xref: /llvm-project/llvm/lib/CodeGen/MachineBasicBlock.cpp (revision 16544cbe64b81a50800a88296ef37f4873a37b25)
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/CodeGen/LiveIntervals.h"
15 #include "llvm/CodeGen/LivePhysRegs.h"
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SlotIndexes.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/Config/llvm-config.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/MC/MCAsmInfo.h"
32 #include "llvm/MC/MCContext.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include <algorithm>
37 #include <cmath>
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "codegen"
41 
42 static cl::opt<bool> PrintSlotIndexes(
43     "print-slotindexes",
44     cl::desc("When printing machine IR, annotate instructions and blocks with "
45              "SlotIndexes when available"),
46     cl::init(true), cl::Hidden);
47 
48 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
49     : BB(B), Number(-1), xParent(&MF) {
50   Insts.Parent = this;
51   if (B)
52     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
53 }
54 
55 MachineBasicBlock::~MachineBasicBlock() = default;
56 
57 /// Return the MCSymbol for this basic block.
58 MCSymbol *MachineBasicBlock::getSymbol() const {
59   if (!CachedMCSymbol) {
60     const MachineFunction *MF = getParent();
61     MCContext &Ctx = MF->getContext();
62 
63     // We emit a non-temporary symbol -- with a descriptive name -- if it begins
64     // a section (with basic block sections). Otherwise we fall back to use temp
65     // label.
66     if (MF->hasBBSections() && isBeginSection()) {
67       SmallString<5> Suffix;
68       if (SectionID == MBBSectionID::ColdSectionID) {
69         Suffix += ".cold";
70       } else if (SectionID == MBBSectionID::ExceptionSectionID) {
71         Suffix += ".eh";
72       } else {
73         // For symbols that represent basic block sections, we add ".__part." to
74         // allow tools like symbolizers to know that this represents a part of
75         // the original function.
76         Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str();
77       }
78       CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix);
79     } else {
80       const StringRef Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
81       CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
82                                              Twine(MF->getFunctionNumber()) +
83                                              "_" + Twine(getNumber()));
84     }
85   }
86   return CachedMCSymbol;
87 }
88 
89 MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const {
90   if (!CachedEHCatchretMCSymbol) {
91     const MachineFunction *MF = getParent();
92     SmallString<128> SymbolName;
93     raw_svector_ostream(SymbolName)
94         << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber();
95     CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName);
96   }
97   return CachedEHCatchretMCSymbol;
98 }
99 
100 MCSymbol *MachineBasicBlock::getEndSymbol() const {
101   if (!CachedEndMCSymbol) {
102     const MachineFunction *MF = getParent();
103     MCContext &Ctx = MF->getContext();
104     auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
105     CachedEndMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB_END" +
106                                               Twine(MF->getFunctionNumber()) +
107                                               "_" + Twine(getNumber()));
108   }
109   return CachedEndMCSymbol;
110 }
111 
112 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
113   MBB.print(OS);
114   return OS;
115 }
116 
117 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
118   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
119 }
120 
121 /// When an MBB is added to an MF, we need to update the parent pointer of the
122 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
123 /// operand list for registers.
124 ///
125 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
126 /// gets the next available unique MBB number. If it is removed from a
127 /// MachineFunction, it goes back to being #-1.
128 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
129     MachineBasicBlock *N) {
130   MachineFunction &MF = *N->getParent();
131   N->Number = MF.addToMBBNumbering(N);
132 
133   // Make sure the instructions have their operands in the reginfo lists.
134   MachineRegisterInfo &RegInfo = MF.getRegInfo();
135   for (MachineInstr &MI : N->instrs())
136     MI.addRegOperandsToUseLists(RegInfo);
137 }
138 
139 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
140     MachineBasicBlock *N) {
141   N->getParent()->removeFromMBBNumbering(N->Number);
142   N->Number = -1;
143 }
144 
145 /// When we add an instruction to a basic block list, we update its parent
146 /// pointer and add its operands from reg use/def lists if appropriate.
147 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
148   assert(!N->getParent() && "machine instruction already in a basic block");
149   N->setParent(Parent);
150 
151   // Add the instruction's register operands to their corresponding
152   // use/def lists.
153   MachineFunction *MF = Parent->getParent();
154   N->addRegOperandsToUseLists(MF->getRegInfo());
155   MF->handleInsertion(*N);
156 }
157 
158 /// When we remove an instruction from a basic block list, we update its parent
159 /// pointer and remove its operands from reg use/def lists if appropriate.
160 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
161   assert(N->getParent() && "machine instruction not in a basic block");
162 
163   // Remove from the use/def lists.
164   if (MachineFunction *MF = N->getMF()) {
165     MF->handleRemoval(*N);
166     N->removeRegOperandsFromUseLists(MF->getRegInfo());
167   }
168 
169   N->setParent(nullptr);
170 }
171 
172 /// When moving a range of instructions from one MBB list to another, we need to
173 /// update the parent pointers and the use/def lists.
174 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
175                                                        instr_iterator First,
176                                                        instr_iterator Last) {
177   assert(Parent->getParent() == FromList.Parent->getParent() &&
178          "cannot transfer MachineInstrs between MachineFunctions");
179 
180   // If it's within the same BB, there's nothing to do.
181   if (this == &FromList)
182     return;
183 
184   assert(Parent != FromList.Parent && "Two lists have the same parent?");
185 
186   // If splicing between two blocks within the same function, just update the
187   // parent pointers.
188   for (; First != Last; ++First)
189     First->setParent(Parent);
190 }
191 
192 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
193   assert(!MI->getParent() && "MI is still in a block!");
194   Parent->getParent()->deleteMachineInstr(MI);
195 }
196 
197 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
198   instr_iterator I = instr_begin(), E = instr_end();
199   while (I != E && I->isPHI())
200     ++I;
201   assert((I == E || !I->isInsideBundle()) &&
202          "First non-phi MI cannot be inside a bundle!");
203   return I;
204 }
205 
206 MachineBasicBlock::iterator
207 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
208   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
209 
210   iterator E = end();
211   while (I != E && (I->isPHI() || I->isPosition() ||
212                     TII->isBasicBlockPrologue(*I)))
213     ++I;
214   // FIXME: This needs to change if we wish to bundle labels
215   // inside the bundle.
216   assert((I == E || !I->isInsideBundle()) &&
217          "First non-phi / non-label instruction is inside a bundle!");
218   return I;
219 }
220 
221 MachineBasicBlock::iterator
222 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I,
223                                           bool SkipPseudoOp) {
224   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
225 
226   iterator E = end();
227   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
228                     (SkipPseudoOp && I->isPseudoProbe()) ||
229                     TII->isBasicBlockPrologue(*I)))
230     ++I;
231   // FIXME: This needs to change if we wish to bundle labels / dbg_values
232   // inside the bundle.
