1048 const MachineBasicBlock *MBB = *SI; 1049 if (!SeenMBBs.insert(MBB).second || 1050 (MBB != DestA && MBB != DestB && !MBB->isLandingPad())) { 1051 // This is a superfluous edge, remove it. 1052 SI = removeSuccessor(SI); 1053 Changed = true; 1054 } else { 1055 ++SI; 1056 } 1057 } 1058 1059 return Changed; 1060 } 1061 1062 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1063 /// instructions. Return UnknownLoc if there is none. 1064 DebugLoc 1065 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1066 DebugLoc DL; 1067 instr_iterator E = instr_end(); 1068 if (MBBI == E) 1069 return DL; 1070 1071 // Skip debug declarations, we don't want a DebugLoc from them. 1072 while (MBBI != E && MBBI->isDebugValue()) 1073 MBBI++; 1074 if (MBBI != E) 1075 DL = MBBI->getDebugLoc(); 1076 return DL; 1077 } 1078 1079 /// Return weight of the edge from this block to MBB. 1080 uint32_t MachineBasicBlock::getSuccWeight(const_succ_iterator Succ) const { 1081 if (Weights.empty()) 1082 return 0; 1083 1084 return *getWeightIterator(Succ); 1085 } 1086 1087 /// Set successor weight of a given iterator. 1088 void MachineBasicBlock::setSuccWeight(succ_iterator I, uint32_t weight) { 1089 if (Weights.empty()) 1090 return; 1091 *getWeightIterator(I) = weight; 1092 } 1093 1094 /// Return wight iterator corresonding to the I successor iterator. 1095 MachineBasicBlock::weight_iterator MachineBasicBlock:: 1096 getWeightIterator(MachineBasicBlock::succ_iterator I) { 1097 assert(Weights.size() == Successors.size() && "Async weight list!"); 1098 size_t index = std::distance(Successors.begin(), I); 1099 assert(index < Weights.size() && "Not a current successor!"); 1100 return Weights.begin() + index; 1101 } 1102 1103 /// Return wight iterator corresonding to the I successor iterator. 1104 MachineBasicBlock::const_weight_iterator MachineBasicBlock:: 1105 getWeightIterator(MachineBasicBlock::const_succ_iterator I) const { 1106 assert(Weights.size() == Successors.size() && "Async weight list!"); 1107 const size_t index = std::distance(Successors.begin(), I); 1108 assert(index < Weights.size() && "Not a current successor!"); 1109 return Weights.begin() + index; 1110 } 1111 1112 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1113 /// as of just before "MI". 1114 /// 1115 /// Search is localised to a neighborhood of 1116 /// Neighborhood instructions before (searching for defs or kills) and N 1117 /// instructions after (searching just for defs) MI. 1118 MachineBasicBlock::LivenessQueryResult 1119 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1120 unsigned Reg, const_iterator Before, 1121 unsigned Neighborhood) const { 1122 unsigned N = Neighborhood; 1123 1124 // Start by searching backwards from Before, looking for kills, reads or defs. 1125 const_iterator I(Before); 1126 // If this is the first insn in the block, don't search backwards. 1127 if (I != begin()) { 1128 do { 1129 --I; 1130 1131 MachineOperandIteratorBase::PhysRegInfo Analysis = 1132 ConstMIOperands(I).analyzePhysReg(Reg, TRI); 1133 1134 if (Analysis.Defines) 1135 // Outputs happen after inputs so they take precedence if both are 1136 // present. 1137 return Analysis.DefinesDead ? LQR_Dead : LQR_Live; 1138 1139 if (Analysis.Kills || Analysis.Clobbers) 1140 // Register killed, so isn't live. 1141 return LQR_Dead; 1142 1143 else if (Analysis.ReadsOverlap) 1144 // Defined or read without a previous kill - live. 1145 return Analysis.Reads ? LQR_Live : LQR_OverlappingLive; 1146 1147 } while (I != begin() && --N > 0); 1148 } 1149 1150 // Did we get to the start of the block? 1151 if (I == begin()) { 1152 // If so, the register's state is definitely defined by the live-in state. 1153 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); 1154 RAI.isValid(); ++RAI) { 1155 if (isLiveIn(*RAI)) 1156 return (*RAI == Reg) ? LQR_Live : LQR_OverlappingLive; 1157 } 1158 1159 return LQR_Dead; 1160 } 1161 1162 N = Neighborhood; 1163 1164 // Try searching forwards from Before, looking for reads or defs. 1165 I = const_iterator(Before); 1166 // If this is the last insn in the block, don't search forwards. 1167 if (I != end()) { 1168 for (++I; I != end() && N > 0; ++I, --N) { 1169 MachineOperandIteratorBase::PhysRegInfo Analysis = 1170 ConstMIOperands(I).analyzePhysReg(Reg, TRI); 1171 1172 if (Analysis.ReadsOverlap) 1173 // Used, therefore must have been live. 1174 return (Analysis.Reads) ? 1175 LQR_Live : LQR_OverlappingLive; 1176 1177 else if (Analysis.Clobbers || Analysis.Defines) 1178 // Defined (but not read) therefore cannot have been live. 1179 return LQR_Dead; 1180 } 1181 } 1182 1183 // At this point we have no idea of the liveness of the register. 1184 return LQR_Unknown; 1185 } 1186