1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 18 #include "llvm/CodeGen/LiveVariables.h" 19 #include "llvm/CodeGen/MachineDominators.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineLoopInfo.h" 23 #include "llvm/CodeGen/MachineRegisterInfo.h" 24 #include "llvm/CodeGen/SlotIndexes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/ModuleSlotTracker.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 #define DEBUG_TYPE "codegen" 40 41 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 42 : BB(B), Number(-1), xParent(&MF) { 43 Insts.Parent = this; 44 } 45 46 MachineBasicBlock::~MachineBasicBlock() { 47 } 48 49 /// Return the MCSymbol for this basic block. 50 MCSymbol *MachineBasicBlock::getSymbol() const { 51 if (!CachedMCSymbol) { 52 const MachineFunction *MF = getParent(); 53 MCContext &Ctx = MF->getContext(); 54 const char *Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 55 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 56 Twine(MF->getFunctionNumber()) + 57 "_" + Twine(getNumber())); 58 } 59 60 return CachedMCSymbol; 61 } 62 63 64 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 65 MBB.print(OS); 66 return OS; 67 } 68 69 /// When an MBB is added to an MF, we need to update the parent pointer of the 70 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 71 /// operand list for registers. 72 /// 73 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 74 /// gets the next available unique MBB number. If it is removed from a 75 /// MachineFunction, it goes back to being #-1. 76 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) { 77 MachineFunction &MF = *N->getParent(); 78 N->Number = MF.addToMBBNumbering(N); 79 80 // Make sure the instructions have their operands in the reginfo lists. 81 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 82 for (MachineBasicBlock::instr_iterator 83 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 84 I->AddRegOperandsToUseLists(RegInfo); 85 } 86 87 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) { 88 N->getParent()->removeFromMBBNumbering(N->Number); 89 N->Number = -1; 90 } 91 92 /// When we add an instruction to a basic block list, we update its parent 93 /// pointer and add its operands from reg use/def lists if appropriate. 94 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 95 assert(!N->getParent() && "machine instruction already in a basic block"); 96 N->setParent(Parent); 97 98 // Add the instruction's register operands to their corresponding 99 // use/def lists. 100 MachineFunction *MF = Parent->getParent(); 101 N->AddRegOperandsToUseLists(MF->getRegInfo()); 102 } 103 104 /// When we remove an instruction from a basic block list, we update its parent 105 /// pointer and remove its operands from reg use/def lists if appropriate. 106 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 107 assert(N->getParent() && "machine instruction not in a basic block"); 108 109 // Remove from the use/def lists. 110 if (MachineFunction *MF = N->getParent()->getParent()) 111 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 112 113 N->setParent(nullptr); 114 } 115 116 /// When moving a range of instructions from one MBB list to another, we need to 117 /// update the parent pointers and the use/def lists. 118 void ilist_traits<MachineInstr>:: 119 transferNodesFromList(ilist_traits<MachineInstr> &FromList, 120 ilist_iterator<MachineInstr> First, 121 ilist_iterator<MachineInstr> Last) { 122 assert(Parent->getParent() == FromList.Parent->getParent() && 123 "MachineInstr parent mismatch!"); 124 125 // Splice within the same MBB -> no change. 126 if (Parent == FromList.Parent) return; 127 128 // If splicing between two blocks within the same function, just update the 129 // parent pointers. 130 for (; First != Last; ++First) 131 First->setParent(Parent); 132 } 133 134 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) { 135 assert(!MI->getParent() && "MI is still in a block!"); 136 Parent->getParent()->DeleteMachineInstr(MI); 137 } 138 139 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 140 instr_iterator I = instr_begin(), E = instr_end(); 141 while (I != E && I->isPHI()) 142 ++I; 143 assert((I == E || !I->isInsideBundle()) && 144 "First non-phi MI cannot be inside a bundle!"); 145 return I; 146 } 147 148 MachineBasicBlock::iterator 149 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 150 iterator E = end(); 151 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue())) 152 ++I; 153 // FIXME: This needs to change if we wish to bundle labels / dbg_values 154 // inside the bundle. 155 assert((I == E || !I->isInsideBundle()) && 156 "First non-phi / non-label instruction is inside a bundle!"); 157 return I; 158 } 159 160 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 161 iterator B = begin(), E = end(), I = E; 162 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 163 ; /*noop */ 164 while (I != E && !I->isTerminator()) 165 ++I; 166 return I; 167 } 168 169 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 170 instr_iterator B = instr_begin(), E = instr_end(), I = E; 171 while (I != B && ((--I)->isTerminator() || I->isDebugValue())) 172 ; /*noop */ 173 while (I != E && !I->isTerminator()) 174 ++I; 175 return I; 176 } 177 178 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 179 // Skip over begin-of-block dbg_value instructions. 