233   assert((I == E || !I->isInsideBundle()) &&
234          "First non-phi / non-label / non-debug "
235          "instruction is inside a bundle!");
236   return I;
237 }
238 
239 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
240   iterator B = begin(), E = end(), I = E;
241   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
242     ; /*noop */
243   while (I != E && !I->isTerminator())
244     ++I;
245   return I;
246 }
247 
248 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
249   instr_iterator B = instr_begin(), E = instr_end(), I = E;
250   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
251     ; /*noop */
252   while (I != E && !I->isTerminator())
253     ++I;
254   return I;
255 }
256 
257 MachineBasicBlock::iterator
258 MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) {
259   // Skip over begin-of-block dbg_value instructions.
260   return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp);
261 }
262 
263 MachineBasicBlock::iterator
264 MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) {
265   // Skip over end-of-block dbg_value instructions.
266   instr_iterator B = instr_begin(), I = instr_end();
267   while (I != B) {
268     --I;
269     // Return instruction that starts a bundle.
270     if (I->isDebugInstr() || I->isInsideBundle())
271       continue;
272     if (SkipPseudoOp && I->isPseudoProbe())
273       continue;
274     return I;
275   }
276   // The block is all debug values.
277   return end();
278 }
279 
280 bool MachineBasicBlock::hasEHPadSuccessor() const {
281   for (const MachineBasicBlock *Succ : successors())
282     if (Succ->isEHPad())
283       return true;
284   return false;
285 }
286 
287 bool MachineBasicBlock::isEntryBlock() const {
288   return getParent()->begin() == getIterator();
289 }
290 
291 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
292 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
293   print(dbgs());
294 }
295 #endif
296 
297 bool MachineBasicBlock::mayHaveInlineAsmBr() const {
298   for (const MachineBasicBlock *Succ : successors()) {
299     if (Succ->isInlineAsmBrIndirectTarget())
300       return true;
301   }
302   return false;
303 }
304 
305 bool MachineBasicBlock::isLegalToHoistInto() const {
306   if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr())
307     return false;
308   return true;
309 }
310 
311 StringRef MachineBasicBlock::getName() const {
312   if (const BasicBlock *LBB = getBasicBlock())
313     return LBB->getName();
314   else
315     return StringRef("", 0);
316 }
317 
318 /// Return a hopefully unique identifier for this block.
319 std::string MachineBasicBlock::getFullName() const {
320   std::string Name;
321   if (getParent())
322     Name = (getParent()->getName() + ":").str();
323   if (getBasicBlock())
324     Name += getBasicBlock()->getName();
325   else
326     Name += ("BB" + Twine(getNumber())).str();
327   return Name;
328 }
329 
330 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
331                               bool IsStandalone) const {
332   const MachineFunction *MF = getParent();
333   if (!MF) {
334     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
335        << " is null\n";
336     return;
337   }
338   const Function &F = MF->getFunction();
339   const Module *M = F.getParent();
340   ModuleSlotTracker MST(M);
341   MST.incorporateFunction(F);
342   print(OS, MST, Indexes, IsStandalone);
343 }
344 
345 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
346                               const SlotIndexes *Indexes,
347                               bool IsStandalone) const {
348   const MachineFunction *MF = getParent();
349   if (!MF) {
350     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
351        << " is null\n";
352     return;
353   }
354 
355   if (Indexes && PrintSlotIndexes)
356     OS << Indexes->getMBBStartIdx(this) << '\t';
357 
358   printName(OS, PrintNameIr | PrintNameAttributes, &MST);
359   OS << ":\n";
360 
361   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
362   const MachineRegisterInfo &MRI = MF->getRegInfo();
363   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
364   bool HasLineAttributes = false;
365 
366   // Print the preds of this block according to the CFG.
367   if (!pred_empty() && IsStandalone) {
368     if (Indexes) OS << '\t';
369     // Don't indent(2), align with previous line attributes.
370     OS << "; predecessors: ";
371     ListSeparator LS;
372     for (auto *Pred : predecessors())
373       OS << LS << printMBBReference(*Pred);
374     OS << '\n';
375     HasLineAttributes = true;
376   }
377 
378   if (!succ_empty()) {
379     if (Indexes) OS << '\t';
380     // Print the successors
381     OS.indent(2) << "successors: ";
382     ListSeparator LS;
383     for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
384       OS << LS << printMBBReference(**I);
385       if (!Probs.empty())
386         OS << '('
387            << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
388            << ')';
389     }
390     if (!Probs.empty() && IsStandalone) {
391       // Print human readable probabilities as comments.
392       OS << "; ";
393       ListSeparator LS;
394       for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
395         const BranchProbability &BP = getSuccProbability(I);
396         OS << LS << printMBBReference(**I) << '('
397            << format("%.2f%%",
398                      rint(((double)BP.getNumerator() / BP.getDenominator()) *
399                           100.0 * 100.0) /
400                          100.0)
401            << ')';
402       }
403     }
404 
405     OS << '\n';
406     HasLineAttributes = true;
407   }
408 
409   if (!livein_empty() && MRI.tracksLiveness()) {
410     if (Indexes) OS << '\t';
411     OS.indent(2) << "liveins: ";
412 
413     ListSeparator LS;
414     for (const auto &LI : liveins()) {
415       OS << LS << printReg(LI.PhysReg, TRI);
416       if (!LI.LaneMask.all())
417         OS << ":0x" << PrintLaneMask(LI.LaneMask);
418     }
419     HasLineAttributes = true;
420   }
421 
422   if (HasLineAttributes)
423     OS << '\n';
424 
425   bool IsInBundle = false;
426   for (const MachineInstr &MI : instrs()) {
427     if (Indexes && PrintSlotIndexes) {
428       if (Indexes->hasIndex(MI))
429         OS << Indexes->getInstructionIndex(MI);
430       OS << '\t';
431     }
432 
433     if (IsInBundle && !MI.isInsideBundle()) {
434       OS.indent(2) << "}\n";
435       IsInBundle = false;
436     }
437 
438     OS.indent(IsInBundle ? 4 : 2);
439     MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
440              /*AddNewLine=*/false, &TII);
441 
442     if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
443       OS << " {";
444       IsInBundle = true;
445     }
446     OS << '\n';
447   }
448 
449   if (IsInBundle)
450     OS.indent(2) << "}\n";
451 
452   if (IrrLoopHeaderWeight && IsStandalone) {
453     if (Indexes) OS << '\t';
454     OS.indent(2) << "; Irreducible loop header weight: "
455                  << IrrLoopHeaderWeight.value() << '\n';
456   }
457 }
458 
459 /// Print the basic block's name as:
460 ///
461 ///    bb.{number}[.{ir-name}] [(attributes...)]
