1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/CodeGen/LiveIntervals.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SlotIndexes.h" 24 #include "llvm/CodeGen/TargetInstrInfo.h" 25 #include "llvm/CodeGen/TargetRegisterInfo.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/Config/llvm-config.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DebugInfoMetadata.h" 31 #include "llvm/IR/ModuleSlotTracker.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCContext.h" 34 #include "llvm/Support/DataTypes.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include <algorithm> 39 using namespace llvm; 40 41 #define DEBUG_TYPE "codegen" 42 43 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 44 : BB(B), Number(-1), xParent(&MF) { 45 Insts.Parent = this; 46 if (B) 47 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); 48 } 49 50 MachineBasicBlock::~MachineBasicBlock() { 51 } 52 53 /// Return the MCSymbol for this basic block. 54 MCSymbol *MachineBasicBlock::getSymbol() const { 55 if (!CachedMCSymbol) { 56 const MachineFunction *MF = getParent(); 57 MCContext &Ctx = MF->getContext(); 58 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 59 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 60 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 61 Twine(MF->getFunctionNumber()) + 62 "_" + Twine(getNumber())); 63 } 64 65 return CachedMCSymbol; 66 } 67 68 69 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 70 MBB.print(OS); 71 return OS; 72 } 73 74 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { 75 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); 76 } 77 78 /// When an MBB is added to an MF, we need to update the parent pointer of the 79 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 80 /// operand list for registers. 81 /// 82 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 83 /// gets the next available unique MBB number. If it is removed from a 84 /// MachineFunction, it goes back to being #-1. 85 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 86 MachineBasicBlock *N) { 87 MachineFunction &MF = *N->getParent(); 88 N->Number = MF.addToMBBNumbering(N); 89 90 // Make sure the instructions have their operands in the reginfo lists. 91 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 92 for (MachineBasicBlock::instr_iterator 93 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 94 I->AddRegOperandsToUseLists(RegInfo); 95 } 96 97 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 98 MachineBasicBlock *N) { 99 N->getParent()->removeFromMBBNumbering(N->Number); 100 N->Number = -1; 101 } 102 103 /// When we add an instruction to a basic block list, we update its parent 104 /// pointer and add its operands from reg use/def lists if appropriate. 105 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 106 assert(!N->getParent() && "machine instruction already in a basic block"); 107 N->setParent(Parent); 108 109 // Add the instruction's register operands to their corresponding 110 // use/def lists. 111 MachineFunction *MF = Parent->getParent(); 112 N->AddRegOperandsToUseLists(MF->getRegInfo()); 113 MF->handleInsertion(*N); 114 } 115 116 /// When we remove an instruction from a basic block list, we update its parent 117 /// pointer and remove its operands from reg use/def lists if appropriate. 118 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 119 assert(N->getParent() && "machine instruction not in a basic block"); 120 121 // Remove from the use/def lists. 122 if (MachineFunction *MF = N->getMF()) { 123 MF->handleRemoval(*N); 124 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 125 } 126 127 N->setParent(nullptr); 128 } 129 130 /// When moving a range of instructions from one MBB list to another, we need to 131 /// update the parent pointers and the use/def lists. 132 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 133 instr_iterator First, 134 instr_iterator Last) { 135 assert(Parent->getParent() == FromList.Parent->getParent() && 136 "MachineInstr parent mismatch!"); 137 assert(this != &FromList && "Called without a real transfer..."); 138 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 139 140 // If splicing between two blocks within the same function, just update the 141 // parent pointers. 142 for (; First != Last; ++First) 143 First->setParent(Parent); 144 } 145 146 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 147 assert(!MI->getParent() && "MI is still in a block!"); 148 Parent->getParent()->DeleteMachineInstr(MI); 149 } 150 151 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 152 instr_iterator I = instr_begin(), E = instr_end(); 153 while (I != E && I->isPHI()) 154 ++I; 155 assert((I == E || !I->isInsideBundle()) && 156 "First non-phi MI cannot be inside a bundle!"); 157 return I; 158 } 159 160 MachineBasicBlock::iterator 161 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 162 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 163 164 iterator E = end(); 165 while (I != E && (I->isPHI() || I->isPosition() || 166 TII->isBasicBlockPrologue(*I))) 167 ++I; 168 // FIXME: This needs to change if we wish to bundle labels 169 // inside the bundle. 170 assert((I == E || !I->isInsideBundle()) && 171 "First non-phi / non-label instruction is inside a bundle!"); 172 return I; 173 } 174 175 MachineBasicBlock::iterator 176 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) { 177 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 178 179 iterator E = end(); 180 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() || 181 TII->isBasicBlockPrologue(*I))) 182 ++I; 183 // FIXME: This needs to change if we wish to bundle labels / dbg_values 184 // inside the bundle. 185 assert((I == E || !I->isInsideBundle()) && 186 "First non-phi / non-label / non-debug " 187 "instruction is inside a bundle!"); 188 return I; 189 } 190 191 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 192 iterator B = begin(), E = end(), I = E; 193 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 194 ; /*noop */ 195 while (I != E && !I->isTerminator()) 196 ++I; 197 return I; 198 } 199 200 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 201 instr_iterator B = instr_begin(), E = instr_end(), I = E; 202 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 203 ; /*noop */ 204 while (I != E && !I->isTerminator()) 205 ++I; 206 return I; 207 } 208 209 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 210 // Skip over begin-of-block dbg_value instructions. 