1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SlotIndexes.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/ModuleSlotTracker.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCContext.h" 29 #include "llvm/Support/DataTypes.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 #define DEBUG_TYPE "codegen" 40 41 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 42 : BB(B), Number(-1), xParent(&MF) { 43 Insts.Parent = this; 44 } 45 46 MachineBasicBlock::~MachineBasicBlock() { 47 } 48 49 /// Return the MCSymbol for this basic block. 50 MCSymbol *MachineBasicBlock::getSymbol() const { 51 if (!CachedMCSymbol) { 52 const MachineFunction *MF = getParent(); 53 MCContext &Ctx = MF->getContext(); 54 const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 55 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 56 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 57 Twine(MF->getFunctionNumber()) + 58 "_" + Twine(getNumber())); 59 } 60 61 return CachedMCSymbol; 62 } 63 64 65 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 66 MBB.print(OS); 67 return OS; 68 } 69 70 /// When an MBB is added to an MF, we need to update the parent pointer of the 71 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 72 /// operand list for registers. 73 /// 74 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 75 /// gets the next available unique MBB number. If it is removed from a 76 /// MachineFunction, it goes back to being #-1. 77 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) { 78 MachineFunction &MF = *N->getParent(); 79 N->Number = MF.addToMBBNumbering(N); 80 81 // Make sure the instructions have their operands in the reginfo lists. 82 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 83 for (MachineBasicBlock::instr_iterator 84 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 85 I->AddRegOperandsToUseLists(RegInfo); 86 } 87 88 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) { 89 N->getParent()->removeFromMBBNumbering(N->Number); 90 N->Number = -1; 91 } 92 93 /// When we add an instruction to a basic block list, we update its parent 94 /// pointer and add its operands from reg use/def lists if appropriate. 95 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 96 assert(!N->getParent() && "machine instruction already in a basic block"); 97 N->setParent(Parent); 98 99 // Add the instruction's register operands to their corresponding 100 // use/def lists. 101 MachineFunction *MF = Parent->getParent(); 102 N->AddRegOperandsToUseLists(MF->getRegInfo()); 103 } 104 105 /// When we remove an instruction from a basic block list, we update its parent 106 /// pointer and remove its operands from reg use/def lists if appropriate. 107 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 108 assert(N->getParent() && "machine instruction not in a basic block"); 109 110 // Remove from the use/def lists. 111 if (MachineFunction *MF = N->getParent()->getParent()) 112 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 113 114 N->setParent(nullptr); 115 } 116 117 /// When moving a range of instructions from one MBB list to another, we need to 118 /// update the parent pointers and the use/def lists. 119 void ilist_traits<MachineInstr>:: 120 transferNodesFromList(ilist_traits<MachineInstr> &FromList, 121 ilist_iterator<MachineInstr> First, 122 ilist_iterator<MachineInstr> Last) { 123 assert(Parent->getParent() == FromList.Parent->getParent() && 124 "MachineInstr parent mismatch!"); 125 126 // Splice within the same MBB -> no change. 127 if (Parent == FromList.Parent) return; 128 129 // If splicing between two blocks within the same function, just update the 130 // parent pointers. 131 for (; First != Last; ++First) 132 First->setParent(Parent); 133 } 134 135 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) { 136 assert(!MI->getParent() && "MI is still in a block!"); 137 Parent->getParent()->DeleteMachineInstr(MI); 138 } 139 140 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 141 instr_iterator I = instr_begin(), E = instr_end(); 142 while (I != E && I->isPHI()) 143 ++I; 144 assert((I == E || !I->isInsideBundle()) && 145 "First non-phi MI cannot be inside a bundle!"); 146 return I; 147 } 148 149 MachineBasicBlock::iterator 150 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 151 iterator E = end(); 152 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue())) 153 ++I; 154 // FIXME: This needs to change if we wish to bundle labels / dbg_values 155 // inside the bundle. 156 assert((I == E || !I->isInsideBundle()) && 157 "First non-phi / non-label instruction is inside a bundle!"); 158 return I; 159 } 160 161 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 162 iterator B = begin(), E = end(), I = E; 163 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 164 ; /*noop */ 165 while (I != E && !I->isTerminator()) 166 ++I; 167 return I; 168 } 169 170 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 171 instr_iterator B = instr_begin(), E = instr_end(), I = E; 172 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 173 ; /*noop */ 174 while (I != E && !I->isTerminator()) 175 ++I; 176 return I; 177 } 178 179 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 180 // Skip over begin-of-block dbg_value instructions. 181 iterator I = begin(), E = end(); 182 while (I != E && I->isDebugValue()) 183 ++I; 184 return I; 185 } 186 187 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 188 // Skip over end-of-block dbg_value instructions. 