462 ///
463 /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed
464 /// (which is the default). If the IR block has no name, it is identified
465 /// numerically using the attribute syntax as "(%ir-block.{ir-slot})".
466 ///
467 /// When the \ref PrintNameAttributes flag is passed, additional attributes
468 /// of the block are printed when set.
469 ///
470 /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating
471 ///                       the parts to print.
472 /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will
473 ///                          incorporate its own tracker when necessary to
474 ///                          determine the block's IR name.
475 void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags,
476                                   ModuleSlotTracker *moduleSlotTracker) const {
477   os << "bb." << getNumber();
478   bool hasAttributes = false;
479 
480   auto PrintBBRef = [&](const BasicBlock *bb) {
481     os << "%ir-block.";
482     if (bb->hasName()) {
483       os << bb->getName();
484     } else {
485       int slot = -1;
486 
487       if (moduleSlotTracker) {
488         slot = moduleSlotTracker->getLocalSlot(bb);
489       } else if (bb->getParent()) {
490         ModuleSlotTracker tmpTracker(bb->getModule(), false);
491         tmpTracker.incorporateFunction(*bb->getParent());
492         slot = tmpTracker.getLocalSlot(bb);
493       }
494 
495       if (slot == -1)
496         os << "<ir-block badref>";
497       else
498         os << slot;
499     }
500   };
501 
502   if (printNameFlags & PrintNameIr) {
503     if (const auto *bb = getBasicBlock()) {
504       if (bb->hasName()) {
505         os << '.' << bb->getName();
506       } else {
507         hasAttributes = true;
508         os << " (";
509         PrintBBRef(bb);
510       }
511     }
512   }
513 
514   if (printNameFlags & PrintNameAttributes) {
515     if (isMachineBlockAddressTaken()) {
516       os << (hasAttributes ? ", " : " (");
517       os << "machine-block-address-taken";
518       hasAttributes = true;
519     }
520     if (isIRBlockAddressTaken()) {
521       os << (hasAttributes ? ", " : " (");
522       os << "ir-block-address-taken ";
523       PrintBBRef(getAddressTakenIRBlock());
524       hasAttributes = true;
525     }
526     if (isEHPad()) {
527       os << (hasAttributes ? ", " : " (");
528       os << "landing-pad";
529       hasAttributes = true;
530     }
531     if (isInlineAsmBrIndirectTarget()) {
532       os << (hasAttributes ? ", " : " (");
533       os << "inlineasm-br-indirect-target";
534       hasAttributes = true;
535     }
536     if (isEHFuncletEntry()) {
537       os << (hasAttributes ? ", " : " (");
538       os << "ehfunclet-entry";
539       hasAttributes = true;
540     }
541     if (getAlignment() != Align(1)) {
542       os << (hasAttributes ? ", " : " (");
543       os << "align " << getAlignment().value();
544       hasAttributes = true;
545     }
546     if (getSectionID() != MBBSectionID(0)) {
547       os << (hasAttributes ? ", " : " (");
548       os << "bbsections ";
549       switch (getSectionID().Type) {
550       case MBBSectionID::SectionType::Exception:
551         os << "Exception";
552         break;
553       case MBBSectionID::SectionType::Cold:
554         os << "Cold";
555         break;
556       default:
557         os << getSectionID().Number;
558       }
559       hasAttributes = true;
560     }
561   }
562 
563   if (hasAttributes)
564     os << ')';
565 }
566 
567 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
568                                        bool /*PrintType*/) const {
569   OS << '%';
570   printName(OS, 0);
571 }
572 
573 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
574   LiveInVector::iterator I = find_if(
575       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
576   if (I == LiveIns.end())
577     return;
578 
579   I->LaneMask &= ~LaneMask;
580   if (I->LaneMask.none())
581     LiveIns.erase(I);
582 }
583 
584 MachineBasicBlock::livein_iterator
585 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
586   // Get non-const version of iterator.
587   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
588   return LiveIns.erase(LI);
589 }
590 
591 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
592   livein_iterator I = find_if(
593       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
594   return I != livein_end() && (I->LaneMask & LaneMask).any();
595 }
596 
597 void MachineBasicBlock::sortUniqueLiveIns() {
598   llvm::sort(LiveIns,
599              [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
600                return LI0.PhysReg < LI1.PhysReg;
601              });
602   // Liveins are sorted by physreg now we can merge their lanemasks.
603   LiveInVector::const_iterator I = LiveIns.begin();
604   LiveInVector::const_iterator J;
605   LiveInVector::iterator Out = LiveIns.begin();
606   for (; I != LiveIns.end(); ++Out, I = J) {
607     MCRegister PhysReg = I->PhysReg;
608     LaneBitmask LaneMask = I->LaneMask;
609     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
610       LaneMask |= J->LaneMask;
611     Out->PhysReg = PhysReg;
612     Out->LaneMask = LaneMask;
613   }
614   LiveIns.erase(Out, LiveIns.end());
615 }
616 
617 Register
618 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) {
619   assert(getParent() && "MBB must be inserted in function");
620   assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg");
621   assert(RC && "Register class is required");
622   assert((isEHPad() || this == &getParent()->front()) &&
623          "Only the entry block and landing pads can have physreg live ins");
624 
625   bool LiveIn = isLiveIn(PhysReg);
626   iterator I = SkipPHIsAndLabels(begin()), E = end();
627   MachineRegisterInfo &MRI = getParent()->getRegInfo();
628   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
629 
630   // Look for an existing copy.
631   if (LiveIn)
632     for (;I != E && I->isCopy(); ++I)
633       if (I->getOperand(1).getReg() == PhysReg) {
634         Register VirtReg = I->getOperand(0).getReg();
635         if (!MRI.constrainRegClass(VirtReg, RC))
636           llvm_unreachable("Incompatible live-in register class.");
637         return VirtReg;
638       }
639 
640   // No luck, create a virtual register.
641   Register VirtReg = MRI.createVirtualRegister(RC);
642   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
643     .addReg(PhysReg, RegState::Kill);
644   if (!LiveIn)
645     addLiveIn(PhysReg);
646   return VirtReg;
647 }
648 
649 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
650   getParent()->splice(NewAfter->getIterator(), getIterator());
651 }
652 
653 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
654   getParent()->splice(++NewBefore->getIterator(), getIterator());
655 }
656 
657 void MachineBasicBlock::updateTerminator(
658     MachineBasicBlock *PreviousLayoutSuccessor) {
659   LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this)
660                     << "\n");
661 
662   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
663   // A block with no successors has no concerns with fall-through edges.