211 return skipDebugInstructionsForward(begin(), end()); 212 } 213 214 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 215 // Skip over end-of-block dbg_value instructions. 216 instr_iterator B = instr_begin(), I = instr_end(); 217 while (I != B) { 218 --I; 219 // Return instruction that starts a bundle. 220 if (I->isDebugInstr() || I->isInsideBundle()) 221 continue; 222 return I; 223 } 224 // The block is all debug values. 225 return end(); 226 } 227 228 bool MachineBasicBlock::hasEHPadSuccessor() const { 229 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 230 if ((*I)->isEHPad()) 231 return true; 232 return false; 233 } 234 235 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 236 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 237 print(dbgs()); 238 } 239 #endif 240 241 bool MachineBasicBlock::isLegalToHoistInto() const { 242 if (isReturnBlock() || hasEHPadSuccessor()) 243 return false; 244 return true; 245 } 246 247 StringRef MachineBasicBlock::getName() const { 248 if (const BasicBlock *LBB = getBasicBlock()) 249 return LBB->getName(); 250 else 251 return StringRef("", 0); 252 } 253 254 /// Return a hopefully unique identifier for this block. 255 std::string MachineBasicBlock::getFullName() const { 256 std::string Name; 257 if (getParent()) 258 Name = (getParent()->getName() + ":").str(); 259 if (getBasicBlock()) 260 Name += getBasicBlock()->getName(); 261 else 262 Name += ("BB" + Twine(getNumber())).str(); 263 return Name; 264 } 265 266 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, 267 bool IsStandalone) const { 268 const MachineFunction *MF = getParent(); 269 if (!MF) { 270 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 271 << " is null\n"; 272 return; 273 } 274 const Function &F = MF->getFunction(); 275 const Module *M = F.getParent(); 276 ModuleSlotTracker MST(M); 277 MST.incorporateFunction(F); 278 print(OS, MST, Indexes, IsStandalone); 279 } 280 281 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 282 const SlotIndexes *Indexes, 283 bool IsStandalone) const { 284 const MachineFunction *MF = getParent(); 285 if (!MF) { 286 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 287 << " is null\n"; 288 return; 289 } 290 291 if (Indexes) 292 OS << Indexes->getMBBStartIdx(this) << '\t'; 293 294 OS << "bb." << getNumber(); 295 bool HasAttributes = false; 296 if (const auto *BB = getBasicBlock()) { 297 if (BB->hasName()) { 298 OS << "." << BB->getName(); 299 } else { 300 HasAttributes = true; 301 OS << " ("; 302 int Slot = MST.getLocalSlot(BB); 303 if (Slot == -1) 304 OS << "<ir-block badref>"; 305 else 306 OS << (Twine("%ir-block.") + Twine(Slot)).str(); 307 } 308 } 309 310 if (hasAddressTaken()) { 311 OS << (HasAttributes ? ", " : " ("); 312 OS << "address-taken"; 313 HasAttributes = true; 314 } 315 if (isEHPad()) { 316 OS << (HasAttributes ? ", " : " ("); 317 OS << "landing-pad"; 318 HasAttributes = true; 319 } 320 if (getAlignment()) { 321 OS << (HasAttributes ? ", " : " ("); 322 OS << "align " << getAlignment(); 323 HasAttributes = true; 324 } 325 if (HasAttributes) 326 OS << ")"; 327 OS << ":\n"; 328 329 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 330 const MachineRegisterInfo &MRI = MF->getRegInfo(); 331 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 332 bool HasLineAttributes = false; 333 334 // Print the preds of this block according to the CFG. 335 if (!pred_empty() && IsStandalone) { 336 if (Indexes) OS << '\t'; 337 // Don't indent(2), align with previous line attributes. 338 OS << "; predecessors: "; 339 for (auto I = pred_begin(), E = pred_end(); I != E; ++I) { 340 if (I != pred_begin()) 341 OS << ", "; 342 OS << printMBBReference(**I); 343 } 344 OS << '\n'; 345 HasLineAttributes = true; 346 } 347 348 if (!succ_empty()) { 349 if (Indexes) OS << '\t'; 350 // Print the successors 351 OS.indent(2) << "successors: "; 352 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 353 if (I != succ_begin()) 354 OS << ", "; 355 OS << printMBBReference(**I); 356 if (!Probs.empty()) 357 OS << '(' 358 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator()) 359 << ')'; 360 } 361 if (!Probs.empty() && IsStandalone) { 362 // Print human readable probabilities as comments. 363 OS << "; "; 364 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 365 const BranchProbability &BP = *getProbabilityIterator(I); 366 if (I != succ_begin()) 367 OS << ", "; 368 OS << printMBBReference(**I) << '(' 369 << format("%.2f%%", 370 rint(((double)BP.getNumerator() / BP.getDenominator()) * 371 100.0 * 100.0) / 372 100.0) 373 << ')'; 374 } 375 } 376 377 OS << '\n'; 378 HasLineAttributes = true; 379 } 380 381 if (!livein_empty() && MRI.tracksLiveness()) { 382 if (Indexes) OS << '\t'; 383 OS.indent(2) << "liveins: "; 384 385 bool First = true; 386 for (const auto &LI : liveins()) { 387 if (!First) 388 OS << ", "; 389 First = false; 390 OS << printReg(LI.PhysReg, TRI); 391 if (!LI.LaneMask.all()) 392 OS << ":0x" << PrintLaneMask(LI.LaneMask); 393 } 394 HasLineAttributes = true; 395 } 396 397 if (HasLineAttributes) 398 OS << '\n'; 399 400 bool IsInBundle = false; 401 for (const MachineInstr &MI : instrs()) { 402 if (Indexes) { 403 if (Indexes->hasIndex(MI)) 404 OS << Indexes->getInstructionIndex(MI); 405 OS << '\t'; 406 } 407 408 if (IsInBundle && !MI.isInsideBundle()) { 409 OS.indent(2) << "}\n"; 410 IsInBundle = false; 411 } 412 413 OS.indent(IsInBundle ? 4 : 2); 414 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false, 415 /*AddNewLine=*/false, &TII); 416 417 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) { 418 OS << " {"; 419 IsInBundle = true; 420 } 421 OS << '\n'; 422 } 423 424 if (IsInBundle) 425 OS.indent(2) << "}\n"; 426 427 if (IrrLoopHeaderWeight && IsStandalone) { 428 if (Indexes) OS << '\t'; 429 OS.indent(2) << "; Irreducible loop header weight: " 430 << IrrLoopHeaderWeight.getValue() << '\n'; 431 } 432 } 433 434 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 435 bool /*PrintType*/) const { 436 OS << "%bb." << getNumber(); 437 } 438 439 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 440 LiveInVector::iterator I = find_if( 441 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 442 if (I == LiveIns.end()) 443 return; 444 445 I->LaneMask &= ~LaneMask; 446 if (I->LaneMask.none()) 447 LiveIns.erase(I); 448 } 449 450 MachineBasicBlock::livein_iterator 451 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 452 // Get non-const version of iterator. 