189 instr_iterator B = instr_begin(), I = instr_end(); 190 while (I != B) { 191 --I; 192 // Return instruction that starts a bundle. 193 if (I->isDebugValue() || I->isInsideBundle()) 194 continue; 195 return I; 196 } 197 // The block is all debug values. 198 return end(); 199 } 200 201 bool MachineBasicBlock::hasEHPadSuccessor() const { 202 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 203 if ((*I)->isEHPad()) 204 return true; 205 return false; 206 } 207 208 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 209 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 210 print(dbgs()); 211 } 212 #endif 213 214 StringRef MachineBasicBlock::getName() const { 215 if (const BasicBlock *LBB = getBasicBlock()) 216 return LBB->getName(); 217 else 218 return "(null)"; 219 } 220 221 /// Return a hopefully unique identifier for this block. 222 std::string MachineBasicBlock::getFullName() const { 223 std::string Name; 224 if (getParent()) 225 Name = (getParent()->getName() + ":").str(); 226 if (getBasicBlock()) 227 Name += getBasicBlock()->getName(); 228 else 229 Name += ("BB" + Twine(getNumber())).str(); 230 return Name; 231 } 232 233 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const { 234 const MachineFunction *MF = getParent(); 235 if (!MF) { 236 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 237 << " is null\n"; 238 return; 239 } 240 const Function *F = MF->getFunction(); 241 const Module *M = F ? F->getParent() : nullptr; 242 ModuleSlotTracker MST(M); 243 print(OS, MST, Indexes); 244 } 245 246 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 247 SlotIndexes *Indexes) const { 248 const MachineFunction *MF = getParent(); 249 if (!MF) { 250 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 251 << " is null\n"; 252 return; 253 } 254 255 if (Indexes) 256 OS << Indexes->getMBBStartIdx(this) << '\t'; 257 258 OS << "BB#" << getNumber() << ": "; 259 260 const char *Comma = ""; 261 if (const BasicBlock *LBB = getBasicBlock()) { 262 OS << Comma << "derived from LLVM BB "; 263 LBB->printAsOperand(OS, /*PrintType=*/false, MST); 264 Comma = ", "; 265 } 266 if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 267 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 268 if (Alignment) 269 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 270 << " bytes)"; 271 272 OS << '\n'; 273 274 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 275 if (!livein_empty()) { 276 if (Indexes) OS << '\t'; 277 OS << " Live Ins:"; 278 for (const auto &LI : make_range(livein_begin(), livein_end())) { 279 OS << ' ' << PrintReg(LI.PhysReg, TRI); 280 if (LI.LaneMask != ~0u) 281 OS << ':' << PrintLaneMask(LI.LaneMask); 282 } 283 OS << '\n'; 284 } 285 // Print the preds of this block according to the CFG. 286 if (!pred_empty()) { 287 if (Indexes) OS << '\t'; 288 OS << " Predecessors according to CFG:"; 289 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 290 OS << " BB#" << (*PI)->getNumber(); 291 OS << '\n'; 292 } 293 294 for (auto &I : instrs()) { 295 if (Indexes) { 296 if (Indexes->hasIndex(I)) 297 OS << Indexes->getInstructionIndex(I); 298 OS << '\t'; 299 } 300 OS << '\t'; 301 if (I.isInsideBundle()) 302 OS << " * "; 303 I.print(OS, MST); 304 } 305 306 // Print the successors of this block according to the CFG. 307 if (!succ_empty()) { 308 if (Indexes) OS << '\t'; 309 OS << " Successors according to CFG:"; 310 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 311 OS << " BB#" << (*SI)->getNumber(); 312 if (!Probs.empty()) 313 OS << '(' << *getProbabilityIterator(SI) << ')'; 314 } 315 OS << '\n'; 316 } 317 } 318 319 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 320 bool /*PrintType*/) const { 321 OS << "BB#" << getNumber(); 322 } 323 324 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 325 LiveInVector::iterator I = std::find_if( 326 LiveIns.begin(), LiveIns.end(), 327 [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 328 if (I == LiveIns.end()) 329 return; 330 331 I->LaneMask &= ~LaneMask; 332 if (I->LaneMask == 0) 333 LiveIns.erase(I); 334 } 335 336 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 337 livein_iterator I = std::find_if( 338 LiveIns.begin(), LiveIns.end(), 339 [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 340 return I != livein_end() && (I->LaneMask & LaneMask) != 0; 341 } 342 343 void MachineBasicBlock::sortUniqueLiveIns() { 344 std::sort(LiveIns.begin(), LiveIns.end(), 345 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 346 return LI0.PhysReg < LI1.PhysReg; 347 }); 348 // Liveins are sorted by physreg now we can merge their lanemasks. 349 LiveInVector::const_iterator I = LiveIns.begin(); 350 LiveInVector::const_iterator J; 351 LiveInVector::iterator Out = LiveIns.begin(); 352 for (; I != LiveIns.end(); ++Out, I = J) { 353 unsigned PhysReg = I->PhysReg; 354 LaneBitmask LaneMask = I->LaneMask; 355 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 356 LaneMask |= J->LaneMask; 357 Out->PhysReg = PhysReg; 358 Out->LaneMask = LaneMask; 359 } 360 LiveIns.erase(Out, LiveIns.end()); 361 } 362 363 unsigned 364 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 365 assert(getParent() && "MBB must be inserted in function"); 366 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 367 assert(RC && "Register class is required"); 368 assert((isEHPad() || this == &getParent()->front()) && 369 "Only the entry block and landing pads can have physreg live ins"); 370 371 bool LiveIn = isLiveIn(PhysReg); 372 iterator I = SkipPHIsAndLabels(begin()), E = end(); 373 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 374 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 375 376 // Look for an existing copy. 377 if (LiveIn) 378 for (;I != E && I->isCopy(); ++I) 379 if (I->getOperand(1).getReg() == PhysReg) { 380 unsigned VirtReg = I->getOperand(0).getReg(); 381 if (!MRI.constrainRegClass(VirtReg, RC)) 382 llvm_unreachable("Incompatible live-in register class."); 383 return VirtReg; 384 } 385 386 // No luck, create a virtual register. 