664   if (this->succ_empty())
665     return;
666 
667   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
668   SmallVector<MachineOperand, 4> Cond;
669   DebugLoc DL = findBranchDebugLoc();
670   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
671   (void) B;
672   assert(!B && "UpdateTerminators requires analyzable predecessors!");
673   if (Cond.empty()) {
674     if (TBB) {
675       // The block has an unconditional branch. If its successor is now its
676       // layout successor, delete the branch.
677       if (isLayoutSuccessor(TBB))
678         TII->removeBranch(*this);
679     } else {
680       // The block has an unconditional fallthrough, or the end of the block is
681       // unreachable.
682 
683       // Unfortunately, whether the end of the block is unreachable is not
684       // immediately obvious; we must fall back to checking the successor list,
685       // and assuming that if the passed in block is in the succesor list and
686       // not an EHPad, it must be the intended target.
687       if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) ||
688           PreviousLayoutSuccessor->isEHPad())
689         return;
690 
691       // If the unconditional successor block is not the current layout
692       // successor, insert a branch to jump to it.
693       if (!isLayoutSuccessor(PreviousLayoutSuccessor))
694         TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
695     }
696     return;
697   }
698 
699   if (FBB) {
700     // The block has a non-fallthrough conditional branch. If one of its
701     // successors is its layout successor, rewrite it to a fallthrough
702     // conditional branch.
703     if (isLayoutSuccessor(TBB)) {
704       if (TII->reverseBranchCondition(Cond))
705         return;
706       TII->removeBranch(*this);
707       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
708     } else if (isLayoutSuccessor(FBB)) {
709       TII->removeBranch(*this);
710       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
711     }
712     return;
713   }
714 
715   // We now know we're going to fallthrough to PreviousLayoutSuccessor.
716   assert(PreviousLayoutSuccessor);
717   assert(!PreviousLayoutSuccessor->isEHPad());
718   assert(isSuccessor(PreviousLayoutSuccessor));
719 
720   if (PreviousLayoutSuccessor == TBB) {
721     // We had a fallthrough to the same basic block as the conditional jump
722     // targets.  Remove the conditional jump, leaving an unconditional
723     // fallthrough or an unconditional jump.
724     TII->removeBranch(*this);
725     if (!isLayoutSuccessor(TBB)) {
726       Cond.clear();
727       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
728     }
729     return;
730   }
731 
732   // The block has a fallthrough conditional branch.
733   if (isLayoutSuccessor(TBB)) {
734     if (TII->reverseBranchCondition(Cond)) {
735       // We can't reverse the condition, add an unconditional branch.
736       Cond.clear();
737       TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
738       return;
739     }
740     TII->removeBranch(*this);
741     TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL);
742   } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) {
743     TII->removeBranch(*this);
744     TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL);
745   }
746 }
747 
748 void MachineBasicBlock::validateSuccProbs() const {
749 #ifndef NDEBUG
750   int64_t Sum = 0;
751   for (auto Prob : Probs)
752     Sum += Prob.getNumerator();
753   // Due to precision issue, we assume that the sum of probabilities is one if
754   // the difference between the sum of their numerators and the denominator is
755   // no greater than the number of successors.
756   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
757              Probs.size() &&
758          "The sum of successors's probabilities exceeds one.");
759 #endif // NDEBUG
760 }
761 
762 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
763                                      BranchProbability Prob) {
764   // Probability list is either empty (if successor list isn't empty, this means
765   // disabled optimization) or has the same size as successor list.
766   if (!(Probs.empty() && !Successors.empty()))
767     Probs.push_back(Prob);
768   Successors.push_back(Succ);
769   Succ->addPredecessor(this);
770 }
771 
772 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
773   // We need to make sure probability list is either empty or has the same size
774   // of successor list. When this function is called, we can safely delete all
775   // probability in the list.
776   Probs.clear();
777   Successors.push_back(Succ);
778   Succ->addPredecessor(this);
779 }
780 
781 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
782                                        MachineBasicBlock *New,
783                                        bool NormalizeSuccProbs) {
784   succ_iterator OldI = llvm::find(successors(), Old);
785   assert(OldI != succ_end() && "Old is not a successor of this block!");
786   assert(!llvm::is_contained(successors(), New) &&
787          "New is already a successor of this block!");
788 
789   // Add a new successor with equal probability as the original one. Note
790   // that we directly copy the probability using the iterator rather than
791   // getting a potentially synthetic probability computed when unknown. This
792   // preserves the probabilities as-is and then we can renormalize them and
793   // query them effectively afterward.
794   addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
795                                   : *getProbabilityIterator(OldI));
796   if (NormalizeSuccProbs)
797     normalizeSuccProbs();
798 }
799 
800 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
801                                         bool NormalizeSuccProbs) {
802   succ_iterator I = find(Successors, Succ);
803   removeSuccessor(I, NormalizeSuccProbs);
804 }
805 
806 MachineBasicBlock::succ_iterator
807 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
808   assert(I != Successors.end() && "Not a current successor!");
809 
810   // If probability list is empty it means we don't use it (disabled
811   // optimization).
812   if (!Probs.empty()) {
813     probability_iterator WI = getProbabilityIterator(I);
814     Probs.erase(WI);
815     if (NormalizeSuccProbs)
816       normalizeSuccProbs();
817   }
818 
819   (*I)->removePredecessor(this);
820   return Successors.erase(I);
821 }
822 
823 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
824                                          MachineBasicBlock *New) {
825   if (Old == New)
826     return;
827 
828   succ_iterator E = succ_end();
829   succ_iterator NewI = E;
830   succ_iterator OldI = E;
831   for (succ_iterator I = succ_begin(); I != E; ++I) {
832     if (*I == Old) {
833       OldI = I;
834       if (NewI != E)
835         break;
836     }
837     if (*I == New) {
838       NewI = I;
839       if (OldI != E)
840         break;
841     }
842   }
843   assert(OldI != E && "Old is not a successor of this block");
844 
845   // If New isn't already a successor, let it take Old's place.
846   if (NewI == E) {
847     Old->removePredecessor(this);
848     New->addPredecessor(this);
849     *OldI = New;
850     return;
851   }
852 
853   // New is already a successor.
854   // Update its probability instead of adding a duplicate edge.
855   if (!Probs.empty()) {
856     auto ProbIter = getProbabilityIterator(NewI);
857     if (!ProbIter->isUnknown())
858       *ProbIter += *getProbabilityIterator(OldI);
859   }
860   removeSuccessor(OldI);
861 }
862 
863 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
864                                       succ_iterator I) {
865   if (!Orig->Probs.empty())
866     addSuccessor(*I, Orig->getSuccProbability(I));
867   else
868     addSuccessorWithoutProb(*I);
869 }
870 
871 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
872   Predecessors.push_back(Pred);
873 }
874 
875 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
876   pred_iterator I = find(Predecessors, Pred);
877   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
878   Predecessors.erase(I);
879 }
880 
881 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
882   if (this == FromMBB)
883     return;
884 
885   while (!FromMBB->succ_empty()) {
886     MachineBasicBlock *Succ = *FromMBB->succ_begin();
887 
888     // If probability list is empty it means we don't use it (disabled
889     // optimization).