453 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 454 return LiveIns.erase(LI); 455 } 456 457 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 458 livein_iterator I = find_if( 459 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 460 return I != livein_end() && (I->LaneMask & LaneMask).any(); 461 } 462 463 void MachineBasicBlock::sortUniqueLiveIns() { 464 llvm::sort(LiveIns, 465 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 466 return LI0.PhysReg < LI1.PhysReg; 467 }); 468 // Liveins are sorted by physreg now we can merge their lanemasks. 469 LiveInVector::const_iterator I = LiveIns.begin(); 470 LiveInVector::const_iterator J; 471 LiveInVector::iterator Out = LiveIns.begin(); 472 for (; I != LiveIns.end(); ++Out, I = J) { 473 unsigned PhysReg = I->PhysReg; 474 LaneBitmask LaneMask = I->LaneMask; 475 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 476 LaneMask |= J->LaneMask; 477 Out->PhysReg = PhysReg; 478 Out->LaneMask = LaneMask; 479 } 480 LiveIns.erase(Out, LiveIns.end()); 481 } 482 483 unsigned 484 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 485 assert(getParent() && "MBB must be inserted in function"); 486 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 487 assert(RC && "Register class is required"); 488 assert((isEHPad() || this == &getParent()->front()) && 489 "Only the entry block and landing pads can have physreg live ins"); 490 491 bool LiveIn = isLiveIn(PhysReg); 492 iterator I = SkipPHIsAndLabels(begin()), E = end(); 493 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 494 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 495 496 // Look for an existing copy. 497 if (LiveIn) 498 for (;I != E && I->isCopy(); ++I) 499 if (I->getOperand(1).getReg() == PhysReg) { 500 unsigned VirtReg = I->getOperand(0).getReg(); 501 if (!MRI.constrainRegClass(VirtReg, RC)) 502 llvm_unreachable("Incompatible live-in register class."); 503 return VirtReg; 504 } 505 506 // No luck, create a virtual register. 507 unsigned VirtReg = MRI.createVirtualRegister(RC); 508 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 509 .addReg(PhysReg, RegState::Kill); 510 if (!LiveIn) 511 addLiveIn(PhysReg); 512 return VirtReg; 513 } 514 515 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 516 getParent()->splice(NewAfter->getIterator(), getIterator()); 517 } 518 519 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 520 getParent()->splice(++NewBefore->getIterator(), getIterator()); 521 } 522 523 void MachineBasicBlock::updateTerminator() { 524 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 525 // A block with no successors has no concerns with fall-through edges. 526 if (this->succ_empty()) 527 return; 528 529 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 530 SmallVector<MachineOperand, 4> Cond; 531 DebugLoc DL = findBranchDebugLoc(); 532 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 533 (void) B; 534 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 535 if (Cond.empty()) { 536 if (TBB) { 537 // The block has an unconditional branch. If its successor is now its 538 // layout successor, delete the branch. 539 if (isLayoutSuccessor(TBB)) 540 TII->removeBranch(*this); 541 } else { 542 // The block has an unconditional fallthrough. If its successor is not its 543 // layout successor, insert a branch. First we have to locate the only 544 // non-landing-pad successor, as that is the fallthrough block. 545 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 546 if ((*SI)->isEHPad()) 547 continue; 548 assert(!TBB && "Found more than one non-landing-pad successor!"); 549 TBB = *SI; 550 } 551 552 // If there is no non-landing-pad successor, the block has no fall-through 553 // edges to be concerned with. 554 if (!TBB) 555 return; 556 557 // Finally update the unconditional successor to be reached via a branch 558 // if it would not be reached by fallthrough. 559 if (!isLayoutSuccessor(TBB)) 560 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 561 } 562 return; 563 } 564 565 if (FBB) { 566 // The block has a non-fallthrough conditional branch. If one of its 567 // successors is its layout successor, rewrite it to a fallthrough 568 // conditional branch. 569 if (isLayoutSuccessor(TBB)) { 570 if (TII->reverseBranchCondition(Cond)) 571 return; 572 TII->removeBranch(*this); 573 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 574 } else if (isLayoutSuccessor(FBB)) { 575 TII->removeBranch(*this); 576 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 577 } 578 return; 579 } 580 581 // Walk through the successors and find the successor which is not a landing 582 // pad and is not the conditional branch destination (in TBB) as the 583 // fallthrough successor. 584 MachineBasicBlock *FallthroughBB = nullptr; 585 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 586 if ((*SI)->isEHPad() || *SI == TBB) 587 continue; 588 assert(!FallthroughBB && "Found more than one fallthrough successor."); 589 FallthroughBB = *SI; 590 } 591 592 if (!FallthroughBB) { 593 if (canFallThrough()) { 594 // We fallthrough to the same basic block as the conditional jump targets. 595 // Remove the conditional jump, leaving unconditional fallthrough. 596 // FIXME: This does not seem like a reasonable pattern to support, but it 597 // has been seen in the wild coming out of degenerate ARM test cases. 598 TII->removeBranch(*this); 599 600 // Finally update the unconditional successor to be reached via a branch if 601 // it would not be reached by fallthrough. 602 if (!isLayoutSuccessor(TBB)) 603 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 604 return; 605 } 606 607 // We enter here iff exactly one successor is TBB which cannot fallthrough 608 // and the rest successors if any are EHPads. In this case, we need to 609 // change the conditional branch into unconditional branch. 