387 unsigned VirtReg = MRI.createVirtualRegister(RC); 388 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 389 .addReg(PhysReg, RegState::Kill); 390 if (!LiveIn) 391 addLiveIn(PhysReg); 392 return VirtReg; 393 } 394 395 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 396 getParent()->splice(NewAfter->getIterator(), getIterator()); 397 } 398 399 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 400 getParent()->splice(++NewBefore->getIterator(), getIterator()); 401 } 402 403 void MachineBasicBlock::updateTerminator() { 404 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 405 // A block with no successors has no concerns with fall-through edges. 406 if (this->succ_empty()) return; 407 408 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 409 SmallVector<MachineOperand, 4> Cond; 410 DebugLoc DL; // FIXME: this is nowhere 411 bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond); 412 (void) B; 413 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 414 if (Cond.empty()) { 415 if (TBB) { 416 // The block has an unconditional branch. If its successor is now 417 // its layout successor, delete the branch. 418 if (isLayoutSuccessor(TBB)) 419 TII->RemoveBranch(*this); 420 } else { 421 // The block has an unconditional fallthrough. If its successor is not 422 // its layout successor, insert a branch. First we have to locate the 423 // only non-landing-pad successor, as that is the fallthrough block. 424 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 425 if ((*SI)->isEHPad()) 426 continue; 427 assert(!TBB && "Found more than one non-landing-pad successor!"); 428 TBB = *SI; 429 } 430 431 // If there is no non-landing-pad successor, the block has no 432 // fall-through edges to be concerned with. 433 if (!TBB) 434 return; 435 436 // Finally update the unconditional successor to be reached via a branch 437 // if it would not be reached by fallthrough. 438 if (!isLayoutSuccessor(TBB)) 439 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 440 } 441 } else { 442 if (FBB) { 443 // The block has a non-fallthrough conditional branch. If one of its 444 // successors is its layout successor, rewrite it to a fallthrough 445 // conditional branch. 446 if (isLayoutSuccessor(TBB)) { 447 if (TII->ReverseBranchCondition(Cond)) 448 return; 449 TII->RemoveBranch(*this); 450 TII->InsertBranch(*this, FBB, nullptr, Cond, DL); 451 } else if (isLayoutSuccessor(FBB)) { 452 TII->RemoveBranch(*this); 453 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 454 } 455 } else { 456 // Walk through the successors and find the successor which is not 457 // a landing pad and is not the conditional branch destination (in TBB) 458 // as the fallthrough successor. 459 MachineBasicBlock *FallthroughBB = nullptr; 460 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 461 if ((*SI)->isEHPad() || *SI == TBB) 462 continue; 463 assert(!FallthroughBB && "Found more than one fallthrough successor."); 464 FallthroughBB = *SI; 465 } 466 if (!FallthroughBB && canFallThrough()) { 467 // We fallthrough to the same basic block as the conditional jump 468 // targets. Remove the conditional jump, leaving unconditional 469 // fallthrough. 470 // FIXME: This does not seem like a reasonable pattern to support, but 471 // it has been seen in the wild coming out of degenerate ARM test cases. 472 TII->RemoveBranch(*this); 473 474 // Finally update the unconditional successor to be reached via a branch 475 // if it would not be reached by fallthrough. 476 if (!isLayoutSuccessor(TBB)) 477 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 478 return; 479 } 480 481 // The block has a fallthrough conditional branch. 482 if (isLayoutSuccessor(TBB)) { 483 if (TII->ReverseBranchCondition(Cond)) { 484 // We can't reverse the condition, add an unconditional branch. 485 Cond.clear(); 486 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL); 487 return; 488 } 489 TII->RemoveBranch(*this); 490 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL); 491 } else if (!isLayoutSuccessor(FallthroughBB)) { 492 TII->RemoveBranch(*this); 493 TII->InsertBranch(*this, TBB, FallthroughBB, Cond, DL); 494 } 495 } 496 } 497 } 498 499 void MachineBasicBlock::validateSuccProbs() const { 500 #ifndef NDEBUG 501 int64_t Sum = 0; 502 for (auto Prob : Probs) 503 Sum += Prob.getNumerator(); 504 // Due to precision issue, we assume that the sum of probabilities is one if 505 // the difference between the sum of their numerators and the denominator is 506 // no greater than the number of successors. 507 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 508 Probs.size() && 509 "The sum of successors's probabilities exceeds one."); 510 #endif // NDEBUG 511 } 512 513 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 514 BranchProbability Prob) { 515 // Probability list is either empty (if successor list isn't empty, this means 516 // disabled optimization) or has the same size as successor list. 517 if (!