890     if (!FromMBB->Probs.empty()) {
891       auto Prob = *FromMBB->Probs.begin();
892       addSuccessor(Succ, Prob);
893     } else
894       addSuccessorWithoutProb(Succ);
895 
896     FromMBB->removeSuccessor(Succ);
897   }
898 }
899 
900 void
901 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
902   if (this == FromMBB)
903     return;
904 
905   while (!FromMBB->succ_empty()) {
906     MachineBasicBlock *Succ = *FromMBB->succ_begin();
907     if (!FromMBB->Probs.empty()) {
908       auto Prob = *FromMBB->Probs.begin();
909       addSuccessor(Succ, Prob);
910     } else
911       addSuccessorWithoutProb(Succ);
912     FromMBB->removeSuccessor(Succ);
913 
914     // Fix up any PHI nodes in the successor.
915     Succ->replacePhiUsesWith(FromMBB, this);
916   }
917   normalizeSuccProbs();
918 }
919 
920 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
921   return is_contained(predecessors(), MBB);
922 }
923 
924 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
925   return is_contained(successors(), MBB);
926 }
927 
928 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
929   MachineFunction::const_iterator I(this);
930   return std::next(I) == MachineFunction::const_iterator(MBB);
931 }
932 
933 const MachineBasicBlock *MachineBasicBlock::getSingleSuccessor() const {
934   return Successors.size() == 1 ? Successors[0] : nullptr;
935 }
936 
937 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
938   MachineFunction::iterator Fallthrough = getIterator();
939   ++Fallthrough;
940   // If FallthroughBlock is off the end of the function, it can't fall through.
941   if (Fallthrough == getParent()->end())
942     return nullptr;
943 
944   // If FallthroughBlock isn't a successor, no fallthrough is possible.
945   if (!isSuccessor(&*Fallthrough))
946     return nullptr;
947 
948   // Analyze the branches, if any, at the end of the block.
949   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
950   SmallVector<MachineOperand, 4> Cond;
951   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
952   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
953     // If we couldn't analyze the branch, examine the last instruction.
954     // If the block doesn't end in a known control barrier, assume fallthrough
955     // is possible. The isPredicated check is needed because this code can be
956     // called during IfConversion, where an instruction which is normally a
957     // Barrier is predicated and thus no longer an actual control barrier.
958     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
959                ? &*Fallthrough
960                : nullptr;
961   }
962 
963   // If there is no branch, control always falls through.
964   if (!TBB) return &*Fallthrough;
965 
966   // If there is some explicit branch to the fallthrough block, it can obviously
967   // reach, even though the branch should get folded to fall through implicitly.
968   if (MachineFunction::iterator(TBB) == Fallthrough ||
969       MachineFunction::iterator(FBB) == Fallthrough)
970     return &*Fallthrough;
971 
972   // If it's an unconditional branch to some block not the fall through, it
973   // doesn't fall through.
974   if (Cond.empty()) return nullptr;
975 
976   // Otherwise, if it is conditional and has no explicit false block, it falls
977   // through.
978   return (FBB == nullptr) ? &*Fallthrough : nullptr;
979 }
980 
981 bool MachineBasicBlock::canFallThrough() {
982   return getFallThrough() != nullptr;
983 }
984 
985 MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI,
986                                               bool UpdateLiveIns,
987                                               LiveIntervals *LIS) {
988   MachineBasicBlock::iterator SplitPoint(&MI);
989   ++SplitPoint;
990 
991   if (SplitPoint == end()) {
992     // Don't bother with a new block.
993     return this;
994   }
995 
996   MachineFunction *MF = getParent();
997 
998   LivePhysRegs LiveRegs;
999   if (UpdateLiveIns) {
1000     // Make sure we add any physregs we define in the block as liveins to the
1001     // new block.
1002     MachineBasicBlock::iterator Prev(&MI);
1003     LiveRegs.init(*MF->getSubtarget().getRegisterInfo());
1004     LiveRegs.addLiveOuts(*this);
1005     for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I)
1006       LiveRegs.stepBackward(*I);
1007   }
1008 
1009   MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock());
1010 
1011   MF->insert(++MachineFunction::iterator(this), SplitBB);
1012   SplitBB->splice(SplitBB->begin(), this, SplitPoint, end());
1013 
1014   SplitBB->transferSuccessorsAndUpdatePHIs(this);
1015   addSuccessor(SplitBB);
1016 
1017   if (UpdateLiveIns)
1018     addLiveIns(*SplitBB, LiveRegs);
1019 
1020   if (LIS)
1021     LIS->insertMBBInMaps(SplitBB);
1022 
1023   return SplitBB;
1024 }
1025 
1026 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(
1027     MachineBasicBlock *Succ, Pass &P,
1028     std::vector<SparseBitVector<>> *LiveInSets) {
1029   if (!canSplitCriticalEdge(Succ))
1030     return nullptr;
1031 
1032   MachineFunction *MF = getParent();
1033   MachineBasicBlock *PrevFallthrough = getNextNode();
1034   DebugLoc DL;  // FIXME: this is nowhere
1035 
1036   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
1037   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
1038   LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
1039                     << " -- " << printMBBReference(*NMBB) << " -- "
1040                     << printMBBReference(*Succ) << '\n');
1041 
1042   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
1043   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
1044   if (LIS)
1045     LIS->insertMBBInMaps(NMBB);
1046   else if (Indexes)
1047     Indexes->insertMBBInMaps(NMBB);
1048 
1049   // On some targets like Mips, branches may kill virtual registers. Make sure
1050   // that LiveVariables is properly updated after updateTerminator replaces the
1051   // terminators.
1052   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
1053 
1054   // Collect a list of virtual registers killed by the terminators.