610 TII->removeBranch(*this); 611 Cond.clear(); 612 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 613 return; 614 } 615 616 // The block has a fallthrough conditional branch. 617 if (isLayoutSuccessor(TBB)) { 618 if (TII->reverseBranchCondition(Cond)) { 619 // We can't reverse the condition, add an unconditional branch. 620 Cond.clear(); 621 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 622 return; 623 } 624 TII->removeBranch(*this); 625 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 626 } else if (!isLayoutSuccessor(FallthroughBB)) { 627 TII->removeBranch(*this); 628 TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL); 629 } 630 } 631 632 void MachineBasicBlock::validateSuccProbs() const { 633 #ifndef NDEBUG 634 int64_t Sum = 0; 635 for (auto Prob : Probs) 636 Sum += Prob.getNumerator(); 637 // Due to precision issue, we assume that the sum of probabilities is one if 638 // the difference between the sum of their numerators and the denominator is 639 // no greater than the number of successors. 640 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 641 Probs.size() && 642 "The sum of successors's probabilities exceeds one."); 643 #endif // NDEBUG 644 } 645 646 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 647 BranchProbability Prob) { 648 // Probability list is either empty (if successor list isn't empty, this means 649 // disabled optimization) or has the same size as successor list. 650 if (!(Probs.empty() && !Successors.empty())) 651 Probs.push_back(Prob); 652 Successors.push_back(Succ); 653 Succ->addPredecessor(this); 654 } 655 656 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 657 // We need to make sure probability list is either empty or has the same size 658 // of successor list. When this function is called, we can safely delete all 659 // probability in the list. 660 Probs.clear(); 661 Successors.push_back(Succ); 662 Succ->addPredecessor(this); 663 } 664 665 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old, 666 MachineBasicBlock *New, 667 bool NormalizeSuccProbs) { 668 succ_iterator OldI = llvm::find(successors(), Old); 669 assert(OldI != succ_end() && "Old is not a successor of this block!"); 670 assert(llvm::find(successors(), New) == succ_end() && 671 "New is already a successor of this block!"); 672 673 // Add a new successor with equal probability as the original one. Note 674 // that we directly copy the probability using the iterator rather than 675 // getting a potentially synthetic probability computed when unknown. This 676 // preserves the probabilities as-is and then we can renormalize them and 677 // query them effectively afterward. 678 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown() 679 : *getProbabilityIterator(OldI)); 680 if (NormalizeSuccProbs) 681 normalizeSuccProbs(); 682 } 683 684 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 685 bool NormalizeSuccProbs) { 686 succ_iterator I = find(Successors, Succ); 687 removeSuccessor(I, NormalizeSuccProbs); 688 } 689 690 MachineBasicBlock::succ_iterator 691 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 692 assert(I != Successors.end() && "Not a current successor!"); 693 694 // If probability list is empty it means we don't use it (disabled 695 // optimization). 696 if (!Probs.empty()) { 697 probability_iterator WI = getProbabilityIterator(I); 698 Probs.erase(WI); 699 if (NormalizeSuccProbs) 700 normalizeSuccProbs(); 701 } 702 703 (*I)->removePredecessor(this); 704 return Successors.erase(I); 705 } 706 707 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 708 MachineBasicBlock *New) { 709 if (Old == New) 710 return; 711 712 succ_iterator E = succ_end(); 713 succ_iterator NewI = E; 714 succ_iterator OldI = E; 715 for (succ_iterator I = succ_begin(); I != E; ++I) { 716 if (*I == Old) { 717 OldI = I; 718 if (NewI != E) 719 break; 720 } 721 if (*I == New) { 722 NewI = I; 723 if (OldI != E) 724 break; 725 } 726 } 727 assert(OldI != E && "Old is not a successor of this block"); 728 729 // If New isn't already a successor, let it take Old's place. 730 if (NewI == E) { 731 Old->removePredecessor(this); 732 New->addPredecessor(this); 733 *OldI = New; 734 return; 735 } 736 737 // New is already a successor. 738 // Update its probability instead of adding a duplicate edge. 739 if (!Probs.empty()) { 740 auto ProbIter = getProbabilityIterator(NewI); 741 if (!ProbIter->isUnknown()) 742 *ProbIter += *getProbabilityIterator(OldI); 743 } 744 removeSuccessor(OldI); 745 } 746 747 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig, 748 succ_iterator I) { 749 if (Orig->Probs.empty()) 750 addSuccessor(*I, Orig->getSuccProbability(I)); 751 else 752 addSuccessorWithoutProb(*I); 753 } 754 755 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 756 Predecessors.push_back(Pred); 757 } 758 759 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 760 pred_iterator I = find(Predecessors, Pred); 761 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 762 Predecessors.erase(I); 763 } 764 765 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 766 if (this == FromMBB) 767 return; 768 769 while (!FromMBB->succ_empty()) { 770 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 771 772 // If probability list is empty it means we don't use it (disabled optimization). 773 if (!FromMBB->Probs.empty()) { 774 auto Prob = *FromMBB->Probs.begin(); 775 addSuccessor(Succ, Prob); 776 } else 777 addSuccessorWithoutProb(Succ); 778 779 FromMBB->removeSuccessor(Succ); 780 } 781 } 782 783 void 784 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 785 if (this == FromMBB) 786 return; 787 788 while (!FromMBB->succ_empty()) { 789 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 790 if (!FromMBB->Probs.empty()) { 791 auto Prob = *FromMBB->Probs.begin(); 792 addSuccessor(Succ, Prob); 793 } else 794 addSuccessorWithoutProb(Succ); 795 FromMBB->removeSuccessor(Succ); 796 797 // Fix up any PHI nodes in the successor. 