1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SlotIndexes.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/ModuleSlotTracker.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/Support/DataTypes.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 #define DEBUG_TYPE "codegen" 40 41 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 42 : BB(B), Number(-1), xParent(&MF) { 43 Insts.Parent = this; 44 } 45 46 MachineBasicBlock::~MachineBasicBlock() { 47 } 48 49 /// Return the MCSymbol for this basic block. 50 MCSymbol *MachineBasicBlock::getSymbol() const { 51 if (!CachedMCSymbol) { 52 const MachineFunction *MF = getParent(); 53 MCContext &Ctx = MF->getContext(); 54 const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 55 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 56 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 57 Twine(MF->getFunctionNumber()) + 58 "_" + Twine(getNumber())); 59 } 60 61 return CachedMCSymbol; 62 } 63 64 65 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 66 MBB.print(OS); 67 return OS; 68 } 69 70 /// When an MBB is added to an MF, we need to update the parent pointer of the 71 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 72 /// operand list for registers. 73 /// 74 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 75 /// gets the next available unique MBB number. If it is removed from a 76 /// MachineFunction, it goes back to being #-1. 77 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) { 78 MachineFunction &MF = *N->getParent(); 79 N->Number = MF.addToMBBNumbering(N); 80 81 // Make sure the instructions have their operands in the reginfo lists. 82 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 83 for (MachineBasicBlock::instr_iterator 84 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 85 I->AddRegOperandsToUseLists(RegInfo); 86 } 87 88 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) { 89 N->getParent()->removeFromMBBNumbering(N->Number); 90 N->Number = -1; 91 } 92 93 /// When we add an instruction to a basic block list, we update its parent 94 /// pointer and add its operands from reg use/def lists if appropriate. 95 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 96 assert(!N->getParent() && "machine instruction already in a basic block"); 97 N->setParent(Parent); 98 99 // Add the instruction's register operands to their corresponding 100 // use/def lists. 101 MachineFunction *MF = Parent->getParent(); 102 N->AddRegOperandsToUseLists(MF->getRegInfo()); 103 } 104 105 /// When we remove an instruction from a basic block list, we update its parent 106 /// pointer and remove its operands from reg use/def lists if appropriate. 107 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 108 assert(N->getParent() && "machine instruction not in a basic block"); 109 110 // Remove from the use/def lists. 111 if (MachineFunction *MF = N->getParent()->getParent()) 112 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 113 114 N->setParent(nullptr); 115 } 116 117 /// When moving a range of instructions from one MBB list to another, we need to 118 /// update the parent pointers and the use/def lists. 119 void ilist_traits<MachineInstr>:: 120 transferNodesFromList(ilist_traits<MachineInstr> &FromList, 121 ilist_iterator<MachineInstr> First, 122 ilist_iterator<MachineInstr> Last) { 123 assert(Parent->getParent() == FromList.Parent->getParent() && 124 "MachineInstr parent mismatch!"); 125 126 // Splice within the same MBB -> no change. 127 if (Parent == FromList.Parent) return; 128 129 // If splicing between two blocks within the same function, just update the 130 // parent pointers. 131 for (; First != Last; ++First) 132 First->setParent(Parent); 133 } 134 135 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) { 136 assert(!MI->getParent() && "MI is still in a block!"); 137 Parent->getParent()->DeleteMachineInstr(MI); 138 } 139 140 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 141 instr_iterator I = instr_begin(), E = instr_end(); 142 while (I != E && I->isPHI()) 143 ++I; 144 assert((I == E || !I->isInsideBundle()) && 145 "First non-phi MI cannot be inside a bundle!"); 146 return I; 147 } 148 149 MachineBasicBlock::iterator 150 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 151 iterator E = end(); 152 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue())) 153 ++I; 154 // FIXME: This needs to change if we wish to bundle labels / dbg_values 155 // inside the bundle. 156 assert((I == E || !I->isInsideBundle()) && 157 "First non-phi / non-label instruction is inside a bundle!"); 158 return I; 159 } 160 161 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 162 iterator B = begin(), E = end(), I = E; 163 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 164 ; /*noop */ 165 while (I != E && !I->isTerminator()) 166 ++I; 167 return I; 168 } 169 170 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 171 instr_iterator B = instr_begin(), E = instr_end(), I = E; 172 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 173 ; /*noop */ 174 while (I != E && !I->isTerminator()) 175 ++I; 176 return I; 177 } 178 179 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 180 // Skip over begin-of-block dbg_value instructions. 181 iterator I = begin(), E = end(); 182 while (I != E && I->isDebugValue()) 183 ++I; 184 return I; 185 } 186 187 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 188 // Skip over end-of-block dbg_value instructions. 