(Probs.empty() && !Successors.empty())) 518 Probs.push_back(Prob); 519 Successors.push_back(Succ); 520 Succ->addPredecessor(this); 521 } 522 523 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 524 // We need to make sure probability list is either empty or has the same size 525 // of successor list. When this function is called, we can safely delete all 526 // probability in the list. 527 Probs.clear(); 528 Successors.push_back(Succ); 529 Succ->addPredecessor(this); 530 } 531 532 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 533 bool NormalizeSuccProbs) { 534 succ_iterator I = std::find(Successors.begin(), Successors.end(), Succ); 535 removeSuccessor(I, NormalizeSuccProbs); 536 } 537 538 MachineBasicBlock::succ_iterator 539 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 540 assert(I != Successors.end() && "Not a current successor!"); 541 542 // If probability list is empty it means we don't use it (disabled 543 // optimization). 544 if (!Probs.empty()) { 545 probability_iterator WI = getProbabilityIterator(I); 546 Probs.erase(WI); 547 if (NormalizeSuccProbs) 548 normalizeSuccProbs(); 549 } 550 551 (*I)->removePredecessor(this); 552 return Successors.erase(I); 553 } 554 555 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 556 MachineBasicBlock *New) { 557 if (Old == New) 558 return; 559 560 succ_iterator E = succ_end(); 561 succ_iterator NewI = E; 562 succ_iterator OldI = E; 563 for (succ_iterator I = succ_begin(); I != E; ++I) { 564 if (*I == Old) { 565 OldI = I; 566 if (NewI != E) 567 break; 568 } 569 if (*I == New) { 570 NewI = I; 571 if (OldI != E) 572 break; 573 } 574 } 575 assert(OldI != E && "Old is not a successor of this block"); 576 577 // If New isn't already a successor, let it take Old's place. 578 if (NewI == E) { 579 Old->removePredecessor(this); 580 New->addPredecessor(this); 581 *OldI = New; 582 return; 583 } 584 585 // New is already a successor. 586 // Update its probability instead of adding a duplicate edge. 587 if (!Probs.empty()) { 588 auto ProbIter = getProbabilityIterator(NewI); 589 if (!ProbIter->isUnknown()) 590 *ProbIter += *getProbabilityIterator(OldI); 591 } 592 removeSuccessor(OldI); 593 } 594 595 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 596 Predecessors.push_back(Pred); 597 } 598 599 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 600 pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), Pred); 601 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 602 Predecessors.erase(I); 603 } 604 605 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 606 if (this == FromMBB) 607 return; 608 609 while (!FromMBB->succ_empty()) { 610 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 611 612 // If probability list is empty it means we don't use it (disabled optimization). 613 if (!FromMBB->Probs.empty()) { 614 auto Prob = *FromMBB->Probs.begin(); 615 addSuccessor(Succ, Prob); 616 } else 617 addSuccessorWithoutProb(Succ); 618 619 FromMBB->removeSuccessor(Succ); 620 } 621 } 622 623 void 624 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 625 if (this == FromMBB) 626 return; 627 628 while (!FromMBB->succ_empty()) { 629 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 630 if (!FromMBB->Probs.empty()) { 631 auto Prob = *FromMBB->Probs.begin(); 632 addSuccessor(Succ, Prob); 633 } else 634 addSuccessorWithoutProb(Succ); 635 FromMBB->removeSuccessor(Succ); 636 637 // Fix up any PHI nodes in the successor. 638 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 639 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 640 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 641 MachineOperand &MO = MI->getOperand(i); 642 if (MO.getMBB() == FromMBB) 643 MO.setMBB(this); 644 } 645 } 646 normalizeSuccProbs(); 647 } 648 649 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 650 return std::find(pred_begin(), pred_end(), MBB) != pred_end(); 651 } 652 653 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 654 return std::find(succ_begin(), succ_end(), MBB) != succ_end(); 655 } 656 657 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 658 MachineFunction::const_iterator I(this); 659 return std::next(I) == MachineFunction::const_iterator(MBB); 660 } 661 662 bool MachineBasicBlock::canFallThrough() { 663 MachineFunction::iterator Fallthrough = getIterator(); 664 ++Fallthrough; 665 // If FallthroughBlock is off the end of the function, it can't fall through. 666 if (Fallthrough == getParent()->end()) 667 return false; 668 669 // If FallthroughBlock isn't a successor, no fallthrough is possible. 670 if (!isSuccessor(&*Fallthrough)) 671 return false; 672 673 // Analyze the branches, if any, at the end of the block. 674 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 675 SmallVector<MachineOperand, 4> Cond; 676 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 677 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) { 678 // If we couldn't analyze the branch, examine the last instruction. 679 // If the block doesn't end in a known control barrier, assume fallthrough 680 // is possible. The isPredicated check is needed because this code can be 681 // called during IfConversion, where an instruction which is normally a 682 // Barrier is predicated and thus no longer an actual control barrier. 