798 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 799 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 800 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 801 MachineOperand &MO = MI->getOperand(i); 802 if (MO.getMBB() == FromMBB) 803 MO.setMBB(this); 804 } 805 } 806 normalizeSuccProbs(); 807 } 808 809 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 810 return is_contained(predecessors(), MBB); 811 } 812 813 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 814 return is_contained(successors(), MBB); 815 } 816 817 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 818 MachineFunction::const_iterator I(this); 819 return std::next(I) == MachineFunction::const_iterator(MBB); 820 } 821 822 MachineBasicBlock *MachineBasicBlock::getFallThrough() { 823 MachineFunction::iterator Fallthrough = getIterator(); 824 ++Fallthrough; 825 // If FallthroughBlock is off the end of the function, it can't fall through. 826 if (Fallthrough == getParent()->end()) 827 return nullptr; 828 829 // If FallthroughBlock isn't a successor, no fallthrough is possible. 830 if (!isSuccessor(&*Fallthrough)) 831 return nullptr; 832 833 // Analyze the branches, if any, at the end of the block. 834 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 835 SmallVector<MachineOperand, 4> Cond; 836 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 837 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 838 // If we couldn't analyze the branch, examine the last instruction. 839 // If the block doesn't end in a known control barrier, assume fallthrough 840 // is possible. The isPredicated check is needed because this code can be 841 // called during IfConversion, where an instruction which is normally a 842 // Barrier is predicated and thus no longer an actual control barrier. 843 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 844 ? &*Fallthrough 845 : nullptr; 846 } 847 848 // If there is no branch, control always falls through. 849 if (!TBB) return &*Fallthrough; 850 851 // If there is some explicit branch to the fallthrough block, it can obviously 852 // reach, even though the branch should get folded to fall through implicitly. 853 if (MachineFunction::iterator(TBB) == Fallthrough || 854 MachineFunction::iterator(FBB) == Fallthrough) 855 return &*Fallthrough; 856 857 // If it's an unconditional branch to some block not the fall through, it 858 // doesn't fall through. 859 if (Cond.empty()) return nullptr; 860 861 // Otherwise, if it is conditional and has no explicit false block, it falls 862 // through. 863 return (FBB == nullptr) ? &*Fallthrough : nullptr; 864 } 865 866 bool MachineBasicBlock::canFallThrough() { 867 return getFallThrough() != nullptr; 868 } 869 870 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, 871 Pass &P) { 872 if (!canSplitCriticalEdge(Succ)) 873 return nullptr; 874 875 MachineFunction *MF = getParent(); 876 DebugLoc DL; // FIXME: this is nowhere 877 878 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 879 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 880 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) 881 << " -- " << printMBBReference(*NMBB) << " -- " 882 << printMBBReference(*Succ) << '\n'); 883 884 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 885 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 886 if (LIS) 887 LIS->insertMBBInMaps(NMBB); 888 else if (Indexes) 889 Indexes->insertMBBInMaps(NMBB); 890 891 // On some targets like Mips, branches may kill virtual registers. Make sure 892 // that LiveVariables is properly updated after updateTerminator replaces the 893 // terminators. 894 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 895 896 // Collect a list of virtual registers killed by the terminators. 897 SmallVector<unsigned, 4> KilledRegs; 898 if (LV) 899 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 900 I != E; ++I) { 901 MachineInstr *MI = &*I; 902 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 903 OE = MI->operands_end(); OI != OE; ++OI) { 904 if (!OI->isReg() || OI->getReg() == 0 || 905 !OI->isUse() || !OI->isKill() || OI->isUndef()) 906 continue; 907 unsigned Reg = OI->getReg(); 908 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 909 LV->getVarInfo(Reg).removeKill(*MI)) { 910 KilledRegs.push_back(Reg); 911 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI); 912 OI->setIsKill(false); 913 } 914 } 915 } 916 917 SmallVector<unsigned, 4> UsedRegs; 918 if (LIS) { 919 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 920 I != E; ++I) { 921 MachineInstr *MI = &*I; 922 923 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 924 OE = MI->operands_end(); OI != OE; ++OI) { 925 if (!OI->isReg() || OI->getReg() == 0) 926 continue; 927 928 unsigned Reg = OI->getReg(); 929 if (!is_contained(UsedRegs, Reg)) 930 UsedRegs.push_back(Reg); 931 } 932 } 933 } 934 935 ReplaceUsesOfBlockWith(Succ, NMBB); 936 937 // If updateTerminator() removes instructions, we need to remove them from 938 // SlotIndexes. 939 SmallVector<MachineInstr*, 4> Terminators; 940 if (Indexes) { 941 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 942 I != E; ++I) 943 Terminators.push_back(&*I); 944 } 945 946 updateTerminator(); 947 948 if (Indexes) { 949 SmallVector<MachineInstr*, 4> NewTerminators; 950 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 951 I != E; ++I) 952 NewTerminators.push_back(&*I); 953 954 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 955 E = Terminators.end(); I != E; ++I) { 956 if (!is_contained(NewTerminators, *I)) 957 Indexes->removeMachineInstrFromMaps(**I); 958 } 959 } 960 961 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 962 NMBB->addSuccessor(Succ); 963 if (!NMBB->isLayoutSuccessor(Succ)) { 964 SmallVector<MachineOperand, 4> Cond; 965 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 966 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 967 968 if (Indexes) { 969 for (MachineInstr &MI : NMBB->instrs()) { 970 // Some instructions may have been moved to NMBB by updateTerminator(), 971 // so we first remove any instruction that already has an index. 972 if (Indexes->hasIndex(MI)) 973 Indexes->removeMachineInstrFromMaps(MI); 974 Indexes->insertMachineInstrInMaps(MI); 975 } 976 } 977 } 978 979 // Fix PHI nodes in Succ so they refer to NMBB instead of this 980 for (MachineBasicBlock::instr_iterator 981 i = Succ->instr_begin(),e = Succ->instr_end(); 982 i != e && i->isPHI(); ++i) 983 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 984 if (i->getOperand(ni+1).getMBB() == this) 985 i->getOperand(ni+1).setMBB(NMBB); 986 987 // Inherit live-ins from the successor 988 for (const auto &LI : Succ->liveins()) 989 NMBB->addLiveIn(LI); 990 991 // Update LiveVariables. 