xref: /llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp (revision 1a1531d65ee5dc9e025be69ab35ca0406a0c6ea0)
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect the sequence of machine instructions for a basic block.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/BasicBlock.h"
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineLoopInfo.h"
20 #include "llvm/CodeGen/SlotIndexes.h"
21 #include "llvm/MC/MCAsmInfo.h"
22 #include "llvm/MC/MCContext.h"
23 #include "llvm/Target/TargetRegisterInfo.h"
24 #include "llvm/Target/TargetData.h"
25 #include "llvm/Target/TargetInstrInfo.h"
26 #include "llvm/Target/TargetMachine.h"
27 #include "llvm/Assembly/Writer.h"
28 #include "llvm/ADT/SmallString.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/LeakDetector.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <algorithm>
34 using namespace llvm;
35 
36 MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb)
37   : BB(bb), Number(-1), xParent(&mf), Alignment(0), IsLandingPad(false),
38     AddressTaken(false) {
39   Insts.Parent = this;
40 }
41 
42 MachineBasicBlock::~MachineBasicBlock() {
43   LeakDetector::removeGarbageObject(this);
44 }
45 
46 /// getSymbol - Return the MCSymbol for this basic block.
47 ///
48 MCSymbol *MachineBasicBlock::getSymbol() const {
49   const MachineFunction *MF = getParent();
50   MCContext &Ctx = MF->getContext();
51   const char *Prefix = Ctx.getAsmInfo().getPrivateGlobalPrefix();
52   return Ctx.GetOrCreateSymbol(Twine(Prefix) + "BB" +
53                                Twine(MF->getFunctionNumber()) + "_" +
54                                Twine(getNumber()));
55 }
56 
57 
58 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
59   MBB.print(OS);
60   return OS;
61 }
62 
63 /// addNodeToList (MBB) - When an MBB is added to an MF, we need to update the
64 /// parent pointer of the MBB, the MBB numbering, and any instructions in the
65 /// MBB to be on the right operand list for registers.
66 ///
67 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
68 /// gets the next available unique MBB number. If it is removed from a
69 /// MachineFunction, it goes back to being #-1.
70 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) {
71   MachineFunction &MF = *N->getParent();
72   N->Number = MF.addToMBBNumbering(N);
73 
74   // Make sure the instructions have their operands in the reginfo lists.
75   MachineRegisterInfo &RegInfo = MF.getRegInfo();
76   for (MachineBasicBlock::instr_iterator
77          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
78     I->AddRegOperandsToUseLists(RegInfo);
79 
80   LeakDetector::removeGarbageObject(N);
81 }
82 
83 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) {
84   N->getParent()->removeFromMBBNumbering(N->Number);
85   N->Number = -1;
86   LeakDetector::addGarbageObject(N);
87 }
88 
89 
90 /// addNodeToList (MI) - When we add an instruction to a basic block
91 /// list, we update its parent pointer and add its operands from reg use/def
92 /// lists if appropriate.
93 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
94   assert(N->getParent() == 0 && "machine instruction already in a basic block");
95   N->setParent(Parent);
96 
97   // Add the instruction's register operands to their corresponding
98   // use/def lists.
99   MachineFunction *MF = Parent->getParent();
100   N->AddRegOperandsToUseLists(MF->getRegInfo());
101 
102   LeakDetector::removeGarbageObject(N);
103 }
104 
105 /// removeNodeFromList (MI) - When we remove an instruction from a basic block
106 /// list, we update its parent pointer and remove its operands from reg use/def
107 /// lists if appropriate.
108 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
109   assert(N->getParent() != 0 && "machine instruction not in a basic block");
110 
111   // Remove from the use/def lists.
112   N->RemoveRegOperandsFromUseLists();
113 
114   N->setParent(0);
115 
116   LeakDetector::addGarbageObject(N);
117 }
118 
119 /// transferNodesFromList (MI) - When moving a range of instructions from one
120 /// MBB list to another, we need to update the parent pointers and the use/def
121 /// lists.