189 instr_iterator B = instr_begin(), I = instr_end(); 190 while (I != B) { 191 --I; 192 // Return instruction that starts a bundle. 193 if (I->isDebugValue() || I->isInsideBundle()) 194 continue; 195 return I; 196 } 197 // The block is all debug values. 198 return end(); 199 } 200 201 bool MachineBasicBlock::hasEHPadSuccessor() const { 202 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 203 if ((*I)->isEHPad()) 204 return true; 205 return false; 206 } 207 208 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 209 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 210 print(dbgs()); 211 } 212 #endif 213 214 StringRef MachineBasicBlock::getName() const { 215 if (const BasicBlock *LBB = getBasicBlock()) 216 return LBB->getName(); 217 else 218 return "(null)"; 219 } 220 221 /// Return a hopefully unique identifier for this block. 222 std::string MachineBasicBlock::getFullName() const { 223 std::string Name; 224 if (getParent()) 225 Name = (getParent()->getName() + ":").str(); 226 if (getBasicBlock()) 227 Name += getBasicBlock()->getName(); 228 else 229 Name += ("BB" + Twine(getNumber())).str(); 230 return Name; 231 } 232 233 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes) 234 const { 235 const MachineFunction *MF = getParent(); 236 if (!MF) { 237 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 238 << " is null\n"; 239 return; 240 } 241 const Function *F = MF->getFunction(); 242 const Module *M = F ? F->getParent() : nullptr; 243 ModuleSlotTracker MST(M); 244 print(OS, MST, Indexes); 245 } 246 247 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 248 const SlotIndexes *Indexes) const { 249 const MachineFunction *MF = getParent(); 250 if (!MF) { 251 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 252 << " is null\n"; 253 return; 254 } 255 256 if (Indexes) 257 OS << Indexes->getMBBStartIdx(this) << '\t'; 258 259 OS << "BB#" << getNumber() << ": "; 260 261 const char *Comma = ""; 262 if (const BasicBlock *LBB = getBasicBlock()) { 263 OS << Comma << "derived from LLVM BB "; 264 LBB->printAsOperand(OS, /*PrintType=*/false, MST); 265 Comma = ", "; 266 } 267 if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 268 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 269 if (Alignment) 270 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 271 << " bytes)"; 272 273 OS << '\n'; 274 275 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 276 if (!livein_empty()) { 277 if (Indexes) OS << '\t'; 278 OS << " Live Ins:"; 279 for (const auto &LI : make_range(livein_begin(), livein_end())) { 280 OS << ' ' << PrintReg(LI.PhysReg, TRI); 281 if (LI.LaneMask != ~0u) 282 OS << ':' << PrintLaneMask(LI.LaneMask); 283 } 284 OS << '\n'; 285 } 286 // Print the preds of this block according to the CFG. 287 if (!pred_empty()) { 288 if (Indexes) OS << '\t'; 289 OS << " Predecessors according to CFG:"; 290 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 291 OS << " BB#" << (*PI)->getNumber(); 292 OS << '\n'; 293 } 294 295 for (auto &I : instrs()) { 296 if (Indexes) { 297 if (Indexes->hasIndex(I)) 298 OS << Indexes->getInstructionIndex(I); 299 OS << '\t'; 300 } 301 OS << '\t'; 302 if (I.isInsideBundle()) 303 OS << " * "; 304 I.print(OS, MST); 305 } 306 307 // Print the successors of this block according to the CFG. 308 if (!succ_empty()) { 309 if (Indexes) OS << '\t'; 310 OS << " Successors according to CFG:"; 311 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 312 OS << " BB#" << (*SI)->getNumber(); 313 if (!Probs.empty()) 314 OS << '(' << *getProbabilityIterator(SI) << ')'; 315 } 316 OS << '\n'; 317 } 318 } 319 320 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 321 bool /*PrintType*/) const { 322 OS << "BB#" << getNumber(); 323 } 324 325 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 326 LiveInVector::iterator I = std::find_if( 327 LiveIns.begin(), LiveIns.end(), 328 [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 329 if (I == LiveIns.end()) 330 return; 331 332 I->LaneMask &= ~LaneMask; 333 if (I->LaneMask == 0) 334 LiveIns.erase(I); 335 } 336 337 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 338 livein_iterator I = std::find_if( 339 LiveIns.begin(), LiveIns.end(), 340 [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 341 return I != livein_end() && (I->LaneMask & LaneMask) != 0; 342 } 343 344 void MachineBasicBlock::sortUniqueLiveIns() { 345 std::sort(LiveIns.begin(), LiveIns.end(), 346 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 347 return LI0.PhysReg < LI1.PhysReg; 348 }); 349 // Liveins are sorted by physreg now we can merge their lanemasks. 350 LiveInVector::const_iterator I = LiveIns.begin(); 351 LiveInVector::const_iterator J; 352 LiveInVector::iterator Out = LiveIns.begin(); 353 for (; I != LiveIns.end(); ++Out, I = J) { 354 unsigned PhysReg = I->PhysReg; 355 LaneBitmask LaneMask = I->LaneMask; 356 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 357 LaneMask |= J->LaneMask; 358 Out->PhysReg = PhysReg; 359 Out->LaneMask = LaneMask; 360 } 361 LiveIns.erase(Out, LiveIns.end()); 362 } 363 364 unsigned 365 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 366 assert(getParent() && "MBB must be inserted in function"); 367 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 368 assert(RC && "Register class is required"); 369 assert((isEHPad() || this == &getParent()->front()) && 370 "Only the entry block and landing pads can have physreg live ins"); 371 372 bool LiveIn = isLiveIn(PhysReg); 373 iterator I = SkipPHIsAndLabels(begin()), E = end(); 374 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 375 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 376 377 // Look for an existing copy. 378 if (LiveIn) 379 for (;I != E && I->isCopy(); ++I) 380 if (I->getOperand(1).getReg() == PhysReg) { 381 unsigned VirtReg = I->getOperand(0).getReg(); 382 if (!MRI.constrainRegClass(VirtReg, RC)) 383 llvm_unreachable("Incompatible live-in register class."); 384 return VirtReg; 385 } 386 387 // No luck, create a virtual register. 