180 iterator I = begin(), E = end(); 181 while (I != E && I->isDebugValue()) 182 ++I; 183 return I; 184 } 185 186 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 187 // Skip over end-of-block dbg_value instructions. 188 instr_iterator B = instr_begin(), I = instr_end(); 189 while (I != B) { 190 --I; 191 // Return instruction that starts a bundle. 192 if (I->isDebugValue() || I->isInsideBundle()) 193 continue; 194 return I; 195 } 196 // The block is all debug values. 197 return end(); 198 } 199 200 const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const { 201 // A block with a landing pad successor only has one other successor. 202 if (succ_size() > 2) 203 return nullptr; 204 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 205 if ((*I)->isEHPad()) 206 return *I; 207 return nullptr; 208 } 209 210 bool MachineBasicBlock::hasEHPadSuccessor() const { 211 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 212 if ((*I)->isEHPad()) 213 return true; 214 return false; 215 } 216 217 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 218 void MachineBasicBlock::dump() const { 219 print(dbgs()); 220 } 221 #endif 222 223 StringRef MachineBasicBlock::getName() const { 224 if (const BasicBlock *LBB = getBasicBlock()) 225 return LBB->getName(); 226 else 227 return "(null)"; 228 } 229 230 /// Return a hopefully unique identifier for this block. 231 std::string MachineBasicBlock::getFullName() const { 232 std::string Name; 233 if (getParent()) 234 Name = (getParent()->getName() + ":").str(); 235 if (getBasicBlock()) 236 Name += getBasicBlock()->getName(); 237 else 238 Name += ("BB" + Twine(getNumber())).str(); 239 return Name; 240 } 241 242 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const { 243 const MachineFunction *MF = getParent(); 244 if (!MF) { 245 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 246 << " is null\n"; 247 return; 248 } 249 const Function *F = MF->getFunction(); 250 const Module *M = F ? F->getParent() : nullptr; 251 ModuleSlotTracker MST(M); 252 print(OS, MST, Indexes); 253 } 254 255 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 256 SlotIndexes *Indexes) const { 257 const MachineFunction *MF = getParent(); 258 if (!MF) { 259 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 260 << " is null\n"; 261 return; 262 } 263 264 if (Indexes) 265 OS << Indexes->getMBBStartIdx(this) << '\t'; 266 267 OS << "BB#" << getNumber() << ": "; 268 269 const char *Comma = ""; 270 if (const BasicBlock *LBB = getBasicBlock()) { 271 OS << Comma << "derived from LLVM BB "; 272 LBB->printAsOperand(OS, /*PrintType=*/false, MST); 273 Comma = ", "; 274 } 275 if (isEHPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; } 276 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; } 277 if (Alignment) 278 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment) 279 << " bytes)"; 280 281 OS << '\n'; 282 283 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 284 if (!livein_empty()) { 285 if (Indexes) OS << '\t'; 286 OS << " Live Ins:"; 287 for (const auto &LI : make_range(livein_begin(), livein_end())) { 288 OS << ' ' << PrintReg(LI.PhysReg, TRI); 289 if (LI.LaneMask != ~0u) 290 OS << ':' << PrintLaneMask(LI.LaneMask); 291 } 292 OS << '\n'; 293 } 294 // Print the preds of this block according to the CFG. 295 if (!pred_empty()) { 296 if (Indexes) OS << '\t'; 297 OS << " Predecessors according to CFG:"; 298 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI) 299 OS << " BB#" << (*PI)->getNumber(); 300 OS << '\n'; 301 } 302 303 for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) { 304 if (Indexes) { 305 if (Indexes->hasIndex(&*I)) 306 OS << Indexes->getInstructionIndex(&*I); 307 OS << '\t'; 308 } 309 OS << '\t'; 310 if (I->isInsideBundle()) 311 OS << " * "; 312 I->print(OS, MST); 313 } 314 315 // Print the successors of this block according to the CFG. 316 if (!succ_empty()) { 317 if (Indexes) OS << '\t'; 318 OS << " Successors according to CFG:"; 319 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) { 320 OS << " BB#" << (*SI)->getNumber(); 321 if (!Weights.empty()) 322 OS << '(' << *getWeightIterator(SI) << ')'; 323 } 324 OS << '\n'; 325 } 326 } 327 328 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 329 bool /*PrintType*/) const { 330 OS << "BB#" << getNumber(); 331 } 332 333 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 334 LiveInVector::iterator I = std::find_if( 335 LiveIns.begin(), LiveIns.end(), 336 [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 337 if (I == LiveIns.end()) 338 return; 339 340 I->LaneMask &= ~LaneMask; 341 if (I->LaneMask == 0) 342 LiveIns.erase(I); 343 } 344 345 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 346 livein_iterator I = std::find_if( 347 LiveIns.begin(), LiveIns.end(), 348 [Reg] (const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 349 return I != livein_end() && (I->LaneMask & LaneMask) != 0; 350 } 351 352 void MachineBasicBlock::sortUniqueLiveIns() { 353 std::sort(LiveIns.begin(), LiveIns.end(), 354 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 355 return LI0.PhysReg < LI1.PhysReg; 356 }); 357 // Liveins are sorted by physreg now we can merge their lanemasks. 