122 void ilist_traits<MachineInstr>::
123 transferNodesFromList(ilist_traits<MachineInstr> &fromList,
124                       ilist_iterator<MachineInstr> first,
125                       ilist_iterator<MachineInstr> last) {
126   assert(Parent->getParent() == fromList.Parent->getParent() &&
127         "MachineInstr parent mismatch!");
128 
129   // Splice within the same MBB -> no change.
130   if (Parent == fromList.Parent) return;
131 
132   // If splicing between two blocks within the same function, just update the
133   // parent pointers.
134   for (; first != last; ++first)
135     first->setParent(Parent);
136 }
137 
138 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) {
139   assert(!MI->getParent() && "MI is still in a block!");
140   Parent->getParent()->DeleteMachineInstr(MI);
141 }
142 
143 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
144   instr_iterator I = instr_begin();
145   while (I != end() && I->isPHI())
146     ++I;
147   assert(!I->isInsideBundle() && "First non-phi MI cannot be inside a bundle!");
148   return I;
149 }
150 
151 MachineBasicBlock::iterator
152 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
153   while (I != end() && (I->isPHI() || I->isLabel() || I->isDebugValue()))
154     ++I;
155   // FIXME: This needs to change if we wish to bundle labels / dbg_values
156   // inside the bundle.
157   assert(!I->isInsideBundle() &&
158          "First non-phi / non-label instruction is inside a bundle!");
159   return I;
160 }
161 
162 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
163   iterator I = end();
164   while (I != begin() && ((--I)->isTerminator() || I->isDebugValue()))
165     ; /*noop */
166   while (I != end() && !I->isTerminator())
167     ++I;
168   return I;
169 }
170 
171 MachineBasicBlock::const_iterator
172 MachineBasicBlock::getFirstTerminator() const {
173   const_iterator I = end();
174   while (I != begin() && ((--I)->isTerminator() || I->isDebugValue()))
175     ; /*noop */
176   while (I != end() && !I->isTerminator())
177     ++I;
178   return I;
179 }
180 
181 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
182   instr_iterator I = instr_end();
183   while (I != instr_begin() && ((--I)->isTerminator() || I->isDebugValue()))
184     ; /*noop */
185   while (I != instr_end() && !I->isTerminator())
186     ++I;
187   return I;
188 }
189 
190 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
191   // Skip over end-of-block dbg_value instructions.
192   instr_iterator B = instr_begin(), I = instr_end();
193   while (I != B) {
194     --I;
195     // Return instruction that starts a bundle.
196     if (I->isDebugValue() || I->isInsideBundle())
197       continue;
198     return I;
199   }
200   // The block is all debug values.
201   return end();
202 }
203 
204 MachineBasicBlock::const_iterator
205 MachineBasicBlock::getLastNonDebugInstr() const {
206   // Skip over end-of-block dbg_value instructions.
207   const_instr_iterator B = instr_begin(), I = instr_end();
208   while (I != B) {
209     --I;
210     // Return instruction that starts a bundle.
211     if (I->isDebugValue() || I->isInsideBundle())
212       continue;
213     return I;
214   }
215   // The block is all debug values.
216   return end();
217 }
218 
219 const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const {
220   // A block with a landing pad successor only has one other successor.
221   if (succ_size() > 2)
222     return 0;
223   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
224     if ((*I)->isLandingPad())
225       return *I;
226   return 0;
227 }
228 
229 void MachineBasicBlock::dump() const {
230   print(dbgs());
231 }
232 
233 StringRef MachineBasicBlock::getName() const {
234   if (const BasicBlock *LBB = getBasicBlock())
235     return LBB->getName();
236   else
237     return "(null)";
238 }
239 
240 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const {
241   const MachineFunction *MF = getParent();
242   if (!MF) {
243     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
244        << " is null\n";
245     return;
246   }
247 
248   if (Indexes)
249     OS << Indexes->getMBBStartIdx(this) << '\t';
250 
251   OS << "BB#" << getNumber() << ": ";
252 
253   const char *Comma = "";
254   if (const BasicBlock *LBB = getBasicBlock()) {
255     OS << Comma << "derived from LLVM BB ";
256     WriteAsOperand(OS, LBB, /*PrintType=*/false);
257     Comma = ", ";
258   }
259   if (isLandingPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; }
260   if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; }
261   if (Alignment) {
262     OS << Comma << "Align " << Alignment << " (" << (1u << Alignment)
263        << " bytes)";
264     Comma = ", ";
265   }
266 
267   OS << '\n';
268 
269   const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
270   if (!livein_empty()) {
271     if (Indexes) OS << '\t';
272     OS << "    Live Ins:";
273     for (livein_iterator I = livein_begin(),E = livein_end(); I != E; ++I)
274       OS << ' ' << PrintReg(*I, TRI);
275     OS << '\n';
276   }
277   // Print the preds of this block according to the CFG.