992 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 993 if (LV) { 994 // Restore kills of virtual registers that were killed by the terminators. 995 while (!KilledRegs.empty()) { 996 unsigned Reg = KilledRegs.pop_back_val(); 997 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 998 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 999 continue; 1000 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1001 LV->getVarInfo(Reg).Kills.push_back(&*I); 1002 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I); 1003 break; 1004 } 1005 } 1006 // Update relevant live-through information. 1007 LV->addNewBlock(NMBB, this, Succ); 1008 } 1009 1010 if (LIS) { 1011 // After splitting the edge and updating SlotIndexes, live intervals may be 1012 // in one of two situations, depending on whether this block was the last in 1013 // the function. If the original block was the last in the function, all 1014 // live intervals will end prior to the beginning of the new split block. If 1015 // the original block was not at the end of the function, all live intervals 1016 // will extend to the end of the new split block. 1017 1018 bool isLastMBB = 1019 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 1020 1021 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 1022 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 1023 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 1024 1025 // Find the registers used from NMBB in PHIs in Succ. 1026 SmallSet<unsigned, 8> PHISrcRegs; 1027 for (MachineBasicBlock::instr_iterator 1028 I = Succ->instr_begin(), E = Succ->instr_end(); 1029 I != E && I->isPHI(); ++I) { 1030 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 1031 if (I->getOperand(ni+1).getMBB() == NMBB) { 1032 MachineOperand &MO = I->getOperand(ni); 1033 unsigned Reg = MO.getReg(); 1034 PHISrcRegs.insert(Reg); 1035 if (MO.isUndef()) 1036 continue; 1037 1038 LiveInterval &LI = LIS->getInterval(Reg); 1039 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1040 assert(VNI && 1041 "PHI sources should be live out of their predecessors."); 1042 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1043 } 1044 } 1045 } 1046 1047 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 1048 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1049 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1050 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 1051 continue; 1052 1053 LiveInterval &LI = LIS->getInterval(Reg); 1054 if (!LI.liveAt(PrevIndex)) 1055 continue; 1056 1057 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 1058 if (isLiveOut && isLastMBB) { 1059 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1060 assert(VNI && "LiveInterval should have VNInfo where it is live."); 1061 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1062 } else if (!isLiveOut && !isLastMBB) { 1063 LI.removeSegment(StartIndex, EndIndex); 1064 } 1065 } 1066 1067 // Update all intervals for registers whose uses may have been modified by 1068 // updateTerminator(). 1069 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 1070 } 1071 1072 if (MachineDominatorTree *MDT = 1073 P.getAnalysisIfAvailable<MachineDominatorTree>()) 1074 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 1075 1076 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 1077 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 1078 // If one or the other blocks were not in a loop, the new block is not 1079 // either, and thus LI doesn't need to be updated. 1080 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 1081 if (TIL == DestLoop) { 1082 // Both in the same loop, the NMBB joins loop. 1083 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1084 } else if (TIL->contains(DestLoop)) { 1085 // Edge from an outer loop to an inner loop. Add to the outer loop. 1086 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 1087 } else if (DestLoop->contains(TIL)) { 1088 // Edge from an inner loop to an outer loop. Add to the outer loop. 1089 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1090 } else { 1091 // Edge from two loops with no containment relation. Because these 1092 // are natural loops, we know that the destination block must be the 1093 // header of its loop (adding a branch into a loop elsewhere would 1094 // create an irreducible loop). 1095 assert(DestLoop->getHeader() == Succ && 1096 "Should not create irreducible loops!"); 1097 if (MachineLoop *P = DestLoop->getParentLoop()) 1098 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 1099 } 1100 } 1101 } 1102 1103 return NMBB; 1104 } 1105 1106 bool MachineBasicBlock::canSplitCriticalEdge( 1107 const MachineBasicBlock *Succ) const { 1108 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 1109 // it in this generic function. 1110 if (Succ->isEHPad()) 1111 return false; 1112 1113 const MachineFunction *MF = getParent(); 1114 1115 // Performance might be harmed on HW that implements branching using exec mask 1116 // where both sides of the branches are always executed. 1117 if (MF->getTarget().requiresStructuredCFG()) 1118 return false; 1119 1120 // We may need to update this's terminator, but we can't do that if 1121 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 1122 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1123 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1124 SmallVector<MachineOperand, 4> Cond; 1125 // AnalyzeBanch should modify this, since we did not allow modification. 1126 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1127 /*AllowModify*/ false)) 1128 return false; 1129 1130 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1131 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1132 // case that we can't handle. Since this never happens in properly optimized 1133 // code, just skip those edges. 1134 if (TBB && TBB == FBB) { 1135 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate " 1136 << printMBBReference(*this) << '\n'); 1137 return false; 1138 } 1139 return true; 1140 } 1141 1142 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1143 /// neighboring instructions so the bundle won't be broken by removing MI. 1144 static void unbundleSingleMI(MachineInstr *MI) { 1145 // Removing the first instruction in a bundle. 