1055   SmallVector<Register, 4> KilledRegs;
1056   if (LV)
1057     for (MachineInstr &MI :
1058          llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1059       for (MachineOperand &MO : MI.operands()) {
1060         if (!MO.isReg() || MO.getReg() == 0 || !MO.isUse() || !MO.isKill() ||
1061             MO.isUndef())
1062           continue;
1063         Register Reg = MO.getReg();
1064         if (Register::isPhysicalRegister(Reg) ||
1065             LV->getVarInfo(Reg).removeKill(MI)) {
1066           KilledRegs.push_back(Reg);
1067           LLVM_DEBUG(dbgs() << "Removing terminator kill: " << MI);
1068           MO.setIsKill(false);
1069         }
1070       }
1071     }
1072 
1073   SmallVector<Register, 4> UsedRegs;
1074   if (LIS) {
1075     for (MachineInstr &MI :
1076          llvm::make_range(getFirstInstrTerminator(), instr_end())) {
1077       for (const MachineOperand &MO : MI.operands()) {
1078         if (!MO.isReg() || MO.getReg() == 0)
1079           continue;
1080 
1081         Register Reg = MO.getReg();
1082         if (!is_contained(UsedRegs, Reg))
1083           UsedRegs.push_back(Reg);
1084       }
1085     }
1086   }
1087 
1088   ReplaceUsesOfBlockWith(Succ, NMBB);
1089 
1090   // If updateTerminator() removes instructions, we need to remove them from
1091   // SlotIndexes.
1092   SmallVector<MachineInstr*, 4> Terminators;
1093   if (Indexes) {
1094     for (MachineInstr &MI :
1095          llvm::make_range(getFirstInstrTerminator(), instr_end()))
1096       Terminators.push_back(&MI);
1097   }
1098 
1099   // Since we replaced all uses of Succ with NMBB, that should also be treated
1100   // as the fallthrough successor
1101   if (Succ == PrevFallthrough)
1102     PrevFallthrough = NMBB;
1103   updateTerminator(PrevFallthrough);
1104 
1105   if (Indexes) {
1106     SmallVector<MachineInstr*, 4> NewTerminators;
1107     for (MachineInstr &MI :
1108          llvm::make_range(getFirstInstrTerminator(), instr_end()))
1109       NewTerminators.push_back(&MI);
1110 
1111     for (MachineInstr *Terminator : Terminators) {
1112       if (!is_contained(NewTerminators, Terminator))
1113         Indexes->removeMachineInstrFromMaps(*Terminator);
1114     }
1115   }
1116 
1117   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
1118   NMBB->addSuccessor(Succ);
1119   if (!NMBB->isLayoutSuccessor(Succ)) {
1120     SmallVector<MachineOperand, 4> Cond;
1121     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
1122     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
1123 
1124     if (Indexes) {
1125       for (MachineInstr &MI : NMBB->instrs()) {
1126         // Some instructions may have been moved to NMBB by updateTerminator(),
1127         // so we first remove any instruction that already has an index.
1128         if (Indexes->hasIndex(MI))
1129           Indexes->removeMachineInstrFromMaps(MI);
1130         Indexes->insertMachineInstrInMaps(MI);
1131       }
1132     }
1133   }
1134 
1135   // Fix PHI nodes in Succ so they refer to NMBB instead of this.
1136   Succ->replacePhiUsesWith(this, NMBB);
1137 
1138   // Inherit live-ins from the successor
1139   for (const auto &LI : Succ->liveins())
1140     NMBB->addLiveIn(LI);
1141 
1142   // Update LiveVariables.
1143   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1144   if (LV) {
1145     // Restore kills of virtual registers that were killed by the terminators.
1146     while (!KilledRegs.empty()) {
1147       Register Reg = KilledRegs.pop_back_val();
1148       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
1149         if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
1150           continue;
1151         if (Register::isVirtualRegister(Reg))
1152           LV->getVarInfo(Reg).Kills.push_back(&*I);
1153         LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1154         break;
1155       }
1156     }
1157     // Update relevant live-through information.
1158     if (LiveInSets != nullptr)
1159       LV->addNewBlock(NMBB, this, Succ, *LiveInSets);
1160     else
1161       LV->addNewBlock(NMBB, this, Succ);
1162   }
1163 
1164   if (LIS) {
1165     // After splitting the edge and updating SlotIndexes, live intervals may be
1166     // in one of two situations, depending on whether this block was the last in
1167     // the function. If the original block was the last in the function, all
1168     // live intervals will end prior to the beginning of the new split block. If
1169     // the original block was not at the end of the function, all live intervals
1170     // will extend to the end of the new split block.
1171 
1172     bool isLastMBB =
1173       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1174 
1175     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1176     SlotIndex PrevIndex = StartIndex.getPrevSlot();
1177     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1178 
1179     // Find the registers used from NMBB in PHIs in Succ.
1180     SmallSet<Register, 8> PHISrcRegs;
1181     for (MachineBasicBlock::instr_iterator
1182          I = Succ->instr_begin(), E = Succ->instr_end();
1183          I != E && I->isPHI(); ++I) {
1184       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1185         if (I->getOperand(ni+1).getMBB() == NMBB) {
1186           MachineOperand &MO = I->getOperand(ni);
1187           Register Reg = MO.getReg();
1188           PHISrcRegs.insert(Reg);
1189           if (MO.isUndef())
1190             continue;
1191 
1192           LiveInterval &LI = LIS->getInterval(Reg);
1193           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1194           assert(VNI &&
1195                  "PHI sources should be live out of their predecessors.");
1196           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1197         }
1198       }
1199     }
1200 
1201     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1202     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1203       Register Reg = Register::index2VirtReg(i);
1204       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1205         continue;
1206 
1207       LiveInterval &LI = LIS->getInterval(Reg);
1208       if (!LI.liveAt(PrevIndex))
1209         continue;
1210 
1211       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1212       if (isLiveOut && isLastMBB) {
1213         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1214         assert(VNI && "LiveInterval should have VNInfo where it is live.");
1215         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1216       } else if (!isLiveOut && !isLastMBB) {
1217         LI.removeSegment(StartIndex, EndIndex);
1218       }
1219     }
1220 
1221     // Update all intervals for registers whose uses may have been modified by
1222     // updateTerminator().
1223     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1224   }
1225 
1226   if (MachineDominatorTree *MDT =
1227           P.getAnalysisIfAvailable<MachineDominatorTree>())
1228     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1229 
1230   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1231     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1232       // If one or the other blocks were not in a loop, the new block is not
1233       // either, and thus LI doesn't need to be updated.
1234       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1235         if (TIL == DestLoop) {
1236           // Both in the same loop, the NMBB joins loop.
1237           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1238         } else if (TIL->contains(DestLoop)) {
1239           // Edge from an outer loop to an inner loop.  Add to the outer loop.
1240           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1241         } else if (DestLoop->contains(TIL)) {
1242           // Edge from an inner loop to an outer loop.  Add to the outer loop.
1243           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1244         } else {
1245           // Edge from two loops with no containment relation.  Because these
1246           // are natural loops, we know that the destination block must be the
1247           // header of its loop (adding a branch into a loop elsewhere would
1248           // create an irreducible loop).