278   if (!pred_empty()) {
279     if (Indexes) OS << '\t';
280     OS << "    Predecessors according to CFG:";
281     for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI)
282       OS << " BB#" << (*PI)->getNumber();
283     OS << '\n';
284   }
285 
286   for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) {
287     if (Indexes) {
288       if (Indexes->hasIndex(I))
289         OS << Indexes->getInstructionIndex(I);
290       OS << '\t';
291     }
292     OS << '\t';
293     if (I->isInsideBundle())
294       OS << "  * ";
295     I->print(OS, &getParent()->getTarget());
296   }
297 
298   // Print the successors of this block according to the CFG.
299   if (!succ_empty()) {
300     if (Indexes) OS << '\t';
301     OS << "    Successors according to CFG:";
302     for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI)
303       OS << " BB#" << (*SI)->getNumber();
304     OS << '\n';
305   }
306 }
307 
308 void MachineBasicBlock::removeLiveIn(unsigned Reg) {
309   std::vector<unsigned>::iterator I =
310     std::find(LiveIns.begin(), LiveIns.end(), Reg);
311   assert(I != LiveIns.end() && "Not a live in!");
312   LiveIns.erase(I);
313 }
314 
315 bool MachineBasicBlock::isLiveIn(unsigned Reg) const {
316   livein_iterator I = std::find(livein_begin(), livein_end(), Reg);
317   return I != livein_end();
318 }
319 
320 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
321   getParent()->splice(NewAfter, this);
322 }
323 
324 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
325   MachineFunction::iterator BBI = NewBefore;
326   getParent()->splice(++BBI, this);
327 }
328 
329 void MachineBasicBlock::updateTerminator() {
330   const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
331   // A block with no successors has no concerns with fall-through edges.
332   if (this->succ_empty()) return;
333 
334   MachineBasicBlock *TBB = 0, *FBB = 0;
335   SmallVector<MachineOperand, 4> Cond;
336   DebugLoc dl;  // FIXME: this is nowhere
337   bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond);
338   (void) B;
339   assert(!B && "UpdateTerminators requires analyzable predecessors!");
340   if (Cond.empty()) {
341     if (TBB) {
342       // The block has an unconditional branch. If its successor is now
343       // its layout successor, delete the branch.
344       if (isLayoutSuccessor(TBB))
345         TII->RemoveBranch(*this);
346     } else {
347       // The block has an unconditional fallthrough. If its successor is not
348       // its layout successor, insert a branch. First we have to locate the
349       // only non-landing-pad successor, as that is the fallthrough block.
350       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
351         if ((*SI)->isLandingPad())
352           continue;
353         assert(!TBB && "Found more than one non-landing-pad successor!");
354         TBB = *SI;
355       }
356 
357       // If there is no non-landing-pad successor, the block has no
358       // fall-through edges to be concerned with.
359       if (!TBB)
360         return;
361 
362       // Finally update the unconditional successor to be reached via a branch
363       // if it would not be reached by fallthrough.
364       if (!isLayoutSuccessor(TBB))
365         TII->InsertBranch(*this, TBB, 0, Cond, dl);
366     }
367   } else {
368     if (FBB) {
369       // The block has a non-fallthrough conditional branch. If one of its
370       // successors is its layout successor, rewrite it to a fallthrough
371       // conditional branch.