358 LiveInVector::const_iterator I = LiveIns.begin(); 359 LiveInVector::const_iterator J; 360 LiveInVector::iterator Out = LiveIns.begin(); 361 for (; I != LiveIns.end(); ++Out, I = J) { 362 unsigned PhysReg = I->PhysReg; 363 LaneBitmask LaneMask = I->LaneMask; 364 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 365 LaneMask |= J->LaneMask; 366 Out->PhysReg = PhysReg; 367 Out->LaneMask = LaneMask; 368 } 369 LiveIns.erase(Out, LiveIns.end()); 370 } 371 372 unsigned 373 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 374 assert(getParent() && "MBB must be inserted in function"); 375 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 376 assert(RC && "Register class is required"); 377 assert((isEHPad() || this == &getParent()->front()) && 378 "Only the entry block and landing pads can have physreg live ins"); 379 380 bool LiveIn = isLiveIn(PhysReg); 381 iterator I = SkipPHIsAndLabels(begin()), E = end(); 382 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 383 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 384 385 // Look for an existing copy. 386 if (LiveIn) 387 for (;I != E && I->isCopy(); ++I) 388 if (I->getOperand(1).getReg() == PhysReg) { 389 unsigned VirtReg = I->getOperand(0).getReg(); 390 if (!MRI.constrainRegClass(VirtReg, RC)) 391 llvm_unreachable("Incompatible live-in register class."); 392 return VirtReg; 393 } 394 395 // No luck, create a virtual register. 396 unsigned VirtReg = MRI.createVirtualRegister(RC); 397 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 398 .addReg(PhysReg, RegState::Kill); 399 if (!LiveIn) 400 addLiveIn(PhysReg); 401 return VirtReg; 402 } 403 404 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 405 getParent()->splice(NewAfter->getIterator(), getIterator()); 406 } 407 408 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 409 getParent()->splice(++NewBefore->getIterator(), getIterator()); 410 } 411 412 void MachineBasicBlock::updateTerminator() { 413 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 414 // A block with no successors has no concerns with fall-through edges. 415 if (this->succ_empty()) return; 416 417 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 418 SmallVector<MachineOperand, 4> Cond; 419 DebugLoc DL; // FIXME: this is nowhere 420 bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond); 421 (void) B; 422 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 423 if (Cond.empty()) { 424 if (TBB) { 425 // The block has an unconditional branch. If its successor is now 426 // its layout successor, delete the branch. 427 if (isLayoutSuccessor(TBB)) 428 TII->RemoveBranch(*this); 429 } else { 430 // The block has an unconditional fallthrough. If its successor is not 431 // its layout successor, insert a branch. First we have to locate the 432 // only non-landing-pad successor, as that is the fallthrough block. 433 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 434 if ((*SI)->isEHPad()) 435 continue; 436 assert(!TBB && "Found more than one non-landing-pad successor!"); 437 TBB = *SI; 438 } 439 440 // If there is no non-landing-pad successor, the block has no 441 // fall-through edges to be concerned with. 442 if (!TBB) 443 return; 444 445 // Finally update the unconditional successor to be reached via a branch 446 // if it would not be reached by fallthrough. 447 if (!isLayoutSuccessor(TBB)) 448 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 449 } 450 } else { 451 if (FBB) { 452 // The block has a non-fallthrough conditional branch. If one of its 453 // successors is its layout successor, rewrite it to a fallthrough 454 // conditional branch. 455 if (isLayoutSuccessor(TBB)) { 456 if (TII->ReverseBranchCondition(Cond)) 457 return; 458 TII->RemoveBranch(*this); 459 TII->InsertBranch(*this, FBB, nullptr, Cond, DL); 460 } else if (isLayoutSuccessor(FBB)) { 461 TII->RemoveBranch(*this); 462 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 463 } 464 } else { 465 // Walk through the successors and find the successor which is not 466 // a landing pad and is not the conditional branch destination (in TBB) 467 // as the fallthrough successor. 468 MachineBasicBlock *FallthroughBB = nullptr; 469 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 470 if ((*SI)->isEHPad() || *SI == TBB) 471 continue; 472 assert(!FallthroughBB && "Found more than one fallthrough successor."); 473 FallthroughBB = *SI; 474 } 475 if (!FallthroughBB && canFallThrough()) { 476 // We fallthrough to the same basic block as the conditional jump 477 // targets. Remove the conditional jump, leaving unconditional 478 // fallthrough. 479 // FIXME: This does not seem like a reasonable pattern to support, but 480 // it has been seen in the wild coming out of degenerate ARM test cases. 481 TII->RemoveBranch(*this); 482 483 // Finally update the unconditional successor to be reached via a branch 484 // if it would not be reached by fallthrough. 