683 return empty() || !back().isBarrier() || TII->isPredicated(back()); 684 } 685 686 // If there is no branch, control always falls through. 687 if (!TBB) return true; 688 689 // If there is some explicit branch to the fallthrough block, it can obviously 690 // reach, even though the branch should get folded to fall through implicitly. 691 if (MachineFunction::iterator(TBB) == Fallthrough || 692 MachineFunction::iterator(FBB) == Fallthrough) 693 return true; 694 695 // If it's an unconditional branch to some block not the fall through, it 696 // doesn't fall through. 697 if (Cond.empty()) return false; 698 699 // Otherwise, if it is conditional and has no explicit false block, it falls 700 // through. 701 return FBB == nullptr; 702 } 703 704 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, 705 Pass &P) { 706 if (!canSplitCriticalEdge(Succ)) 707 return nullptr; 708 709 MachineFunction *MF = getParent(); 710 DebugLoc DL; // FIXME: this is nowhere 711 712 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 713 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 714 DEBUG(dbgs() << "Splitting critical edge:" 715 " BB#" << getNumber() 716 << " -- BB#" << NMBB->getNumber() 717 << " -- BB#" << Succ->getNumber() << '\n'); 718 719 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 720 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 721 if (LIS) 722 LIS->insertMBBInMaps(NMBB); 723 else if (Indexes) 724 Indexes->insertMBBInMaps(NMBB); 725 726 // On some targets like Mips, branches may kill virtual registers. Make sure 727 // that LiveVariables is properly updated after updateTerminator replaces the 728 // terminators. 729 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 730 731 // Collect a list of virtual registers killed by the terminators. 732 SmallVector<unsigned, 4> KilledRegs; 733 if (LV) 734 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 735 I != E; ++I) { 736 MachineInstr *MI = &*I; 737 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 738 OE = MI->operands_end(); OI != OE; ++OI) { 739 if (!OI->isReg() || OI->getReg() == 0 || 740 !OI->isUse() || !OI->isKill() || OI->isUndef()) 741 continue; 742 unsigned Reg = OI->getReg(); 743 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 744 LV->getVarInfo(Reg).removeKill(MI)) { 745 KilledRegs.push_back(Reg); 746 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 747 OI->setIsKill(false); 748 } 749 } 750 } 751 752 SmallVector<unsigned, 4> UsedRegs; 753 if (LIS) { 754 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 755 I != E; ++I) { 756 MachineInstr *MI = &*I; 757 758 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 759 OE = MI->operands_end(); OI != OE; ++OI) { 760 if (!OI->isReg() || OI->getReg() == 0) 761 continue; 762 763 unsigned Reg = OI->getReg(); 764 if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end()) 765 UsedRegs.push_back(Reg); 766 } 767 } 768 } 769 770 ReplaceUsesOfBlockWith(Succ, NMBB); 771 772 // If updateTerminator() removes instructions, we need to remove them from 773 // SlotIndexes. 774 SmallVector<MachineInstr*, 4> Terminators; 775 if (Indexes) { 776 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 777 I != E; ++I) 778 Terminators.push_back(&*I); 779 } 780 781 updateTerminator(); 782 783 if (Indexes) { 784 SmallVector<MachineInstr*, 4> NewTerminators; 785 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 786 I != E; ++I) 787 NewTerminators.push_back(&*I); 788 789 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 790 E = Terminators.end(); I != E; ++I) { 791 if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) == 792 NewTerminators.end()) 793 Indexes->removeMachineInstrFromMaps(**I); 794 } 795 } 796 797 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 798 NMBB->addSuccessor(Succ); 799 if (!NMBB->isLayoutSuccessor(Succ)) { 800 SmallVector<MachineOperand, 4> Cond; 801 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 802 TII->InsertBranch(*NMBB, Succ, nullptr, Cond, DL); 803 804 if (Indexes) { 805 for (MachineInstr &MI : NMBB->instrs()) { 806 // Some instructions may have been moved to NMBB by updateTerminator(), 807 // so we first remove any instruction that already has an index. 808 if (Indexes->hasIndex(MI)) 809 Indexes->removeMachineInstrFromMaps(MI); 810 Indexes->insertMachineInstrInMaps(MI); 811 } 812 } 813 } 814 815 // Fix PHI nodes in Succ so they refer to NMBB instead of this 816 for (MachineBasicBlock::instr_iterator 817 i = Succ->instr_begin(),e = Succ->instr_end(); 818 i != e && i->isPHI(); ++i) 819 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 820 if (i->getOperand(ni+1).getMBB() == this) 821 i->getOperand(ni+1).setMBB(NMBB); 822 823 // Inherit live-ins from the successor 824 for (const auto &LI : Succ->liveins()) 825 NMBB->addLiveIn(LI); 826 827 // Update LiveVariables. 828 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 829 if (LV) { 830 // Restore kills of virtual registers that were killed by the terminators. 831 while (!KilledRegs.empty()) { 832 unsigned Reg = KilledRegs.pop_back_val(); 833 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 834 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 835 continue; 836 if (TargetRegisterInfo::isVirtualRegister(Reg)) 837 LV->getVarInfo(Reg).Kills.push_back(&*I); 838 DEBUG(dbgs() << "Restored terminator kill: " << *I); 839 break; 840 } 841 } 842 // Update relevant live-through information. 