372       if (isLayoutSuccessor(TBB)) {
373         if (TII->ReverseBranchCondition(Cond))
374           return;
375         TII->RemoveBranch(*this);
376         TII->InsertBranch(*this, FBB, 0, Cond, dl);
377       } else if (isLayoutSuccessor(FBB)) {
378         TII->RemoveBranch(*this);
379         TII->InsertBranch(*this, TBB, 0, Cond, dl);
380       }
381     } else {
382       // The block has a fallthrough conditional branch.
383       MachineBasicBlock *MBBA = *succ_begin();
384       MachineBasicBlock *MBBB = *llvm::next(succ_begin());
385       if (MBBA == TBB) std::swap(MBBB, MBBA);
386       if (isLayoutSuccessor(TBB)) {
387         if (TII->ReverseBranchCondition(Cond)) {
388           // We can't reverse the condition, add an unconditional branch.
389           Cond.clear();
390           TII->InsertBranch(*this, MBBA, 0, Cond, dl);
391           return;
392         }
393         TII->RemoveBranch(*this);
394         TII->InsertBranch(*this, MBBA, 0, Cond, dl);
395       } else if (!isLayoutSuccessor(MBBA)) {
396         TII->RemoveBranch(*this);
397         TII->InsertBranch(*this, TBB, MBBA, Cond, dl);
398       }
399     }
400   }
401 }
402 
403 void MachineBasicBlock::addSuccessor(MachineBasicBlock *succ, uint32_t weight) {
404 
405   // If we see non-zero value for the first time it means we actually use Weight
406   // list, so we fill all Weights with 0's.
407   if (weight != 0 && Weights.empty())
408     Weights.resize(Successors.size());
409 
410   if (weight != 0 || !Weights.empty())
411     Weights.push_back(weight);
412 
413    Successors.push_back(succ);
414    succ->addPredecessor(this);
415  }
416 
417 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *succ) {
418   succ->removePredecessor(this);
419   succ_iterator I = std::find(Successors.begin(), Successors.end(), succ);
420   assert(I != Successors.end() && "Not a current successor!");
421 
422   // If Weight list is empty it means we don't use it (disabled optimization).
423   if (!Weights.empty()) {
424     weight_iterator WI = getWeightIterator(I);
425     Weights.erase(WI);
426   }
427 
428   Successors.erase(I);
429 }
430 
431 MachineBasicBlock::succ_iterator
432 MachineBasicBlock::removeSuccessor(succ_iterator I) {
433   assert(I != Successors.end() && "Not a current successor!");
434 
435   // If Weight list is empty it means we don't use it (disabled optimization).
436   if (!Weights.empty()) {
437     weight_iterator WI = getWeightIterator(I);
438     Weights.erase(WI);
439   }
440 
441   (*I)->removePredecessor(this);
442   return Successors.erase(I);
443 }
444 
445 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
446                                          MachineBasicBlock *New) {
447   uint32_t weight = 0;
448   succ_iterator SI = std::find(Successors.begin(), Successors.end(), Old);
449 
450   // If Weight list is empty it means we don't use it (disabled optimization).
451   if (!Weights.empty()) {
452     weight_iterator WI = getWeightIterator(SI);
453     weight = *WI;
454   }
455 
456   // Update the successor information.
457   removeSuccessor(SI);
458   addSuccessor(New, weight);
459 }
460 
461 void MachineBasicBlock::addPredecessor(MachineBasicBlock *pred) {
462   Predecessors.push_back(pred);
463 }
464 
465 void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) {
466   pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), pred);
467   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
468   Predecessors.erase(I);
469 }
470 
471 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) {
472   if (this == fromMBB)
473     return;
474 
475   while (!fromMBB->succ_empty()) {
476     MachineBasicBlock *Succ = *fromMBB->succ_begin();
477     uint32_t weight = 0;
478 
479 
480     // If Weight list is empty it means we don't use it (disabled optimization).