1249           assert(DestLoop->getHeader() == Succ &&
1250                  "Should not create irreducible loops!");
1251           if (MachineLoop *P = DestLoop->getParentLoop())
1252             P->addBasicBlockToLoop(NMBB, MLI->getBase());
1253         }
1254       }
1255     }
1256 
1257   return NMBB;
1258 }
1259 
1260 bool MachineBasicBlock::canSplitCriticalEdge(
1261     const MachineBasicBlock *Succ) const {
1262   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1263   // it in this generic function.
1264   if (Succ->isEHPad())
1265     return false;
1266 
1267   // Splitting the critical edge to a callbr's indirect block isn't advised.
1268   // Don't do it in this generic function.
1269   if (Succ->isInlineAsmBrIndirectTarget())
1270     return false;
1271 
1272   const MachineFunction *MF = getParent();
1273   // Performance might be harmed on HW that implements branching using exec mask
1274   // where both sides of the branches are always executed.
1275   if (MF->getTarget().requiresStructuredCFG())
1276     return false;
1277 
1278   // We may need to update this's terminator, but we can't do that if
1279   // analyzeBranch fails. If this uses a jump table, we won't touch it.
1280   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1281   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1282   SmallVector<MachineOperand, 4> Cond;
1283   // AnalyzeBanch should modify this, since we did not allow modification.
1284   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1285                          /*AllowModify*/ false))
1286     return false;
1287 
1288   // Avoid bugpoint weirdness: A block may end with a conditional branch but
1289   // jumps to the same MBB is either case. We have duplicate CFG edges in that
1290   // case that we can't handle. Since this never happens in properly optimized
1291   // code, just skip those edges.
1292   if (TBB && TBB == FBB) {
1293     LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1294                       << printMBBReference(*this) << '\n');
1295     return false;
1296   }
1297   return true;
1298 }
1299 
1300 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1301 /// neighboring instructions so the bundle won't be broken by removing MI.
1302 static void unbundleSingleMI(MachineInstr *MI) {
1303   // Removing the first instruction in a bundle.
1304   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1305     MI->unbundleFromSucc();
1306   // Removing the last instruction in a bundle.
1307   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1308     MI->unbundleFromPred();
1309   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1310   // are already fine.
1311 }
1312 
1313 MachineBasicBlock::instr_iterator
1314 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1315   unbundleSingleMI(&*I);
1316   return Insts.erase(I);
1317 }
1318 
1319 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1320   unbundleSingleMI(MI);
1321   MI->clearFlag(MachineInstr::BundledPred);
1322   MI->clearFlag(MachineInstr::BundledSucc);
1323   return Insts.remove(MI);
1324 }
1325 
1326 MachineBasicBlock::instr_iterator
1327 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1328   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1329          "Cannot insert instruction with bundle flags");
1330   // Set the bundle flags when inserting inside a bundle.
1331   if (I != instr_end() && I->isBundledWithPred()) {
1332     MI->setFlag(MachineInstr::BundledPred);
1333     MI->setFlag(MachineInstr::BundledSucc);
1334   }
1335   return Insts.insert(I, MI);
1336 }
1337 
1338 /// This method unlinks 'this' from the containing function, and returns it, but
1339 /// does not delete it.
1340 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1341   assert(getParent() && "Not embedded in a function!");
1342   getParent()->remove(this);
1343   return this;
1344 }
1345 
1346 /// This method unlinks 'this' from the containing function, and deletes it.
1347 void MachineBasicBlock::eraseFromParent() {
1348   assert(getParent() && "Not embedded in a function!");
1349   getParent()->erase(this);
1350 }
1351 
1352 /// Given a machine basic block that branched to 'Old', change the code and CFG
1353 /// so that it branches to 'New' instead.
1354 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1355                                                MachineBasicBlock *New) {
1356   assert(Old != New && "Cannot replace self with self!");
1357 
1358   MachineBasicBlock::instr_iterator I = instr_end();
1359   while (I != instr_begin()) {
1360     --I;
1361     if (!I->isTerminator()) break;
1362 
1363     // Scan the operands of this machine instruction, replacing any uses of Old
1364     // with New.
1365     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1366       if (I->getOperand(i).isMBB() &&
1367           I->getOperand(i).getMBB() == Old)
1368         I->getOperand(i).setMBB(New);
1369   }
1370 
1371   // Update the successor information.
1372   replaceSuccessor(Old, New);
1373 }
1374 
1375 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
1376                                            MachineBasicBlock *New) {
1377   for (MachineInstr &MI : phis())
1378     for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
1379       MachineOperand &MO = MI.getOperand(i);
1380       if (MO.getMBB() == Old)
1381         MO.setMBB(New);
1382     }
1383 }
1384 
1385 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1386 /// instructions.  Return UnknownLoc if there is none.
1387 DebugLoc
1388 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1389   // Skip debug declarations, we don't want a DebugLoc from them.
1390   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1391   if (MBBI != instr_end())
1392     return MBBI->getDebugLoc();
1393   return {};
1394 }
1395 
1396 DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) {
1397   // Skip debug declarations, we don't want a DebugLoc from them.
1398   MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin());
1399   if (!MBBI->isDebugInstr())
1400     return MBBI->getDebugLoc();
1401   return {};
1402 }
1403 
1404 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1405 /// instructions.  Return UnknownLoc if there is none.
1406 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1407   if (MBBI == instr_begin()) return {};
1408   // Skip debug instructions, we don't want a DebugLoc from them.
1409   MBBI = prev_nodbg(MBBI, instr_begin());
1410   if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
1411   return {};
1412 }
1413 
1414 DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) {
1415   if (MBBI == instr_rend())
1416     return {};
1417   // Skip debug declarations, we don't want a DebugLoc from them.
1418   MBBI = next_nodbg(MBBI, instr_rend());
1419   if (MBBI != instr_rend())
1420     return MBBI->getDebugLoc();
1421   return {};
1422 }
1423 
1424 /// Find and return the merged DebugLoc of the branch instructions of the block.
1425 /// Return UnknownLoc if there is none.
1426 DebugLoc
1427 MachineBasicBlock::findBranchDebugLoc() {
1428   DebugLoc DL;
1429   auto TI = getFirstTerminator();
1430   while (TI != end() && !TI->isBranch())
1431     ++TI;
1432 
1433   if (TI != end()) {
1434     DL = TI->getDebugLoc();
1435     for (++TI ; TI != end() ; ++TI)
1436       if (TI->isBranch())
1437         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1438   }
1439   return DL;
1440 }
1441 
1442 /// Return probability of the edge from this block to MBB.