388 unsigned VirtReg = MRI.createVirtualRegister(RC); 389 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 390 .addReg(PhysReg, RegState::Kill); 391 if (!LiveIn) 392 addLiveIn(PhysReg); 393 return VirtReg; 394 } 395 396 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 397 getParent()->splice(NewAfter->getIterator(), getIterator()); 398 } 399 400 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 401 getParent()->splice(++NewBefore->getIterator(), getIterator()); 402 } 403 404 void MachineBasicBlock::updateTerminator() { 405 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 406 // A block with no successors has no concerns with fall-through edges. 407 if (this->succ_empty()) return; 408 409 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 410 SmallVector<MachineOperand, 4> Cond; 411 DebugLoc DL; // FIXME: this is nowhere 412 bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond); 413 (void) B; 414 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 415 if (Cond.empty()) { 416 if (TBB) { 417 // The block has an unconditional branch. If its successor is now 418 // its layout successor, delete the branch. 419 if (isLayoutSuccessor(TBB)) 420 TII->RemoveBranch(*this); 421 } else { 422 // The block has an unconditional fallthrough. If its successor is not 423 // its layout successor, insert a branch. First we have to locate the 424 // only non-landing-pad successor, as that is the fallthrough block. 425 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 426 if ((*SI)->isEHPad()) 427 continue; 428 assert(!TBB && "Found more than one non-landing-pad successor!"); 429 TBB = *SI; 430 } 431 432 // If there is no non-landing-pad successor, the block has no 433 // fall-through edges to be concerned with. 434 if (!TBB) 435 return; 436 437 // Finally update the unconditional successor to be reached via a branch 438 // if it would not be reached by fallthrough. 439 if (!isLayoutSuccessor(TBB)) 440 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 441 } 442 } else { 443 if (FBB) { 444 // The block has a non-fallthrough conditional branch. If one of its 445 // successors is its layout successor, rewrite it to a fallthrough 446 // conditional branch. 447 if (isLayoutSuccessor(TBB)) { 448 if (TII->ReverseBranchCondition(Cond)) 449 return; 450 TII->RemoveBranch(*this); 451 TII->InsertBranch(*this, FBB, nullptr, Cond, DL); 452 } else if (isLayoutSuccessor(FBB)) { 453 TII->RemoveBranch(*this); 454 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 455 } 456 } else { 457 // Walk through the successors and find the successor which is not 458 // a landing pad and is not the conditional branch destination (in TBB) 459 // as the fallthrough successor. 460 MachineBasicBlock *FallthroughBB = nullptr; 461 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 462 if ((*SI)->isEHPad() || *SI == TBB) 463 continue; 464 assert(!FallthroughBB && "Found more than one fallthrough successor."); 465 FallthroughBB = *SI; 466 } 467 if (!FallthroughBB && canFallThrough()) { 468 // We fallthrough to the same basic block as the conditional jump 469 // targets. Remove the conditional jump, leaving unconditional 470 // fallthrough. 471 // FIXME: This does not seem like a reasonable pattern to support, but 472 // it has been seen in the wild coming out of degenerate ARM test cases. 473 TII->RemoveBranch(*this); 474 475 // Finally update the unconditional successor to be reached via a branch 476 // if it would not be reached by fallthrough. 477 if (!isLayoutSuccessor(TBB)) 478 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 479 return; 480 } 481 482 // The block has a fallthrough conditional branch. 483 if (isLayoutSuccessor(TBB)) { 484 if (TII->ReverseBranchCondition(Cond)) { 485 // We can't reverse the condition, add an unconditional branch. 486 Cond.clear(); 487 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL); 488 return; 489 } 490 TII->RemoveBranch(*this); 491 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL); 492 } else if (!isLayoutSuccessor(FallthroughBB)) { 493 TII->RemoveBranch(*this); 494 TII->InsertBranch(*this, TBB, FallthroughBB, Cond, DL); 495 } 496 } 497 } 498 } 499 500 void MachineBasicBlock::validateSuccProbs() const { 501 #ifndef NDEBUG 502 int64_t Sum = 0; 503 for (auto Prob : Probs) 504 Sum += Prob.getNumerator(); 505 // Due to precision issue, we assume that the sum of probabilities is one if 506 // the difference between the sum of their numerators and the denominator is 507 // no greater than the number of successors. 508 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 509 Probs.size() && 510 "The sum of successors's probabilities exceeds one."); 511 #endif // NDEBUG 512 } 513 514 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 515 BranchProbability Prob) { 516 // Probability list is either empty (if successor list isn't empty, this means 517 // disabled optimization) or has the same size as successor list. 518 if (!