485 if (!isLayoutSuccessor(TBB)) 486 TII->InsertBranch(*this, TBB, nullptr, Cond, DL); 487 return; 488 } 489 490 // The block has a fallthrough conditional branch. 491 if (isLayoutSuccessor(TBB)) { 492 if (TII->ReverseBranchCondition(Cond)) { 493 // We can't reverse the condition, add an unconditional branch. 494 Cond.clear(); 495 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL); 496 return; 497 } 498 TII->RemoveBranch(*this); 499 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, DL); 500 } else if (!isLayoutSuccessor(FallthroughBB)) { 501 TII->RemoveBranch(*this); 502 TII->InsertBranch(*this, TBB, FallthroughBB, Cond, DL); 503 } 504 } 505 } 506 } 507 508 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, uint32_t Weight) { 509 // Weight list is either empty (if successor list isn't empty, this means 510 // disabled optimization) or has the same size as successor list. 511 if (!(Weights.empty() && !Successors.empty())) 512 Weights.push_back(Weight); 513 Successors.push_back(Succ); 514 Succ->addPredecessor(this); 515 } 516 517 void MachineBasicBlock::addSuccessorWithoutWeight(MachineBasicBlock *Succ) { 518 // We need to make sure weight list is either empty or has the same size of 519 // successor list. When this function is called, we can safely delete all 520 // weight in the list. 521 Weights.clear(); 522 Successors.push_back(Succ); 523 Succ->addPredecessor(this); 524 } 525 526 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ) { 527 Succ->removePredecessor(this); 528 succ_iterator I = std::find(Successors.begin(), Successors.end(), Succ); 529 assert(I != Successors.end() && "Not a current successor!"); 530 531 // If Weight list is empty it means we don't use it (disabled optimization). 532 if (!Weights.empty()) { 533 weight_iterator WI = getWeightIterator(I); 534 Weights.erase(WI); 535 } 536 537 Successors.erase(I); 538 } 539 540 MachineBasicBlock::succ_iterator 541 MachineBasicBlock::removeSuccessor(succ_iterator I) { 542 assert(I != Successors.end() && "Not a current successor!"); 543 544 // If Weight list is empty it means we don't use it (disabled optimization). 545 if (!Weights.empty()) { 546 weight_iterator WI = getWeightIterator(I); 547 Weights.erase(WI); 548 } 549 550 (*I)->removePredecessor(this); 551 return Successors.erase(I); 552 } 553 554 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 555 MachineBasicBlock *New) { 556 if (Old == New) 557 return; 558 559 succ_iterator E = succ_end(); 560 succ_iterator NewI = E; 561 succ_iterator OldI = E; 562 for (succ_iterator I = succ_begin(); I != E; ++I) { 563 if (*I == Old) { 564 OldI = I; 565 if (NewI != E) 566 break; 567 } 568 if (*I == New) { 569 NewI = I; 570 if (OldI != E) 571 break; 572 } 573 } 574 assert(OldI != E && "Old is not a successor of this block"); 575 Old->removePredecessor(this); 576 577 // If New isn't already a successor, let it take Old's place. 578 if (NewI == E) { 579 New->addPredecessor(this); 580 *OldI = New; 581 return; 582 } 583 584 // New is already a successor. 585 // Update its weight instead of adding a duplicate edge. 586 if (!Weights.empty()) { 587 weight_iterator OldWI = getWeightIterator(OldI); 588 *getWeightIterator(NewI) += *OldWI; 589 Weights.erase(OldWI); 590 } 591 Successors.erase(OldI); 592 } 593 594 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 595 Predecessors.push_back(Pred); 596 } 597 598 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 599 pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), Pred); 600 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 601 Predecessors.erase(I); 602 } 603 604 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 605 if (this == FromMBB) 606 return; 607 608 while (!FromMBB->succ_empty()) { 609 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 610 uint32_t Weight = 0; 611 612 // If Weight list is empty it means we don't use it (disabled optimization). 613 if (!FromMBB->Weights.empty()) 614 Weight = *FromMBB->Weights.begin(); 615 616 addSuccessor(Succ, Weight); 617 FromMBB->removeSuccessor(Succ); 618 } 619 } 620 621 void 622 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 623 if (this == FromMBB) 624 return; 625 626 while (!FromMBB->succ_empty()) { 627 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 628 uint32_t Weight = 0; 629 if (!FromMBB->Weights.empty()) 630 Weight = *FromMBB->Weights.begin(); 631 addSuccessor(Succ, Weight); 632 FromMBB->removeSuccessor(Succ); 633 634 // Fix up any PHI nodes in the successor. 635 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 636 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 637 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 638 MachineOperand &MO = MI->getOperand(i); 639 if (MO.getMBB() == FromMBB) 640 MO.setMBB(this); 641 } 642 } 643 } 644 645 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 646 return std::find(pred_begin(), pred_end(), MBB) != pred_end(); 647 } 648 649 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 650 return std::find(succ_begin(), succ_end(), MBB) != succ_end(); 651 } 652 653 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 654 MachineFunction::const_iterator I(this); 655 return std::next(I) == MachineFunction::const_iterator(MBB); 656 } 657 658 bool MachineBasicBlock::canFallThrough() { 659 MachineFunction::iterator Fallthrough = getIterator(); 660 ++Fallthrough; 661 // If FallthroughBlock is off the end of the function, it can't fall through. 