481     if (!fromMBB->Weights.empty())
482       weight = *fromMBB->Weights.begin();
483 
484     addSuccessor(Succ, weight);
485     fromMBB->removeSuccessor(Succ);
486   }
487 }
488 
489 void
490 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB) {
491   if (this == fromMBB)
492     return;
493 
494   while (!fromMBB->succ_empty()) {
495     MachineBasicBlock *Succ = *fromMBB->succ_begin();
496     addSuccessor(Succ);
497     fromMBB->removeSuccessor(Succ);
498 
499     // Fix up any PHI nodes in the successor.
500     for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
501            ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
502       for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
503         MachineOperand &MO = MI->getOperand(i);
504         if (MO.getMBB() == fromMBB)
505           MO.setMBB(this);
506       }
507   }
508 }
509 
510 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
511   const_succ_iterator I = std::find(Successors.begin(), Successors.end(), MBB);
512   return I != Successors.end();
513 }
514 
515 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
516   MachineFunction::const_iterator I(this);
517   return llvm::next(I) == MachineFunction::const_iterator(MBB);
518 }
519 
520 bool MachineBasicBlock::canFallThrough() {
521   MachineFunction::iterator Fallthrough = this;
522   ++Fallthrough;
523   // If FallthroughBlock is off the end of the function, it can't fall through.
524   if (Fallthrough == getParent()->end())
525     return false;
526 
527   // If FallthroughBlock isn't a successor, no fallthrough is possible.
528   if (!isSuccessor(Fallthrough))
529     return false;
530 
531   // Analyze the branches, if any, at the end of the block.
532   MachineBasicBlock *TBB = 0, *FBB = 0;
533   SmallVector<MachineOperand, 4> Cond;
534   const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
535   if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) {
536     // If we couldn't analyze the branch, examine the last instruction.
537     // If the block doesn't end in a known control barrier, assume fallthrough
538     // is possible. The isPredicated check is needed because this code can be
539     // called during IfConversion, where an instruction which is normally a
540     // Barrier is predicated and thus no longer an actual control barrier. This
541     // is over-conservative though, because if an instruction isn't actually
542     // predicated we could still treat it like a barrier.
543     return empty() || !back().isBarrier() || TII->isPredicated(&back());
544   }
545 
546   // If there is no branch, control always falls through.
547   if (TBB == 0) return true;
548 
549   // If there is some explicit branch to the fallthrough block, it can obviously
550   // reach, even though the branch should get folded to fall through implicitly.
551   if (MachineFunction::iterator(TBB) == Fallthrough ||
552       MachineFunction::iterator(FBB) == Fallthrough)
553     return true;
554 
555   // If it's an unconditional branch to some block not the fall through, it
556   // doesn't fall through.
557   if (Cond.empty()) return false;
558 
559   // Otherwise, if it is conditional and has no explicit false block, it falls
560   // through.
561   return FBB == 0;
562 }
563 
564 MachineBasicBlock *
565 MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) {
566   MachineFunction *MF = getParent();
567   DebugLoc dl;  // FIXME: this is nowhere
568 
569   // We may need to update this's terminator, but we can't do that if
570   // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
571   const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
572   MachineBasicBlock *TBB = 0, *FBB = 0;
573   SmallVector<MachineOperand, 4> Cond;
574   if (TII->AnalyzeBranch(*this, TBB, FBB, Cond))
575     return NULL;
576 
577   // Avoid bugpoint weirdness: A block may end with a conditional branch but
578   // jumps to the same MBB is either case. We have duplicate CFG edges in that
579   // case that we can't handle. Since this never happens in properly optimized
580   // code, just skip those edges.
581   if (TBB && TBB == FBB) {
582     DEBUG(dbgs() << "Won't split critical edge after degenerate BB#"
583                  << getNumber() << '\n');
584     return NULL;
585   }
586 
587   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
588   MF->insert(llvm::next(MachineFunction::iterator(this)), NMBB);
589   DEBUG(dbgs() << "Splitting critical edge:"
590         " BB#" << getNumber()
591         << " -- BB#" << NMBB->getNumber()
592         << " -- BB#" << Succ->getNumber() << '\n');
593 
594   // On some targets like Mips, branches may kill virtual registers. Make sure
595   // that LiveVariables is properly updated after updateTerminator replaces the
596   // terminators.