(Probs.empty() && !Successors.empty())) 519 Probs.push_back(Prob); 520 Successors.push_back(Succ); 521 Succ->addPredecessor(this); 522 } 523 524 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 525 // We need to make sure probability list is either empty or has the same size 526 // of successor list. When this function is called, we can safely delete all 527 // probability in the list. 528 Probs.clear(); 529 Successors.push_back(Succ); 530 Succ->addPredecessor(this); 531 } 532 533 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 534 bool NormalizeSuccProbs) { 535 succ_iterator I = std::find(Successors.begin(), Successors.end(), Succ); 536 removeSuccessor(I, NormalizeSuccProbs); 537 } 538 539 MachineBasicBlock::succ_iterator 540 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 541 assert(I != Successors.end() && "Not a current successor!"); 542 543 // If probability list is empty it means we don't use it (disabled 544 // optimization). 545 if (!Probs.empty()) { 546 probability_iterator WI = getProbabilityIterator(I); 547 Probs.erase(WI); 548 if (NormalizeSuccProbs) 549 normalizeSuccProbs(); 550 } 551 552 (*I)->removePredecessor(this); 553 return Successors.erase(I); 554 } 555 556 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 557 MachineBasicBlock *New) { 558 if (Old == New) 559 return; 560 561 succ_iterator E = succ_end(); 562 succ_iterator NewI = E; 563 succ_iterator OldI = E; 564 for (succ_iterator I = succ_begin(); I != E; ++I) { 565 if (*I == Old) { 566 OldI = I; 567 if (NewI != E) 568 break; 569 } 570 if (*I == New) { 571 NewI = I; 572 if (OldI != E) 573 break; 574 } 575 } 576 assert(OldI != E && "Old is not a successor of this block"); 577 578 // If New isn't already a successor, let it take Old's place. 579 if (NewI == E) { 580 Old->removePredecessor(this); 581 New->addPredecessor(this); 582 *OldI = New; 583 return; 584 } 585 586 // New is already a successor. 587 // Update its probability instead of adding a duplicate edge. 588 if (!Probs.empty()) { 589 auto ProbIter = getProbabilityIterator(NewI); 590 if (!ProbIter->isUnknown()) 591 *ProbIter += *getProbabilityIterator(OldI); 592 } 593 removeSuccessor(OldI); 594 } 595 596 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 597 Predecessors.push_back(Pred); 598 } 599 600 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 601 pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), Pred); 602 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 603 Predecessors.erase(I); 604 } 605 606 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 607 if (this == FromMBB) 608 return; 609 610 while (!FromMBB->succ_empty()) { 611 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 612 613 // If probability list is empty it means we don't use it (disabled optimization). 614 if (!FromMBB->Probs.empty()) { 615 auto Prob = *FromMBB->Probs.begin(); 616 addSuccessor(Succ, Prob); 617 } else 618 addSuccessorWithoutProb(Succ); 619 620 FromMBB->removeSuccessor(Succ); 621 } 622 } 623 624 void 625 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 626 if (this == FromMBB) 627 return; 628 629 while (!FromMBB->succ_empty()) { 630 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 631 if (!FromMBB->Probs.empty()) { 632 auto Prob = *FromMBB->Probs.begin(); 633 addSuccessor(Succ, Prob); 634 } else 635 addSuccessorWithoutProb(Succ); 636 FromMBB->removeSuccessor(Succ); 637 638 // Fix up any PHI nodes in the successor. 639 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 640 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 641 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 642 MachineOperand &MO = MI->getOperand(i); 643 if (MO.getMBB() == FromMBB) 644 MO.setMBB(this); 645 } 646 } 647 normalizeSuccProbs(); 648 } 649 650 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 651 return std::find(pred_begin(), pred_end(), MBB) != pred_end(); 652 } 653 654 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 655 return std::find(succ_begin(), succ_end(), MBB) != succ_end(); 656 } 657 658 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 659 MachineFunction::const_iterator I(this); 660 return std::next(I) == MachineFunction::const_iterator(MBB); 661 } 662 663 bool MachineBasicBlock::canFallThrough() { 664 MachineFunction::iterator Fallthrough = getIterator(); 665 ++Fallthrough; 666 // If FallthroughBlock is off the end of the function, it can't fall through. 667 if (Fallthrough == getParent()->end()) 668 return false; 669 670 // If FallthroughBlock isn't a successor, no fallthrough is possible. 671 if (!isSuccessor(&*Fallthrough)) 672 return false; 673 674 // Analyze the branches, if any, at the end of the block. 675 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 676 SmallVector<MachineOperand, 4> Cond; 677 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 678 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) { 679 // If we couldn't analyze the branch, examine the last instruction. 680 // If the block doesn't end in a known control barrier, assume fallthrough 681 // is possible. The isPredicated check is needed because this code can be 682 // called during IfConversion, where an instruction which is normally a 683 // Barrier is predicated and thus no longer an actual control barrier. 