662 if (Fallthrough == getParent()->end()) 663 return false; 664 665 // If FallthroughBlock isn't a successor, no fallthrough is possible. 666 if (!isSuccessor(&*Fallthrough)) 667 return false; 668 669 // Analyze the branches, if any, at the end of the block. 670 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 671 SmallVector<MachineOperand, 4> Cond; 672 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 673 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) { 674 // If we couldn't analyze the branch, examine the last instruction. 675 // If the block doesn't end in a known control barrier, assume fallthrough 676 // is possible. The isPredicated check is needed because this code can be 677 // called during IfConversion, where an instruction which is normally a 678 // Barrier is predicated and thus no longer an actual control barrier. 679 return empty() || !back().isBarrier() || TII->isPredicated(&back()); 680 } 681 682 // If there is no branch, control always falls through. 683 if (!TBB) return true; 684 685 // If there is some explicit branch to the fallthrough block, it can obviously 686 // reach, even though the branch should get folded to fall through implicitly. 687 if (MachineFunction::iterator(TBB) == Fallthrough || 688 MachineFunction::iterator(FBB) == Fallthrough) 689 return true; 690 691 // If it's an unconditional branch to some block not the fall through, it 692 // doesn't fall through. 693 if (Cond.empty()) return false; 694 695 // Otherwise, if it is conditional and has no explicit false block, it falls 696 // through. 697 return FBB == nullptr; 698 } 699 700 MachineBasicBlock * 701 MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) { 702 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 703 // it in this generic function. 704 if (Succ->isEHPad()) 705 return nullptr; 706 707 MachineFunction *MF = getParent(); 708 DebugLoc DL; // FIXME: this is nowhere 709 710 // Performance might be harmed on HW that implements branching using exec mask 711 // where both sides of the branches are always executed. 712 if (MF->getTarget().requiresStructuredCFG()) 713 return nullptr; 714 715 // We may need to update this's terminator, but we can't do that if 716 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 717 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 718 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 719 SmallVector<MachineOperand, 4> Cond; 720 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) 721 return nullptr; 722 723 // Avoid bugpoint weirdness: A block may end with a conditional branch but 724 // jumps to the same MBB is either case. We have duplicate CFG edges in that 725 // case that we can't handle. Since this never happens in properly optimized 726 // code, just skip those edges. 727 if (TBB && TBB == FBB) { 728 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#" 729 << getNumber() << '\n'); 730 return nullptr; 731 } 732 733 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 734 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 735 DEBUG(dbgs() << "Splitting critical edge:" 736 " BB#" << getNumber() 737 << " -- BB#" << NMBB->getNumber() 738 << " -- BB#" << Succ->getNumber() << '\n'); 739 740 LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>(); 741 SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>(); 742 if (LIS) 743 LIS->insertMBBInMaps(NMBB); 744 else if (Indexes) 745 Indexes->insertMBBInMaps(NMBB); 746 747 // On some targets like Mips, branches may kill virtual registers. Make sure 748 // that LiveVariables is properly updated after updateTerminator replaces the 749 // terminators. 750 LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>(); 751 752 // Collect a list of virtual registers killed by the terminators. 753 SmallVector<unsigned, 4> KilledRegs; 754 if (LV) 755 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 756 I != E; ++I) { 757 MachineInstr *MI = &*I; 758 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 759 OE = MI->operands_end(); OI != OE; ++OI) { 760 if (!OI->isReg() || OI->getReg() == 0 || 761 !OI->isUse() || !OI->isKill() || OI->isUndef()) 762 continue; 763 unsigned Reg = OI->getReg(); 764 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 765 LV->getVarInfo(Reg).removeKill(MI)) { 766 KilledRegs.push_back(Reg); 767 DEBUG(dbgs() << "Removing terminator kill: " << *MI); 768 OI->setIsKill(false); 769 } 770 } 771 } 772 773 SmallVector<unsigned, 4> UsedRegs; 774 if (LIS) { 775 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 776 I != E; ++I) { 777 MachineInstr *MI = &*I; 778 779 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 780 OE = MI->operands_end(); OI != OE; ++OI) { 781 if (!OI->isReg() || OI->getReg() == 0) 782 continue; 783 784 unsigned Reg = OI->getReg(); 785 if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end()) 786 UsedRegs.push_back(Reg); 787 } 788 } 789 } 790 791 ReplaceUsesOfBlockWith(Succ, NMBB); 792 793 // If updateTerminator() removes instructions, we need to remove them from 794 // SlotIndexes. 