843 LV->addNewBlock(NMBB, this, Succ); 844 } 845 846 if (LIS) { 847 // After splitting the edge and updating SlotIndexes, live intervals may be 848 // in one of two situations, depending on whether this block was the last in 849 // the function. If the original block was the last in the function, all 850 // live intervals will end prior to the beginning of the new split block. If 851 // the original block was not at the end of the function, all live intervals 852 // will extend to the end of the new split block. 853 854 bool isLastMBB = 855 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 856 857 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 858 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 859 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 860 861 // Find the registers used from NMBB in PHIs in Succ. 862 SmallSet<unsigned, 8> PHISrcRegs; 863 for (MachineBasicBlock::instr_iterator 864 I = Succ->instr_begin(), E = Succ->instr_end(); 865 I != E && I->isPHI(); ++I) { 866 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 867 if (I->getOperand(ni+1).getMBB() == NMBB) { 868 MachineOperand &MO = I->getOperand(ni); 869 unsigned Reg = MO.getReg(); 870 PHISrcRegs.insert(Reg); 871 if (MO.isUndef()) 872 continue; 873 874 LiveInterval &LI = LIS->getInterval(Reg); 875 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 876 assert(VNI && 877 "PHI sources should be live out of their predecessors."); 878 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 879 } 880 } 881 } 882 883 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 884 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 885 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 886 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 887 continue; 888 889 LiveInterval &LI = LIS->getInterval(Reg); 890 if (!LI.liveAt(PrevIndex)) 891 continue; 892 893 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 894 if (isLiveOut && isLastMBB) { 895 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 896 assert(VNI && "LiveInterval should have VNInfo where it is live."); 897 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 898 } else if (!isLiveOut && !isLastMBB) { 899 LI.removeSegment(StartIndex, EndIndex); 900 } 901 } 902 903 // Update all intervals for registers whose uses may have been modified by 904 // updateTerminator(). 905 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 906 } 907 908 if (MachineDominatorTree *MDT = 909 P.getAnalysisIfAvailable<MachineDominatorTree>()) 910 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 911 912 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 913 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 914 // If one or the other blocks were not in a loop, the new block is not 915 // either, and thus LI doesn't need to be updated. 916 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 917 if (TIL == DestLoop) { 918 // Both in the same loop, the NMBB joins loop. 919 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 920 } else if (TIL->contains(DestLoop)) { 921 // Edge from an outer loop to an inner loop. Add to the outer loop. 922 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 923 } else if (DestLoop->contains(TIL)) { 924 // Edge from an inner loop to an outer loop. Add to the outer loop. 925 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 926 } else { 927 // Edge from two loops with no containment relation. Because these 928 // are natural loops, we know that the destination block must be the 929 // header of its loop (adding a branch into a loop elsewhere would 930 // create an irreducible loop). 931 assert(DestLoop->getHeader() == Succ && 932 "Should not create irreducible loops!"); 933 if (MachineLoop *P = DestLoop->getParentLoop()) 934 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 935 } 936 } 937 } 938 939 return NMBB; 940 } 941 942 bool MachineBasicBlock::canSplitCriticalEdge( 943 const MachineBasicBlock *Succ) const { 944 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 945 // it in this generic function. 946 if (Succ->isEHPad()) 947 return false; 948 949 const MachineFunction *MF = getParent(); 950 951 // Performance might be harmed on HW that implements branching using exec mask 952 // where both sides of the branches are always executed. 953 if (MF->getTarget().requiresStructuredCFG()) 954 return false; 955 956 // We may need to update this's terminator, but we can't do that if 957 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 958 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 959 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 960 SmallVector<MachineOperand, 4> Cond; 961 // AnalyzeBanch should modify this, since we did not allow modification. 962 if (TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 963 /*AllowModify*/ false)) 964 return false; 965 966 // Avoid bugpoint weirdness: A block may end with a conditional branch but 967 // jumps to the same MBB is either case. We have duplicate CFG edges in that 968 // case that we can't handle. Since this never happens in properly optimized 969 // code, just skip those edges. 970 if (TBB && TBB == FBB) { 971 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 972 << getNumber() << '\n'); 973 return false; 974 } 975 return true; 976 } 977 978 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 979 /// neighboring instructions so the bundle won't be broken by removing MI. 980 static void unbundleSingleMI(MachineInstr *MI) { 981 // Removing the first instruction in a bundle. 