684 return empty() || !back().isBarrier() || TII->isPredicated(back()); 685 } 686 687 // If there is no branch, control always falls through. 688 if (!TBB) return true; 689 690 // If there is some explicit branch to the fallthrough block, it can obviously 691 // reach, even though the branch should get folded to fall through implicitly. 692 if (MachineFunction::iterator(TBB) == Fallthrough || 693 MachineFunction::iterator(FBB) == Fallthrough) 694 return true; 695 696 // If it's an unconditional branch to some block not the fall through, it 697 // doesn't fall through. 698 if (Cond.empty()) return false; 699 700 // Otherwise, if it is conditional and has no explicit false block, it falls 701 // through. 702 return FBB == nullptr; 703 } 704 705 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, 706 Pass &P) { 707 if (!canSplitCriticalEdge(Succ)) 708 return nullptr; 709 710 MachineFunction *MF = getParent(); 711 DebugLoc DL; // FIXME: this is nowhere 712 713 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 714 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 715 DEBUG(dbgs() << "Splitting critical edge:" 716 " BB#" << getNumber() 717 << " -- BB#" << NMBB->getNumber() 718 << " -- BB#" << Succ->getNumber() << '\n'); 719 720 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 721 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 722 if (LIS) 723 LIS->insertMBBInMaps(NMBB); 724 else if (Indexes) 725 Indexes->insertMBBInMaps(NMBB); 726 727 // On some targets like Mips, branches may kill virtual registers. Make sure 728 // that LiveVariables is properly updated after updateTerminator replaces the 729 // terminators. 730 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 731 732 // Collect a list of virtual registers killed by the terminators. 733 SmallVector<unsigned, 4> KilledRegs; 734 if (LV) 735 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 736 I != E; ++I) { 737 MachineInstr *MI = &*I; 738 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 739 OE = MI->operands_end(); OI != OE; ++OI) { 740 if (!OI->isReg() || OI->getReg() == 0 || 741 !OI->isUse() || !OI->isKill() || OI->isUndef()) 742 continue; 743 unsigned Reg = OI->getReg(); 744 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 745 LV->getVarInfo(Reg).removeKill(MI)) { 746 KilledRegs.push_back(Reg); 747 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 748 OI->setIsKill(false); 749 } 750 } 751 } 752 753 SmallVector<unsigned, 4> UsedRegs; 754 if (LIS) { 755 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 756 I != E; ++I) { 757 MachineInstr *MI = &*I; 758 759 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 760 OE = MI->operands_end(); OI != OE; ++OI) { 761 if (!OI->isReg() || OI->getReg() == 0) 762 continue; 763 764 unsigned Reg = OI->getReg(); 765 if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end()) 766 UsedRegs.push_back(Reg); 767 } 768 } 769 } 770 771 ReplaceUsesOfBlockWith(Succ, NMBB); 772 773 // If updateTerminator() removes instructions, we need to remove them from 774 // SlotIndexes. 775 SmallVector<MachineInstr*, 4> Terminators; 776 if (Indexes) { 777 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 778 I != E; ++I) 779 Terminators.push_back(&*I); 780 } 781 782 updateTerminator(); 783 784 if (Indexes) { 785 SmallVector<MachineInstr*, 4> NewTerminators; 786 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 787 I != E; ++I) 788 NewTerminators.push_back(&*I); 789 790 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 791 E = Terminators.end(); I != E; ++I) { 792 if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) == 793 NewTerminators.end()) 794 Indexes->removeMachineInstrFromMaps(**I); 795 } 796 } 797 798 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 799 NMBB->addSuccessor(Succ); 800 if (!NMBB->isLayoutSuccessor(Succ)) { 801 SmallVector<MachineOperand, 4> Cond; 802 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 803 TII->InsertBranch(*NMBB, Succ, nullptr, Cond, DL); 804 805 if (Indexes) { 806 for (MachineInstr &MI : NMBB->instrs()) { 807 // Some instructions may have been moved to NMBB by updateTerminator(), 808 // so we first remove any instruction that already has an index. 809 if (Indexes->hasIndex(MI)) 810 Indexes->removeMachineInstrFromMaps(MI); 811 Indexes->insertMachineInstrInMaps(MI); 812 } 813 } 814 } 815 816 // Fix PHI nodes in Succ so they refer to NMBB instead of this 817 for (MachineBasicBlock::instr_iterator 818 i = Succ->instr_begin(),e = Succ->instr_end(); 819 i != e && i->isPHI(); ++i) 820 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 821 if (i->getOperand(ni+1).getMBB() == this) 822 i->getOperand(ni+1).setMBB(NMBB); 823 824 // Inherit live-ins from the successor 825 for (const auto &LI : Succ->liveins()) 826 NMBB->addLiveIn(LI); 827 828 // Update LiveVariables. 829 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 830 if (LV) { 831 // Restore kills of virtual registers that were killed by the terminators. 832 while (!KilledRegs.empty()) { 833 unsigned Reg = KilledRegs.pop_back_val(); 834 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 835 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 836 continue; 837 if (TargetRegisterInfo::isVirtualRegister(Reg)) 838 LV->getVarInfo(Reg).Kills.push_back(&*I); 839 DEBUG(dbgs() << "Restored terminator kill: " << *I); 840 break; 841 } 842 } 843 // Update relevant live-through information. 