795 SmallVector<MachineInstr*, 4> Terminators; 796 if (Indexes) { 797 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 798 I != E; ++I) 799 Terminators.push_back(&*I); 800 } 801 802 updateTerminator(); 803 804 if (Indexes) { 805 SmallVector<MachineInstr*, 4> NewTerminators; 806 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 807 I != E; ++I) 808 NewTerminators.push_back(&*I); 809 810 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 811 E = Terminators.end(); I != E; ++I) { 812 if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) == 813 NewTerminators.end()) 814 Indexes->removeMachineInstrFromMaps(*I); 815 } 816 } 817 818 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 819 NMBB->addSuccessor(Succ); 820 if (!NMBB->isLayoutSuccessor(Succ)) { 821 Cond.clear(); 822 TII->InsertBranch(*NMBB, Succ, nullptr, Cond, DL); 823 824 if (Indexes) { 825 for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end(); 826 I != E; ++I) { 827 // Some instructions may have been moved to NMBB by updateTerminator(), 828 // so we first remove any instruction that already has an index. 829 if (Indexes->hasIndex(&*I)) 830 Indexes->removeMachineInstrFromMaps(&*I); 831 Indexes->insertMachineInstrInMaps(&*I); 832 } 833 } 834 } 835 836 // Fix PHI nodes in Succ so they refer to NMBB instead of this 837 for (MachineBasicBlock::instr_iterator 838 i = Succ->instr_begin(),e = Succ->instr_end(); 839 i != e && i->isPHI(); ++i) 840 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 841 if (i->getOperand(ni+1).getMBB() == this) 842 i->getOperand(ni+1).setMBB(NMBB); 843 844 // Inherit live-ins from the successor 845 for (const auto &LI : Succ->liveins()) 846 NMBB->addLiveIn(LI); 847 848 // Update LiveVariables. 849 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 850 if (LV) { 851 // Restore kills of virtual registers that were killed by the terminators. 852 while (!KilledRegs.empty()) { 853 unsigned Reg = KilledRegs.pop_back_val(); 854 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 855 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 856 continue; 857 if (TargetRegisterInfo::isVirtualRegister(Reg)) 858 LV->getVarInfo(Reg).Kills.push_back(&*I); 859 DEBUG(dbgs() << "Restored terminator kill: " << *I); 860 break; 861 } 862 } 863 // Update relevant live-through information. 864 LV->addNewBlock(NMBB, this, Succ); 865 } 866 867 if (LIS) { 868 // After splitting the edge and updating SlotIndexes, live intervals may be 869 // in one of two situations, depending on whether this block was the last in 870 // the function. If the original block was the last in the function, all 871 // live intervals will end prior to the beginning of the new split block. If 872 // the original block was not at the end of the function, all live intervals 873 // will extend to the end of the new split block. 874 875 bool isLastMBB = 876 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 877 878 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 879 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 880 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 881 882 // Find the registers used from NMBB in PHIs in Succ. 883 SmallSet<unsigned, 8> PHISrcRegs; 884 for (MachineBasicBlock::instr_iterator 885 I = Succ->instr_begin(), E = Succ->instr_end(); 886 I != E && I->isPHI(); ++I) { 887 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 888 if (I->getOperand(ni+1).getMBB() == NMBB) { 889 MachineOperand &MO = I->getOperand(ni); 890 unsigned Reg = MO.getReg(); 891 PHISrcRegs.insert(Reg); 892 if (MO.isUndef()) 893 continue; 894 895 LiveInterval &LI = LIS->getInterval(Reg); 896 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 897 assert(VNI && 898 "PHI sources should be live out of their predecessors."); 899 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 900 } 901 } 902 } 903 904 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 905 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 906 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 907 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 908 continue; 909 910 LiveInterval &LI = LIS->getInterval(Reg); 911 if (!LI.liveAt(PrevIndex)) 912 continue; 913 914 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 915 if (isLiveOut && isLastMBB) { 916 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 917 assert(VNI && "LiveInterval should have VNInfo where it is live."); 918 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 919 } else if (!isLiveOut && !isLastMBB) { 920 LI.removeSegment(StartIndex, EndIndex); 921 } 922 } 923 924 // Update all intervals for registers whose uses may have been modified by 925 // updateTerminator(). 