597   LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>();
598 
599   // Collect a list of virtual registers killed by the terminators.
600   SmallVector<unsigned, 4> KilledRegs;
601   if (LV)
602     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
603          I != E; ++I) {
604       MachineInstr *MI = I;
605       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
606            OE = MI->operands_end(); OI != OE; ++OI) {
607         if (!OI->isReg() || !OI->isUse() || !OI->isKill() || OI->isUndef())
608           continue;
609         unsigned Reg = OI->getReg();
610         if (TargetRegisterInfo::isVirtualRegister(Reg) &&
611             LV->getVarInfo(Reg).removeKill(MI)) {
612           KilledRegs.push_back(Reg);
613           DEBUG(dbgs() << "Removing terminator kill: " << *MI);
614           OI->setIsKill(false);
615         }
616       }
617     }
618 
619   ReplaceUsesOfBlockWith(Succ, NMBB);
620   updateTerminator();
621 
622   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
623   NMBB->addSuccessor(Succ);
624   if (!NMBB->isLayoutSuccessor(Succ)) {
625     Cond.clear();
626     MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, Succ, NULL, Cond, dl);
627   }
628 
629   // Fix PHI nodes in Succ so they refer to NMBB instead of this
630   for (MachineBasicBlock::instr_iterator
631          i = Succ->instr_begin(),e = Succ->instr_end();
632        i != e && i->isPHI(); ++i)
633     for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
634       if (i->getOperand(ni+1).getMBB() == this)
635         i->getOperand(ni+1).setMBB(NMBB);
636 
637   // Inherit live-ins from the successor
638   for (MachineBasicBlock::livein_iterator I = Succ->livein_begin(),
639 	 E = Succ->livein_end(); I != E; ++I)
640     NMBB->addLiveIn(*I);
641 
642   // Update LiveVariables.
643   if (LV) {
644     // Restore kills of virtual registers that were killed by the terminators.
645     while (!KilledRegs.empty()) {
646       unsigned Reg = KilledRegs.pop_back_val();
647       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
648         if (!(--I)->addRegisterKilled(Reg, NULL, /* addIfNotFound= */ false))
649           continue;
650         LV->getVarInfo(Reg).Kills.push_back(I);
651         DEBUG(dbgs() << "Restored terminator kill: " << *I);
652         break;
653       }
654     }
655     // Update relevant live-through information.
656     LV->addNewBlock(NMBB, this, Succ);
657   }
658 
659   if (MachineDominatorTree *MDT =
660       P->getAnalysisIfAvailable<MachineDominatorTree>()) {
661     // Update dominator information.
662     MachineDomTreeNode *SucccDTNode = MDT->getNode(Succ);
663 
664     bool IsNewIDom = true;
665     for (const_pred_iterator PI = Succ->pred_begin(), E = Succ->pred_end();
666          PI != E; ++PI) {
667       MachineBasicBlock *PredBB = *PI;
668       if (PredBB == NMBB)
669         continue;
670       if (!MDT->dominates(SucccDTNode, MDT->getNode(PredBB))) {
671         IsNewIDom = false;
672         break;
673       }
674     }
675 
676     // We know "this" dominates the newly created basic block.
677     MachineDomTreeNode *NewDTNode = MDT->addNewBlock(NMBB, this);
678 
679     // If all the other predecessors of "Succ" are dominated by "Succ" itself
680     // then the new block is the new immediate dominator of "Succ". Otherwise,
681     // the new block doesn't dominate anything.
682     if (IsNewIDom)
683       MDT->changeImmediateDominator(SucccDTNode, NewDTNode);
684   }
685 
686   if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>())
687     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
688       // If one or the other blocks were not in a loop, the new block is not
689       // either, and thus LI doesn't need to be updated.