844 LV->addNewBlock(NMBB, this, Succ); 845 } 846 847 if (LIS) { 848 // After splitting the edge and updating SlotIndexes, live intervals may be 849 // in one of two situations, depending on whether this block was the last in 850 // the function. If the original block was the last in the function, all 851 // live intervals will end prior to the beginning of the new split block. If 852 // the original block was not at the end of the function, all live intervals 853 // will extend to the end of the new split block. 854 855 bool isLastMBB = 856 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 857 858 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 859 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 860 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 861 862 // Find the registers used from NMBB in PHIs in Succ. 863 SmallSet<unsigned, 8> PHISrcRegs; 864 for (MachineBasicBlock::instr_iterator 865 I = Succ->instr_begin(), E = Succ->instr_end(); 866 I != E && I->isPHI(); ++I) { 867 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 868 if (I->getOperand(ni+1).getMBB() == NMBB) { 869 MachineOperand &MO = I->getOperand(ni); 870 unsigned Reg = MO.getReg(); 871 PHISrcRegs.insert(Reg); 872 if (MO.isUndef()) 873 continue; 874 875 LiveInterval &LI = LIS->getInterval(Reg); 876 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 877 assert(VNI && 878 "PHI sources should be live out of their predecessors."); 879 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 880 } 881 } 882 } 883 884 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 885 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 886 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 887 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 888 continue; 889 890 LiveInterval &LI = LIS->getInterval(Reg); 891 if (!LI.liveAt(PrevIndex)) 892 continue; 893 894 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 895 if (isLiveOut && isLastMBB) { 896 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 897 assert(VNI && "LiveInterval should have VNInfo where it is live."); 898 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 899 } else if (!isLiveOut && !isLastMBB) { 900 LI.removeSegment(StartIndex, EndIndex); 901 } 902 } 903 904 // Update all intervals for registers whose uses may have been modified by 905 // updateTerminator(). 906 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 907 } 908 909 if (MachineDominatorTree *MDT = 910 P.getAnalysisIfAvailable<MachineDominatorTree>()) 911 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 912 913 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 914 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 915 // If one or the other blocks were not in a loop, the new block is not 916 // either, and thus LI doesn't need to be updated. 917 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 918 if (TIL == DestLoop) { 919 // Both in the same loop, the NMBB joins loop. 920 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 921 } else if (TIL->contains(DestLoop)) { 922 // Edge from an outer loop to an inner loop. Add to the outer loop. 923 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 924 } else if (DestLoop->contains(TIL)) { 925 // Edge from an inner loop to an outer loop. Add to the outer loop. 926 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 927 } else { 928 // Edge from two loops with no containment relation. Because these 929 // are natural loops, we know that the destination block must be the 930 // header of its loop (adding a branch into a loop elsewhere would 931 // create an irreducible loop). 932 assert(DestLoop->getHeader() == Succ && 933 "Should not create irreducible loops!"); 934 if (MachineLoop *P = DestLoop->getParentLoop()) 935 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 936 } 937 } 938 } 939 940 return NMBB; 941 } 942 943 bool MachineBasicBlock::canSplitCriticalEdge( 944 const MachineBasicBlock *Succ) const { 945 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 946 // it in this generic function. 947 if (Succ->isEHPad()) 948 return false; 949 950 const MachineFunction *MF = getParent(); 951 952 // Performance might be harmed on HW that implements branching using exec mask 953 // where both sides of the branches are always executed. 954 if (MF->getTarget().requiresStructuredCFG()) 955 return false; 956 957 // We may need to update this's terminator, but we can't do that if 958 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 959 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 960 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 961 SmallVector<MachineOperand, 4> Cond; 962 // AnalyzeBanch should modify this, since we did not allow modification. 963 if (TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 964 /*AllowModify*/ false)) 965 return false; 966 967 // Avoid bugpoint weirdness: A block may end with a conditional branch but 968 // jumps to the same MBB is either case. We have duplicate CFG edges in that 969 // case that we can't handle. Since this never happens in properly optimized 970 // code, just skip those edges. 971 if (TBB && TBB == FBB) { 972 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 973 << getNumber() << '\n'); 974 return false; 975 } 976 return true; 977 } 978 979 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 980 /// neighboring instructions so the bundle won't be broken by removing MI. 981 static void unbundleSingleMI(MachineInstr *MI) { 982 // Removing the first instruction in a bundle. 