926 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 927 } 928 929 if (MachineDominatorTree *MDT = 930 P->getAnalysisIfAvailable<MachineDominatorTree>()) 931 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 932 933 if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>()) 934 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 935 // If one or the other blocks were not in a loop, the new block is not 936 // either, and thus LI doesn't need to be updated. 937 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 938 if (TIL == DestLoop) { 939 // Both in the same loop, the NMBB joins loop. 940 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 941 } else if (TIL->contains(DestLoop)) { 942 // Edge from an outer loop to an inner loop. Add to the outer loop. 943 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 944 } else if (DestLoop->contains(TIL)) { 945 // Edge from an inner loop to an outer loop. Add to the outer loop. 946 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 947 } else { 948 // Edge from two loops with no containment relation. Because these 949 // are natural loops, we know that the destination block must be the 950 // header of its loop (adding a branch into a loop elsewhere would 951 // create an irreducible loop). 952 assert(DestLoop->getHeader() == Succ && 953 "Should not create irreducible loops!"); 954 if (MachineLoop *P = DestLoop->getParentLoop()) 955 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 956 } 957 } 958 } 959 960 return NMBB; 961 } 962 963 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 964 /// neighboring instructions so the bundle won't be broken by removing MI. 965 static void unbundleSingleMI(MachineInstr *MI) { 966 // Removing the first instruction in a bundle. 967 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 968 MI->unbundleFromSucc(); 969 // Removing the last instruction in a bundle. 970 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 971 MI->unbundleFromPred(); 972 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 973 // are already fine. 974 } 975 976 MachineBasicBlock::instr_iterator 977 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 978 unbundleSingleMI(&*I); 979 return Insts.erase(I); 980 } 981 982 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 983 unbundleSingleMI(MI); 984 MI->clearFlag(MachineInstr::BundledPred); 985 MI->clearFlag(MachineInstr::BundledSucc); 986 return Insts.remove(MI); 987 } 988 989 MachineBasicBlock::instr_iterator 990 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 991 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 992 "Cannot insert instruction with bundle flags"); 993 // Set the bundle flags when inserting inside a bundle. 994 if (I != instr_end() && I->isBundledWithPred()) { 995 MI->setFlag(MachineInstr::BundledPred); 996 MI->setFlag(MachineInstr::BundledSucc); 997 } 998 return Insts.insert(I, MI); 999 } 1000 1001 /// This method unlinks 'this' from the containing function, and returns it, but 1002 /// does not delete it. 1003 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1004 assert(getParent() && "Not embedded in a function!"); 1005 getParent()->remove(this); 1006 return this; 1007 } 1008 1009 /// This method unlinks 'this' from the containing function, and deletes it. 1010 void MachineBasicBlock::eraseFromParent() { 1011 assert(getParent() && "Not embedded in a function!"); 1012 getParent()->erase(this); 1013 } 1014 1015 /// Given a machine basic block that branched to 'Old', change the code and CFG 1016 /// so that it branches to 'New' instead. 1017 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1018 MachineBasicBlock *New) { 1019 assert(Old != New && "Cannot replace self with self!"); 1020 1021 MachineBasicBlock::instr_iterator I = instr_end(); 1022 while (I != instr_begin()) { 1023 --I; 1024 if (!I->isTerminator()) break; 1025 1026 // Scan the operands of this machine instruction, replacing any uses of Old 1027 // with New. 1028 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1029 if (I->getOperand(i).isMBB() && 1030 I->getOperand(i).getMBB() == Old) 1031 I->getOperand(i).setMBB(New); 1032 } 1033 1034 // Update the successor information. 1035 replaceSuccessor(Old, New); 1036 } 1037 1038 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1039 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1040 /// MBB successors from the CFG. DestA and DestB can be null. 1041 /// 1042 /// Besides DestA and DestB, retain other edges leading to LandingPads 1043 /// (currently there can be only one; we don't check or require that here). 1044 /// Note it is possible that DestA and/or DestB are LandingPads. 1045 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1046 MachineBasicBlock *DestB, 1047 bool IsCond) { 1048 // The values of DestA and DestB frequently come from a call to the 1049 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1050 // values from there. 1051 // 1052 // 1. If both DestA and DestB are null, then the block ends with no branches 1053 // (it falls through to its successor). 1054 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1055 // with only an unconditional branch. 1056 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1057 // with a conditional branch that falls through to a successor (DestB). 