690       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
691         if (TIL == DestLoop) {
692           // Both in the same loop, the NMBB joins loop.
693           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
694         } else if (TIL->contains(DestLoop)) {
695           // Edge from an outer loop to an inner loop.  Add to the outer loop.
696           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
697         } else if (DestLoop->contains(TIL)) {
698           // Edge from an inner loop to an outer loop.  Add to the outer loop.
699           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
700         } else {
701           // Edge from two loops with no containment relation.  Because these
702           // are natural loops, we know that the destination block must be the
703           // header of its loop (adding a branch into a loop elsewhere would
704           // create an irreducible loop).
705           assert(DestLoop->getHeader() == Succ &&
706                  "Should not create irreducible loops!");
707           if (MachineLoop *P = DestLoop->getParentLoop())
708             P->addBasicBlockToLoop(NMBB, MLI->getBase());
709         }
710       }
711     }
712 
713   return NMBB;
714 }
715 
716 MachineBasicBlock::iterator
717 MachineBasicBlock::erase(MachineBasicBlock::iterator I) {
718   if (I->isBundle()) {
719     MachineBasicBlock::iterator E = llvm::next(I);
720     return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
721   }
722 
723   return Insts.erase(I.getInstrIterator());
724 }
725 
726 MachineInstr *MachineBasicBlock::remove(MachineInstr *I) {
727   if (I->isBundle()) {
728     MachineBasicBlock::instr_iterator MII = I; ++MII;
729     while (MII != end() && MII->isInsideBundle()) {
730       MachineInstr *MI = &*MII++;
731       Insts.remove(MI);
732     }
733   }
734 
735   return Insts.remove(I);
736 }
737 
738 void MachineBasicBlock::splice(MachineBasicBlock::iterator where,
739                                MachineBasicBlock *Other,
740                                MachineBasicBlock::iterator From) {
741   if (From->isBundle()) {
742     MachineBasicBlock::iterator To = llvm::next(From);
743     Insts.splice(where.getInstrIterator(), Other->Insts,
744                  From.getInstrIterator(), To.getInstrIterator());
745     return;
746   }
747 
748   Insts.splice(where.getInstrIterator(), Other->Insts, From.getInstrIterator());
749 }
750 
751 /// removeFromParent - This method unlinks 'this' from the containing function,
752 /// and returns it, but does not delete it.
753 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
754   assert(getParent() && "Not embedded in a function!");
755   getParent()->remove(this);
756   return this;
757 }
758 
759 
760 /// eraseFromParent - This method unlinks 'this' from the containing function,
761 /// and deletes it.
762 void MachineBasicBlock::eraseFromParent() {
763   assert(getParent() && "Not embedded in a function!");
764   getParent()->erase(this);
765 }
766 
767 
768 /// ReplaceUsesOfBlockWith - Given a machine basic block that branched to
769 /// 'Old', change the code and CFG so that it branches to 'New' instead.
770 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
771                                                MachineBasicBlock *New) {
772   assert(Old != New && "Cannot replace self with self!");
773 
774   MachineBasicBlock::instr_iterator I = instr_end();
775   while (I != instr_begin()) {
776     --I;
777     if (!I->isTerminator()) break;
778 
779     // Scan the operands of this machine instruction, replacing any uses of Old
780     // with New.
781     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
782       if (I->getOperand(i).isMBB() &&
783           I->getOperand(i).getMBB() == Old)
784         I->getOperand(i).setMBB(New);
785   }
786 
787   // Update the successor information.
788   replaceSuccessor(Old, New);
789 }
790 
791 /// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in the
792 /// CFG to be inserted.  If we have proven that MBB can only branch to DestA and
793 /// DestB, remove any other MBB successors from the CFG.  DestA and DestB can be
794 /// null.
795 ///
796 /// Besides DestA and DestB, retain other edges leading to LandingPads
797 /// (currently there can be only one; we don't check or require that here).
798 /// Note it is possible that DestA and/or DestB are LandingPads.