983 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 984 MI->unbundleFromSucc(); 985 // Removing the last instruction in a bundle. 986 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 987 MI->unbundleFromPred(); 988 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 989 // are already fine. 990 } 991 992 MachineBasicBlock::instr_iterator 993 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 994 unbundleSingleMI(&*I); 995 return Insts.erase(I); 996 } 997 998 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 999 unbundleSingleMI(MI); 1000 MI->clearFlag(MachineInstr::BundledPred); 1001 MI->clearFlag(MachineInstr::BundledSucc); 1002 return Insts.remove(MI); 1003 } 1004 1005 MachineBasicBlock::instr_iterator 1006 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1007 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1008 "Cannot insert instruction with bundle flags"); 1009 // Set the bundle flags when inserting inside a bundle. 1010 if (I != instr_end() && I->isBundledWithPred()) { 1011 MI->setFlag(MachineInstr::BundledPred); 1012 MI->setFlag(MachineInstr::BundledSucc); 1013 } 1014 return Insts.insert(I, MI); 1015 } 1016 1017 /// This method unlinks 'this' from the containing function, and returns it, but 1018 /// does not delete it. 1019 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1020 assert(getParent() && "Not embedded in a function!"); 1021 getParent()->remove(this); 1022 return this; 1023 } 1024 1025 /// This method unlinks 'this' from the containing function, and deletes it. 1026 void MachineBasicBlock::eraseFromParent() { 1027 assert(getParent() && "Not embedded in a function!"); 1028 getParent()->erase(this); 1029 } 1030 1031 /// Given a machine basic block that branched to 'Old', change the code and CFG 1032 /// so that it branches to 'New' instead. 1033 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1034 MachineBasicBlock *New) { 1035 assert(Old != New && "Cannot replace self with self!"); 1036 1037 MachineBasicBlock::instr_iterator I = instr_end(); 1038 while (I != instr_begin()) { 1039 --I; 1040 if (!I->isTerminator()) break; 1041 1042 // Scan the operands of this machine instruction, replacing any uses of Old 1043 // with New. 1044 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1045 if (I->getOperand(i).isMBB() && 1046 I->getOperand(i).getMBB() == Old) 1047 I->getOperand(i).setMBB(New); 1048 } 1049 1050 // Update the successor information. 1051 replaceSuccessor(Old, New); 1052 } 1053 1054 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1055 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1056 /// MBB successors from the CFG. DestA and DestB can be null. 1057 /// 1058 /// Besides DestA and DestB, retain other edges leading to LandingPads 1059 /// (currently there can be only one; we don't check or require that here). 1060 /// Note it is possible that DestA and/or DestB are LandingPads. 1061 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1062 MachineBasicBlock *DestB, 1063 bool IsCond) { 1064 // The values of DestA and DestB frequently come from a call to the 1065 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1066 // values from there. 1067 // 1068 // 1. If both DestA and DestB are null, then the block ends with no branches 1069 // (it falls through to its successor). 1070 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1071 // with only an unconditional branch. 1072 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1073 // with a conditional branch that falls through to a successor (DestB). 1074 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1075 // conditional branch followed by an unconditional branch. DestA is the 1076 // 'true' destination and DestB is the 'false' destination. 1077 1078 bool Changed = false; 1079 1080 MachineFunction::iterator FallThru = std::next(getIterator()); 1081 1082 if (!DestA && !DestB) { 1083 // Block falls through to successor. 1084 DestA = &*FallThru; 1085 DestB = &*FallThru; 1086 } else if (DestA && !DestB) { 1087 if (IsCond) 1088 // Block ends in conditional jump that falls through to successor. 1089 DestB = &*FallThru; 1090 } else { 1091 assert(DestA && DestB && IsCond && 1092 "CFG in a bad state. Cannot correct CFG edges"); 1093 } 1094 1095 // Remove superfluous edges. I.e., those which aren't destinations of this 1096 // basic block, duplicate edges, or landing pads. 1097 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1098 MachineBasicBlock::succ_iterator SI = succ_begin(); 1099 while (SI != succ_end()) { 1100 const MachineBasicBlock *MBB = *SI; 1101 if (!SeenMBBs.insert(MBB).second || 1102 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1103 // This is a superfluous edge, remove it. 1104 SI = removeSuccessor(SI); 1105 Changed = true; 1106 } else { 1107 ++SI; 1108 } 1109 } 1110 1111 if (Changed) 1112 normalizeSuccProbs(); 1113 return Changed; 1114 } 1115 1116 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1117 /// instructions. Return UnknownLoc if there is none. 1118 DebugLoc 1119 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1120 DebugLoc DL; 1121 instr_iterator E = instr_end(); 1122 if (MBBI == E) 1123 return DL; 1124 1125 // Skip debug declarations, we don't want a DebugLoc from them. 1126 while (MBBI != E && MBBI->isDebugValue()) 1127 MBBI++; 1128 if (MBBI != E) 1129 DL = MBBI->getDebugLoc(); 1130 return DL; 1131 } 1132 1133 /// Return probability of the edge from this block to MBB. 1134 BranchProbability 1135 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1136 if (Probs.empty()) 1137 return BranchProbability(1, succ_size()); 1138 1139 const auto &Prob = *getProbabilityIterator(Succ); 1140 if (Prob.isUnknown()) { 1141 // For unknown probabilities, collect the sum of all known ones, and evenly 1142 // ditribute the complemental of the sum to each unknown probability. 