1443 BranchProbability
1444 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1445   if (Probs.empty())
1446     return BranchProbability(1, succ_size());
1447 
1448   const auto &Prob = *getProbabilityIterator(Succ);
1449   if (Prob.isUnknown()) {
1450     // For unknown probabilities, collect the sum of all known ones, and evenly
1451     // ditribute the complemental of the sum to each unknown probability.
1452     unsigned KnownProbNum = 0;
1453     auto Sum = BranchProbability::getZero();
1454     for (const auto &P : Probs) {
1455       if (!P.isUnknown()) {
1456         Sum += P;
1457         KnownProbNum++;
1458       }
1459     }
1460     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1461   } else
1462     return Prob;
1463 }
1464 
1465 /// Set successor probability of a given iterator.
1466 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1467                                            BranchProbability Prob) {
1468   assert(!Prob.isUnknown());
1469   if (Probs.empty())
1470     return;
1471   *getProbabilityIterator(I) = Prob;
1472 }
1473 
1474 /// Return probability iterator corresonding to the I successor iterator
1475 MachineBasicBlock::const_probability_iterator
1476 MachineBasicBlock::getProbabilityIterator(
1477     MachineBasicBlock::const_succ_iterator I) const {
1478   assert(Probs.size() == Successors.size() && "Async probability list!");
1479   const size_t index = std::distance(Successors.begin(), I);
1480   assert(index < Probs.size() && "Not a current successor!");
1481   return Probs.begin() + index;
1482 }
1483 
1484 /// Return probability iterator corresonding to the I successor iterator.
1485 MachineBasicBlock::probability_iterator
1486 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1487   assert(Probs.size() == Successors.size() && "Async probability list!");
1488   const size_t index = std::distance(Successors.begin(), I);
1489   assert(index < Probs.size() && "Not a current successor!");
1490   return Probs.begin() + index;
1491 }
1492 
1493 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1494 /// as of just before "MI".
1495 ///
1496 /// Search is localised to a neighborhood of
1497 /// Neighborhood instructions before (searching for defs or kills) and N
1498 /// instructions after (searching just for defs) MI.
1499 MachineBasicBlock::LivenessQueryResult
1500 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1501                                            MCRegister Reg, const_iterator Before,
1502                                            unsigned Neighborhood) const {
1503   unsigned N = Neighborhood;
1504 
1505   // Try searching forwards from Before, looking for reads or defs.
1506   const_iterator I(Before);
1507   for (; I != end() && N > 0; ++I) {
1508     if (I->isDebugOrPseudoInstr())
1509       continue;
1510 
1511     --N;
1512 
1513     PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1514 
1515     // Register is live when we read it here.
1516     if (Info.Read)
1517       return LQR_Live;
1518     // Register is dead if we can fully overwrite or clobber it here.
1519     if (Info.FullyDefined || Info.Clobbered)
1520       return LQR_Dead;
1521   }
1522 
1523   // If we reached the end, it is safe to clobber Reg at the end of a block of
1524   // no successor has it live in.
1525   if (I == end()) {
1526     for (MachineBasicBlock *S : successors()) {
1527       for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1528         if (TRI->regsOverlap(LI.PhysReg, Reg))
1529           return LQR_Live;
1530       }
1531     }
1532 
1533     return LQR_Dead;
1534   }
1535 
1536 
1537   N = Neighborhood;
1538 
1539   // Start by searching backwards from Before, looking for kills, reads or defs.
1540   I = const_iterator(Before);
1541   // If this is the first insn in the block, don't search backwards.
1542   if (I != begin()) {
1543     do {
1544       --I;
1545 
1546       if (I->isDebugOrPseudoInstr())
1547         continue;
1548 
1549       --N;
1550 
1551       PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1552 
1553       // Defs happen after uses so they take precedence if both are present.
1554 
1555       // Register is dead after a dead def of the full register.
1556       if (Info.DeadDef)
1557         return LQR_Dead;
1558       // Register is (at least partially) live after a def.
1559       if (Info.Defined) {
1560         if (!Info.PartialDeadDef)
1561           return LQR_Live;
1562         // As soon as we saw a partial definition (dead or not),
1563         // we cannot tell if the value is partial live without
1564         // tracking the lanemasks. We are not going to do this,
1565         // so fall back on the remaining of the analysis.
1566         break;
1567       }
1568       // Register is dead after a full kill or clobber and no def.
1569       if (Info.Killed || Info.Clobbered)
1570         return LQR_Dead;
1571       // Register must be live if we read it.
1572       if (Info.Read)
1573         return LQR_Live;
1574 
1575     } while (I != begin() && N > 0);
1576   }
1577 
1578   // If all the instructions before this in the block are debug instructions,
1579   // skip over them.
1580   while (I != begin() && std::prev(I)->isDebugOrPseudoInstr())
1581     --I;
1582 
1583   // Did we get to the start of the block?
1584   if (I == begin()) {
1585     // If so, the register's state is definitely defined by the live-in state.
1586     for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1587       if (TRI->regsOverlap(LI.PhysReg, Reg))
1588         return LQR_Live;
1589 
1590     return LQR_Dead;
1591   }
1592 
1593   // At this point we have no idea of the liveness of the register.
1594   return LQR_Unknown;
1595 }
1596 
1597 const uint32_t *
1598 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1599   // EH funclet entry does not preserve any registers.
1600   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1601 }
1602 
1603 const uint32_t *
1604 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1605   // If we see a return block with successors, this must be a funclet return,
1606   // which does not preserve any registers. If there are no successors, we don't
1607   // care what kind of return it is, putting a mask after it is a no-op.
1608   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1609 }
1610 
1611 void MachineBasicBlock::clearLiveIns() {
1612   LiveIns.clear();
1613 }
1614 
1615 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1616   assert(getParent()->getProperties().hasProperty(
1617       MachineFunctionProperties::Property::TracksLiveness) &&
1618       "Liveness information is accurate");
1619   return LiveIns.begin();
1620 }
1621 
1622 MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const {
1623   const MachineFunction &MF = *getParent();
1624   assert(MF.getProperties().hasProperty(
1625       MachineFunctionProperties::Property::TracksLiveness) &&
1626       "Liveness information is accurate");
1627 
1628   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
1629   MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0;
1630   if (MF.getFunction().hasPersonalityFn()) {
1631     auto PersonalityFn = MF.getFunction().getPersonalityFn();
1632     ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn);
1633     ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn);
1634   }
1635 
1636   return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false);
1637 }
1638 
1639 bool MachineBasicBlock::sizeWithoutDebugLargerThan(unsigned Limit) const {
1640   unsigned Cntr = 0;
1641   auto R = instructionsWithoutDebug(begin(), end());
1642   for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1643     if (++Cntr > Limit)
1644       return true;
1645   }
1646   return false;
1647 }
1648 
1649 const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold);
1650 const MBBSectionID
1651     MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception);
1652