1146 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1147 MI->unbundleFromSucc(); 1148 // Removing the last instruction in a bundle. 1149 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1150 MI->unbundleFromPred(); 1151 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1152 // are already fine. 1153 } 1154 1155 MachineBasicBlock::instr_iterator 1156 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1157 unbundleSingleMI(&*I); 1158 return Insts.erase(I); 1159 } 1160 1161 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1162 unbundleSingleMI(MI); 1163 MI->clearFlag(MachineInstr::BundledPred); 1164 MI->clearFlag(MachineInstr::BundledSucc); 1165 return Insts.remove(MI); 1166 } 1167 1168 MachineBasicBlock::instr_iterator 1169 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1170 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1171 "Cannot insert instruction with bundle flags"); 1172 // Set the bundle flags when inserting inside a bundle. 1173 if (I != instr_end() && I->isBundledWithPred()) { 1174 MI->setFlag(MachineInstr::BundledPred); 1175 MI->setFlag(MachineInstr::BundledSucc); 1176 } 1177 return Insts.insert(I, MI); 1178 } 1179 1180 /// This method unlinks 'this' from the containing function, and returns it, but 1181 /// does not delete it. 1182 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1183 assert(getParent() && "Not embedded in a function!"); 1184 getParent()->remove(this); 1185 return this; 1186 } 1187 1188 /// This method unlinks 'this' from the containing function, and deletes it. 1189 void MachineBasicBlock::eraseFromParent() { 1190 assert(getParent() && "Not embedded in a function!"); 1191 getParent()->erase(this); 1192 } 1193 1194 /// Given a machine basic block that branched to 'Old', change the code and CFG 1195 /// so that it branches to 'New' instead. 1196 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1197 MachineBasicBlock *New) { 1198 assert(Old != New && "Cannot replace self with self!"); 1199 1200 MachineBasicBlock::instr_iterator I = instr_end(); 1201 while (I != instr_begin()) { 1202 --I; 1203 if (!I->isTerminator()) break; 1204 1205 // Scan the operands of this machine instruction, replacing any uses of Old 1206 // with New. 1207 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1208 if (I->getOperand(i).isMBB() && 1209 I->getOperand(i).getMBB() == Old) 1210 I->getOperand(i).setMBB(New); 1211 } 1212 1213 // Update the successor information. 1214 replaceSuccessor(Old, New); 1215 } 1216 1217 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1218 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1219 /// MBB successors from the CFG. DestA and DestB can be null. 1220 /// 1221 /// Besides DestA and DestB, retain other edges leading to LandingPads 1222 /// (currently there can be only one; we don't check or require that here). 1223 /// Note it is possible that DestA and/or DestB are LandingPads. 1224 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1225 MachineBasicBlock *DestB, 1226 bool IsCond) { 1227 // The values of DestA and DestB frequently come from a call to the 1228 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1229 // values from there. 1230 // 1231 // 1. If both DestA and DestB are null, then the block ends with no branches 1232 // (it falls through to its successor). 1233 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1234 // with only an unconditional branch. 1235 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1236 // with a conditional branch that falls through to a successor (DestB). 1237 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1238 // conditional branch followed by an unconditional branch. DestA is the 1239 // 'true' destination and DestB is the 'false' destination. 1240 1241 bool Changed = false; 1242 1243 MachineBasicBlock *FallThru = getNextNode(); 1244 1245 if (!DestA && !DestB) { 1246 // Block falls through to successor. 1247 DestA = FallThru; 1248 DestB = FallThru; 1249 } else if (DestA && !DestB) { 1250 if (IsCond) 1251 // Block ends in conditional jump that falls through to successor. 1252 DestB = FallThru; 1253 } else { 1254 assert(DestA && DestB && IsCond && 1255 "CFG in a bad state. Cannot correct CFG edges"); 1256 } 1257 1258 // Remove superfluous edges. I.e., those which aren't destinations of this 1259 // basic block, duplicate edges, or landing pads. 1260 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1261 MachineBasicBlock::succ_iterator SI = succ_begin(); 1262 while (SI != succ_end()) { 1263 const MachineBasicBlock *MBB = *SI; 1264 if (!SeenMBBs.insert(MBB).second || 1265 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1266 // This is a superfluous edge, remove it. 1267 SI = removeSuccessor(SI); 1268 Changed = true; 1269 } else { 1270 ++SI; 1271 } 1272 } 1273 1274 if (Changed) 1275 normalizeSuccProbs(); 1276 return Changed; 1277 } 1278 1279 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1280 /// instructions. Return UnknownLoc if there is none. 1281 DebugLoc 1282 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1283 // Skip debug declarations, we don't want a DebugLoc from them. 1284 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1285 if (MBBI != instr_end()) 1286 return MBBI->getDebugLoc(); 1287 return {}; 1288 } 1289 1290 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE 1291 /// instructions. Return UnknownLoc if there is none. 1292 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) { 1293 if (MBBI == instr_begin()) return {}; 1294 // Skip debug declarations, we don't want a DebugLoc from them. 1295 MBBI = skipDebugInstructionsBackward(std::prev(MBBI), instr_begin()); 1296 if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc(); 1297 return {}; 1298 } 1299 1300 /// Find and return the merged DebugLoc of the branch instructions of the block. 