1143 unsigned KnownProbNum = 0; 1144 auto Sum = BranchProbability::getZero(); 1145 for (auto &P : Probs) { 1146 if (!P.isUnknown()) { 1147 Sum += P; 1148 KnownProbNum++; 1149 } 1150 } 1151 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1152 } else 1153 return Prob; 1154 } 1155 1156 /// Set successor probability of a given iterator. 1157 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1158 BranchProbability Prob) { 1159 assert(!Prob.isUnknown()); 1160 if (Probs.empty()) 1161 return; 1162 *getProbabilityIterator(I) = Prob; 1163 } 1164 1165 /// Return probability iterator corresonding to the I successor iterator 1166 MachineBasicBlock::const_probability_iterator 1167 MachineBasicBlock::getProbabilityIterator( 1168 MachineBasicBlock::const_succ_iterator I) const { 1169 assert(Probs.size() == Successors.size() && "Async probability list!"); 1170 const size_t index = std::distance(Successors.begin(), I); 1171 assert(index < Probs.size() && "Not a current successor!"); 1172 return Probs.begin() + index; 1173 } 1174 1175 /// Return probability iterator corresonding to the I successor iterator. 1176 MachineBasicBlock::probability_iterator 1177 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1178 assert(Probs.size() == Successors.size() && "Async probability list!"); 1179 const size_t index = std::distance(Successors.begin(), I); 1180 assert(index < Probs.size() && "Not a current successor!"); 1181 return Probs.begin() + index; 1182 } 1183 1184 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1185 /// as of just before "MI". 1186 /// 1187 /// Search is localised to a neighborhood of 1188 /// Neighborhood instructions before (searching for defs or kills) and N 1189 /// instructions after (searching just for defs) MI. 1190 MachineBasicBlock::LivenessQueryResult 1191 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1192 unsigned Reg, const_iterator Before, 1193 unsigned Neighborhood) const { 1194 unsigned N = Neighborhood; 1195 1196 // Start by searching backwards from Before, looking for kills, reads or defs. 1197 const_iterator I(Before); 1198 // If this is the first insn in the block, don't search backwards. 1199 if (I != begin()) { 1200 do { 1201 --I; 1202 1203 MachineOperandIteratorBase::PhysRegInfo Info = 1204 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1205 1206 // Defs happen after uses so they take precedence if both are present. 1207 1208 // Register is dead after a dead def of the full register. 1209 if (Info.DeadDef) 1210 return LQR_Dead; 1211 // Register is (at least partially) live after a def. 1212 if (Info.Defined) { 1213 if (!Info.PartialDeadDef) 1214 return LQR_Live; 1215 // As soon as we saw a partial definition (dead or not), 1216 // we cannot tell if the value is partial live without 1217 // tracking the lanemasks. We are not going to do this, 1218 // so fall back on the remaining of the analysis. 1219 break; 1220 } 1221 // Register is dead after a full kill or clobber and no def. 1222 if (Info.Killed || Info.Clobbered) 1223 return LQR_Dead; 1224 // Register must be live if we read it. 1225 if (Info.Read) 1226 return LQR_Live; 1227 } while (I != begin() && --N > 0); 1228 } 1229 1230 // Did we get to the start of the block? 1231 if (I == begin()) { 1232 // If so, the register's state is definitely defined by the live-in state. 1233 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid(); 1234 ++RAI) 1235 if (isLiveIn(*RAI)) 1236 return LQR_Live; 1237 1238 return LQR_Dead; 1239 } 1240 1241 N = Neighborhood; 1242 1243 // Try searching forwards from Before, looking for reads or defs. 1244 I = const_iterator(Before); 1245 // If this is the last insn in the block, don't search forwards. 1246 if (I != end()) { 1247 for (++I; I != end() && N > 0; ++I, --N) { 1248 MachineOperandIteratorBase::PhysRegInfo Info = 1249 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1250 1251 // Register is live when we read it here. 1252 if (Info.Read) 1253 return LQR_Live; 1254 // Register is dead if we can fully overwrite or clobber it here. 1255 if (Info.FullyDefined || Info.Clobbered) 1256 return LQR_Dead; 1257 } 1258 } 1259 1260 // At this point we have no idea of the liveness of the register. 1261 return LQR_Unknown; 1262 } 1263 1264 const uint32_t * 1265 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1266 // EH funclet entry does not preserve any registers. 1267 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1268 } 1269 1270 const uint32_t * 1271 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1272 // If we see a return block with successors, this must be a funclet return, 1273 // which does not preserve any registers. If there are no successors, we don't 1274 // care what kind of return it is, putting a mask after it is a no-op. 1275 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1276 } 1277