982 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 983 MI->unbundleFromSucc(); 984 // Removing the last instruction in a bundle. 985 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 986 MI->unbundleFromPred(); 987 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 988 // are already fine. 989 } 990 991 MachineBasicBlock::instr_iterator 992 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 993 unbundleSingleMI(&*I); 994 return Insts.erase(I); 995 } 996 997 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 998 unbundleSingleMI(MI); 999 MI->clearFlag(MachineInstr::BundledPred); 1000 MI->clearFlag(MachineInstr::BundledSucc); 1001 return Insts.remove(MI); 1002 } 1003 1004 MachineBasicBlock::instr_iterator 1005 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1006 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1007 "Cannot insert instruction with bundle flags"); 1008 // Set the bundle flags when inserting inside a bundle. 1009 if (I != instr_end() && I->isBundledWithPred()) { 1010 MI->setFlag(MachineInstr::BundledPred); 1011 MI->setFlag(MachineInstr::BundledSucc); 1012 } 1013 return Insts.insert(I, MI); 1014 } 1015 1016 /// This method unlinks 'this' from the containing function, and returns it, but 1017 /// does not delete it. 1018 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1019 assert(getParent() && "Not embedded in a function!"); 1020 getParent()->remove(this); 1021 return this; 1022 } 1023 1024 /// This method unlinks 'this' from the containing function, and deletes it. 1025 void MachineBasicBlock::eraseFromParent() { 1026 assert(getParent() && "Not embedded in a function!"); 1027 getParent()->erase(this); 1028 } 1029 1030 /// Given a machine basic block that branched to 'Old', change the code and CFG 1031 /// so that it branches to 'New' instead. 1032 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1033 MachineBasicBlock *New) { 1034 assert(Old != New && "Cannot replace self with self!"); 1035 1036 MachineBasicBlock::instr_iterator I = instr_end(); 1037 while (I != instr_begin()) { 1038 --I; 1039 if (!I->isTerminator()) break; 1040 1041 // Scan the operands of this machine instruction, replacing any uses of Old 1042 // with New. 1043 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1044 if (I->getOperand(i).isMBB() && 1045 I->getOperand(i).getMBB() == Old) 1046 I->getOperand(i).setMBB(New); 1047 } 1048 1049 // Update the successor information. 1050 replaceSuccessor(Old, New); 1051 } 1052 1053 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1054 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1055 /// MBB successors from the CFG. DestA and DestB can be null. 1056 /// 1057 /// Besides DestA and DestB, retain other edges leading to LandingPads 1058 /// (currently there can be only one; we don't check or require that here). 1059 /// Note it is possible that DestA and/or DestB are LandingPads. 1060 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1061 MachineBasicBlock *DestB, 1062 bool IsCond) { 1063 // The values of DestA and DestB frequently come from a call to the 1064 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1065 // values from there. 1066 // 1067 // 1. If both DestA and DestB are null, then the block ends with no branches 1068 // (it falls through to its successor). 1069 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1070 // with only an unconditional branch. 1071 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1072 // with a conditional branch that falls through to a successor (DestB). 1073 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1074 // conditional branch followed by an unconditional branch. DestA is the 1075 // 'true' destination and DestB is the 'false' destination. 1076 1077 bool Changed = false; 1078 1079 MachineFunction::iterator FallThru = std::next(getIterator()); 1080 1081 if (!DestA && !DestB) { 1082 // Block falls through to successor. 1083 DestA = &*FallThru; 1084 DestB = &*FallThru; 1085 } else if (DestA && !DestB) { 1086 if (IsCond) 1087 // Block ends in conditional jump that falls through to successor. 1088 DestB = &*FallThru; 1089 } else { 1090 assert(DestA && DestB && IsCond && 1091 "CFG in a bad state. Cannot correct CFG edges"); 1092 } 1093 1094 // Remove superfluous edges. I.e., those which aren't destinations of this 1095 // basic block, duplicate edges, or landing pads. 1096 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1097 MachineBasicBlock::succ_iterator SI = succ_begin(); 1098 while (SI != succ_end()) { 1099 const MachineBasicBlock *MBB = *SI; 1100 if (!SeenMBBs.insert(MBB).second || 1101 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1102 // This is a superfluous edge, remove it. 1103 SI = removeSuccessor(SI); 1104 Changed = true; 1105 } else { 1106 ++SI; 1107 } 1108 } 1109 1110 if (Changed) 1111 normalizeSuccProbs(); 1112 return Changed; 1113 } 1114 1115 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1116 /// instructions. Return UnknownLoc if there is none. 1117 DebugLoc 1118 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1119 DebugLoc DL; 1120 instr_iterator E = instr_end(); 1121 if (MBBI == E) 1122 return DL; 1123 1124 // Skip debug declarations, we don't want a DebugLoc from them. 1125 while (MBBI != E && MBBI->isDebugValue()) 1126 MBBI++; 1127 if (MBBI != E) 1128 DL = MBBI->getDebugLoc(); 1129 return DL; 1130 } 1131 1132 /// Return probability of the edge from this block to MBB. 1133 BranchProbability 1134 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1135 if (Probs.empty()) 1136 return BranchProbability(1, succ_size()); 1137 1138 const auto &Prob = *getProbabilityIterator(Succ); 1139 if (Prob.isUnknown()) { 1140 // For unknown probabilities, collect the sum of all known ones, and evenly 1141 // ditribute the complemental of the sum to each unknown probability. 