799 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
800                                              MachineBasicBlock *DestB,
801                                              bool isCond) {
802   // The values of DestA and DestB frequently come from a call to the
803   // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
804   // values from there.
805   //
806   // 1. If both DestA and DestB are null, then the block ends with no branches
807   //    (it falls through to its successor).
808   // 2. If DestA is set, DestB is null, and isCond is false, then the block ends
809   //    with only an unconditional branch.
810   // 3. If DestA is set, DestB is null, and isCond is true, then the block ends
811   //    with a conditional branch that falls through to a successor (DestB).
812   // 4. If DestA and DestB is set and isCond is true, then the block ends with a
813   //    conditional branch followed by an unconditional branch. DestA is the
814   //    'true' destination and DestB is the 'false' destination.
815 
816   bool Changed = false;
817 
818   MachineFunction::iterator FallThru =
819     llvm::next(MachineFunction::iterator(this));
820 
821   if (DestA == 0 && DestB == 0) {
822     // Block falls through to successor.
823     DestA = FallThru;
824     DestB = FallThru;
825   } else if (DestA != 0 && DestB == 0) {
826     if (isCond)
827       // Block ends in conditional jump that falls through to successor.
828       DestB = FallThru;
829   } else {
830     assert(DestA && DestB && isCond &&
831            "CFG in a bad state. Cannot correct CFG edges");
832   }
833 
834   // Remove superfluous edges. I.e., those which aren't destinations of this
835   // basic block, duplicate edges, or landing pads.
836   SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
837   MachineBasicBlock::succ_iterator SI = succ_begin();
838   while (SI != succ_end()) {
839     const MachineBasicBlock *MBB = *SI;
840     if (!SeenMBBs.insert(MBB) ||
841         (MBB != DestA && MBB != DestB && !MBB->isLandingPad())) {
842       // This is a superfluous edge, remove it.
843       SI = removeSuccessor(SI);
844       Changed = true;
845     } else {
846       ++SI;
847     }
848   }
849 
850   return Changed;
851 }
852 
853 /// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping
854 /// any DBG_VALUE instructions.  Return UnknownLoc if there is none.
855 DebugLoc
856 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
857   DebugLoc DL;
858   instr_iterator E = instr_end();
859   if (MBBI == E)
860     return DL;
861 
862   // Skip debug declarations, we don't want a DebugLoc from them.
863   while (MBBI != E && MBBI->isDebugValue())
864     MBBI++;
865   if (MBBI != E)
866     DL = MBBI->getDebugLoc();
867   return DL;
868 }
869 
870 /// getSuccWeight - Return weight of the edge from this block to MBB.
871 ///
872 uint32_t MachineBasicBlock::getSuccWeight(const MachineBasicBlock *succ) const {
873   if (Weights.empty())
874     return 0;
875 
876   const_succ_iterator I = std::find(Successors.begin(), Successors.end(), succ);
877   return *getWeightIterator(I);
878 }
879 
880 /// getWeightIterator - Return wight iterator corresonding to the I successor
881 /// iterator
882 MachineBasicBlock::weight_iterator MachineBasicBlock::
883 getWeightIterator(MachineBasicBlock::succ_iterator I) {
884   assert(Weights.size() == Successors.size() && "Async weight list!");
885   size_t index = std::distance(Successors.begin(), I);
886   assert(index < Weights.size() && "Not a current successor!");
887   return Weights.begin() + index;
888 }
889 
890 /// getWeightIterator - Return wight iterator corresonding to the I successor
891 /// iterator
892 MachineBasicBlock::const_weight_iterator MachineBasicBlock::
893 getWeightIterator(MachineBasicBlock::const_succ_iterator I) const {
894   assert(Weights.size() == Successors.size() && "Async weight list!");
895   const size_t index = std::distance(Successors.begin(), I);
896   assert(index < Weights.size() && "Not a current successor!");
897   return Weights.begin() + index;
898 }
899 
900 void llvm::WriteAsOperand(raw_ostream &OS, const MachineBasicBlock *MBB,
901                           bool t) {
902   OS << "BB#" << MBB->getNumber();
903 }
904 
905