1301 /// Return UnknownLoc if there is none. 1302 DebugLoc 1303 MachineBasicBlock::findBranchDebugLoc() { 1304 DebugLoc DL; 1305 auto TI = getFirstTerminator(); 1306 while (TI != end() && !TI->isBranch()) 1307 ++TI; 1308 1309 if (TI != end()) { 1310 DL = TI->getDebugLoc(); 1311 for (++TI ; TI != end() ; ++TI) 1312 if (TI->isBranch()) 1313 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1314 } 1315 return DL; 1316 } 1317 1318 /// Return probability of the edge from this block to MBB. 1319 BranchProbability 1320 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1321 if (Probs.empty()) 1322 return BranchProbability(1, succ_size()); 1323 1324 const auto &Prob = *getProbabilityIterator(Succ); 1325 if (Prob.isUnknown()) { 1326 // For unknown probabilities, collect the sum of all known ones, and evenly 1327 // ditribute the complemental of the sum to each unknown probability. 1328 unsigned KnownProbNum = 0; 1329 auto Sum = BranchProbability::getZero(); 1330 for (auto &P : Probs) { 1331 if (!P.isUnknown()) { 1332 Sum += P; 1333 KnownProbNum++; 1334 } 1335 } 1336 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1337 } else 1338 return Prob; 1339 } 1340 1341 /// Set successor probability of a given iterator. 1342 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1343 BranchProbability Prob) { 1344 assert(!Prob.isUnknown()); 1345 if (Probs.empty()) 1346 return; 1347 *getProbabilityIterator(I) = Prob; 1348 } 1349 1350 /// Return probability iterator corresonding to the I successor iterator 1351 MachineBasicBlock::const_probability_iterator 1352 MachineBasicBlock::getProbabilityIterator( 1353 MachineBasicBlock::const_succ_iterator I) const { 1354 assert(Probs.size() == Successors.size() && "Async probability list!"); 1355 const size_t index = std::distance(Successors.begin(), I); 1356 assert(index < Probs.size() && "Not a current successor!"); 1357 return Probs.begin() + index; 1358 } 1359 1360 /// Return probability iterator corresonding to the I successor iterator. 1361 MachineBasicBlock::probability_iterator 1362 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1363 assert(Probs.size() == Successors.size() && "Async probability list!"); 1364 const size_t index = std::distance(Successors.begin(), I); 1365 assert(index < Probs.size() && "Not a current successor!"); 1366 return Probs.begin() + index; 1367 } 1368 1369 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1370 /// as of just before "MI". 1371 /// 1372 /// Search is localised to a neighborhood of 1373 /// Neighborhood instructions before (searching for defs or kills) and N 1374 /// instructions after (searching just for defs) MI. 1375 MachineBasicBlock::LivenessQueryResult 1376 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1377 unsigned Reg, const_iterator Before, 1378 unsigned Neighborhood) const { 1379 unsigned N = Neighborhood; 1380 1381 // Try searching forwards from Before, looking for reads or defs. 1382 const_iterator I(Before); 1383 // If this is the last insn in the block, don't search forwards. 1384 if (I != end()) { 1385 for (++I; I != end() && N > 0; ++I) { 1386 if (I->isDebugInstr()) 1387 continue; 1388 1389 --N; 1390 1391 MachineOperandIteratorBase::PhysRegInfo Info = 1392 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1393 1394 // Register is live when we read it here. 1395 if (Info.Read) 1396 return LQR_Live; 1397 // Register is dead if we can fully overwrite or clobber it here. 1398 if (Info.FullyDefined || Info.Clobbered) 1399 return LQR_Dead; 1400 } 1401 } 1402 1403 // If we reached the end, it is safe to clobber Reg at the end of a block of 1404 // no successor has it live in. 1405 if (I == end()) { 1406 for (MachineBasicBlock *S : successors()) { 1407 for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) { 1408 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1409 return LQR_Live; 1410 } 1411 } 1412 1413 return LQR_Dead; 1414 } 1415 1416 1417 N = Neighborhood; 1418 1419 // Start by searching backwards from Before, looking for kills, reads or defs. 1420 I = const_iterator(Before); 1421 // If this is the first insn in the block, don't search backwards. 1422 if (I != begin()) { 1423 do { 1424 --I; 1425 1426 if (I->isDebugInstr()) 1427 continue; 1428 1429 --N; 1430 1431 MachineOperandIteratorBase::PhysRegInfo Info = 1432 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1433 1434 // Defs happen after uses so they take precedence if both are present. 1435 1436 // Register is dead after a dead def of the full register. 1437 if (Info.DeadDef) 1438 return LQR_Dead; 1439 // Register is (at least partially) live after a def. 1440 if (Info.Defined) { 1441 if (!Info.PartialDeadDef) 1442 return LQR_Live; 1443 // As soon as we saw a partial definition (dead or not), 1444 // we cannot tell if the value is partial live without 1445 // tracking the lanemasks. We are not going to do this, 1446 // so fall back on the remaining of the analysis. 1447 break; 1448 } 1449 // Register is dead after a full kill or clobber and no def. 1450 if (Info.Killed || Info.Clobbered) 1451 return LQR_Dead; 1452 // Register must be live if we read it. 1453 if (Info.Read) 1454 return LQR_Live; 1455 1456 } while (I != begin() && N > 0); 1457 } 1458 1459 // Did we get to the start of the block? 1460 if (I == begin()) { 1461 // If so, the register's state is definitely defined by the live-in state. 1462 for (const MachineBasicBlock::RegisterMaskPair &LI : liveins()) 1463 if (TRI->regsOverlap(LI.PhysReg, Reg)) 1464 return LQR_Live; 1465 1466 return LQR_Dead; 1467 } 1468 1469 // At this point we have no idea of the liveness of the register. 1470 return LQR_Unknown; 1471 } 1472 1473 const uint32_t * 1474 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1475 // EH funclet entry does not preserve any registers. 1476 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1477 } 1478 1479 const uint32_t * 1480 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1481 // If we see a return block with successors, this must be a funclet return, 1482 // which does not preserve any registers. If there are no successors, we don't 1483 // care what kind of return it is, putting a mask after it is a no-op. 1484 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1485 } 1486 1487 void MachineBasicBlock::clearLiveIns() { 1488 LiveIns.clear(); 1489 } 1490 1491 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1492 assert(getParent()->getProperties().hasProperty( 1493 MachineFunctionProperties::Property::TracksLiveness) && 1494 "Liveness information is accurate"); 1495 return LiveIns.begin(); 1496 } 1497