1142 unsigned KnownProbNum = 0; 1143 auto Sum = BranchProbability::getZero(); 1144 for (auto &P : Probs) { 1145 if (!P.isUnknown()) { 1146 Sum += P; 1147 KnownProbNum++; 1148 } 1149 } 1150 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1151 } else 1152 return Prob; 1153 } 1154 1155 /// Set successor probability of a given iterator. 1156 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1157 BranchProbability Prob) { 1158 assert(!Prob.isUnknown()); 1159 if (Probs.empty()) 1160 return; 1161 *getProbabilityIterator(I) = Prob; 1162 } 1163 1164 /// Return probability iterator corresonding to the I successor iterator 1165 MachineBasicBlock::const_probability_iterator 1166 MachineBasicBlock::getProbabilityIterator( 1167 MachineBasicBlock::const_succ_iterator I) const { 1168 assert(Probs.size() == Successors.size() && "Async probability list!"); 1169 const size_t index = std::distance(Successors.begin(), I); 1170 assert(index < Probs.size() && "Not a current successor!"); 1171 return Probs.begin() + index; 1172 } 1173 1174 /// Return probability iterator corresonding to the I successor iterator. 1175 MachineBasicBlock::probability_iterator 1176 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1177 assert(Probs.size() == Successors.size() && "Async probability list!"); 1178 const size_t index = std::distance(Successors.begin(), I); 1179 assert(index < Probs.size() && "Not a current successor!"); 1180 return Probs.begin() + index; 1181 } 1182 1183 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1184 /// as of just before "MI". 1185 /// 1186 /// Search is localised to a neighborhood of 1187 /// Neighborhood instructions before (searching for defs or kills) and N 1188 /// instructions after (searching just for defs) MI. 1189 MachineBasicBlock::LivenessQueryResult 1190 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1191 unsigned Reg, const_iterator Before, 1192 unsigned Neighborhood) const { 1193 unsigned N = Neighborhood; 1194 1195 // Start by searching backwards from Before, looking for kills, reads or defs. 1196 const_iterator I(Before); 1197 // If this is the first insn in the block, don't search backwards. 1198 if (I != begin()) { 1199 do { 1200 --I; 1201 1202 MachineOperandIteratorBase::PhysRegInfo Info = 1203 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1204 1205 // Defs happen after uses so they take precedence if both are present. 1206 1207 // Register is dead after a dead def of the full register. 1208 if (Info.DeadDef) 1209 return LQR_Dead; 1210 // Register is (at least partially) live after a def. 1211 if (Info.Defined) { 1212 if (!Info.PartialDeadDef) 1213 return LQR_Live; 1214 // As soon as we saw a partial definition (dead or not), 1215 // we cannot tell if the value is partial live without 1216 // tracking the lanemasks. We are not going to do this, 1217 // so fall back on the remaining of the analysis. 1218 break; 1219 } 1220 // Register is dead after a full kill or clobber and no def. 1221 if (Info.Killed || Info.Clobbered) 1222 return LQR_Dead; 1223 // Register must be live if we read it. 1224 if (Info.Read) 1225 return LQR_Live; 1226 } while (I != begin() && --N > 0); 1227 } 1228 1229 // Did we get to the start of the block? 1230 if (I == begin()) { 1231 // If so, the register's state is definitely defined by the live-in state. 1232 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid(); 1233 ++RAI) 1234 if (isLiveIn(*RAI)) 1235 return LQR_Live; 1236 1237 return LQR_Dead; 1238 } 1239 1240 N = Neighborhood; 1241 1242 // Try searching forwards from Before, looking for reads or defs. 1243 I = const_iterator(Before); 1244 // If this is the last insn in the block, don't search forwards. 1245 if (I != end()) { 1246 for (++I; I != end() && N > 0; ++I, --N) { 1247 MachineOperandIteratorBase::PhysRegInfo Info = 1248 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1249 1250 // Register is live when we read it here. 1251 if (Info.Read) 1252 return LQR_Live; 1253 // Register is dead if we can fully overwrite or clobber it here. 1254 if (Info.FullyDefined || Info.Clobbered) 1255 return LQR_Dead; 1256 } 1257 } 1258 1259 // At this point we have no idea of the liveness of the register. 1260 return LQR_Unknown; 1261 } 1262 1263 const uint32_t * 1264 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1265 // EH funclet entry does not preserve any registers. 1266 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1267 } 1268 1269 const uint32_t * 1270 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1271 // If we see a return block with successors, this must be a funclet return, 1272 // which does not preserve any registers. If there are no successors, we don't 1273 // care what kind of return it is, putting a mask after it is a no-op. 1274 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1275 } 1276