1058 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1059 // conditional branch followed by an unconditional branch. DestA is the 1060 // 'true' destination and DestB is the 'false' destination. 1061 1062 bool Changed = false; 1063 1064 MachineFunction::iterator FallThru = std::next(getIterator()); 1065 1066 if (!DestA && !DestB) { 1067 // Block falls through to successor. 1068 DestA = &*FallThru; 1069 DestB = &*FallThru; 1070 } else if (DestA && !DestB) { 1071 if (IsCond) 1072 // Block ends in conditional jump that falls through to successor. 1073 DestB = &*FallThru; 1074 } else { 1075 assert(DestA && DestB && IsCond && 1076 "CFG in a bad state. Cannot correct CFG edges"); 1077 } 1078 1079 // Remove superfluous edges. I.e., those which aren't destinations of this 1080 // basic block, duplicate edges, or landing pads. 1081 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1082 MachineBasicBlock::succ_iterator SI = succ_begin(); 1083 while (SI != succ_end()) { 1084 const MachineBasicBlock *MBB = *SI; 1085 if (!SeenMBBs.insert(MBB).second || 1086 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1087 // This is a superfluous edge, remove it. 1088 SI = removeSuccessor(SI); 1089 Changed = true; 1090 } else { 1091 ++SI; 1092 } 1093 } 1094 1095 return Changed; 1096 } 1097 1098 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1099 /// instructions. Return UnknownLoc if there is none. 1100 DebugLoc 1101 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1102 DebugLoc DL; 1103 instr_iterator E = instr_end(); 1104 if (MBBI == E) 1105 return DL; 1106 1107 // Skip debug declarations, we don't want a DebugLoc from them. 1108 while (MBBI != E && MBBI->isDebugValue()) 1109 MBBI++; 1110 if (MBBI != E) 1111 DL = MBBI->getDebugLoc(); 1112 return DL; 1113 } 1114 1115 /// Return weight of the edge from this block to MBB. 1116 uint32_t MachineBasicBlock::getSuccWeight(const_succ_iterator Succ) const { 1117 if (Weights.empty()) 1118 return 0; 1119 1120 return *getWeightIterator(Succ); 1121 } 1122 1123 /// Set successor weight of a given iterator. 1124 void MachineBasicBlock::setSuccWeight(succ_iterator I, uint32_t Weight) { 1125 if (Weights.empty()) 1126 return; 1127 *getWeightIterator(I) = Weight; 1128 } 1129 1130 /// Return wight iterator corresonding to the I successor iterator. 1131 MachineBasicBlock::weight_iterator MachineBasicBlock:: 1132 getWeightIterator(MachineBasicBlock::succ_iterator I) { 1133 assert(Weights.size() == Successors.size() && "Async weight list!"); 1134 size_t index = std::distance(Successors.begin(), I); 1135 assert(index < Weights.size() && "Not a current successor!"); 1136 return Weights.begin() + index; 1137 } 1138 1139 /// Return wight iterator corresonding to the I successor iterator. 1140 MachineBasicBlock::const_weight_iterator MachineBasicBlock:: 1141 getWeightIterator(MachineBasicBlock::const_succ_iterator I) const { 1142 assert(Weights.size() == Successors.size() && "Async weight list!"); 1143 const size_t index = std::distance(Successors.begin(), I); 1144 assert(index < Weights.size() && "Not a current successor!"); 1145 return Weights.begin() + index; 1146 } 1147 1148 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1149 /// as of just before "MI". 1150 /// 1151 /// Search is localised to a neighborhood of 1152 /// Neighborhood instructions before (searching for defs or kills) and N 1153 /// instructions after (searching just for defs) MI. 1154 MachineBasicBlock::LivenessQueryResult 1155 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1156 unsigned Reg, const_iterator Before, 1157 unsigned Neighborhood) const { 1158 unsigned N = Neighborhood; 1159 1160 // Start by searching backwards from Before, looking for kills, reads or defs. 1161 const_iterator I(Before); 1162 // If this is the first insn in the block, don't search backwards. 1163 if (I != begin()) { 1164 do { 1165 --I; 1166 1167 MachineOperandIteratorBase::PhysRegInfo Analysis = 1168 ConstMIOperands(I).analyzePhysReg(Reg, TRI); 1169 1170 if (Analysis.Defines) 1171 // Outputs happen after inputs so they take precedence if both are 1172 // present. 1173 return Analysis.DefinesDead ? LQR_Dead : LQR_Live; 1174 1175 if (Analysis.Kills || Analysis.Clobbers) 1176 // Register killed, so isn't live. 1177 return LQR_Dead; 1178 1179 else if (Analysis.ReadsOverlap) 1180 // Defined or read without a previous kill - live. 1181 return Analysis.Reads ? LQR_Live : LQR_OverlappingLive; 1182 1183 } while (I != begin() && --N > 0); 1184 } 1185 1186 // Did we get to the start of the block? 1187 if (I == begin()) { 1188 // If so, the register's state is definitely defined by the live-in state. 1189 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); 1190 RAI.isValid(); ++RAI) { 1191 if (isLiveIn(*RAI)) 1192 return (*RAI == Reg) ? LQR_Live : LQR_OverlappingLive; 1193 } 1194 1195 return LQR_Dead; 1196 } 1197 1198 N = Neighborhood; 1199 1200 // Try searching forwards from Before, looking for reads or defs. 1201 I = const_iterator(Before); 1202 // If this is the last insn in the block, don't search forwards. 1203 if (I != end()) { 1204 for (++I; I != end() && N > 0; ++I, --N) { 1205 MachineOperandIteratorBase::PhysRegInfo Analysis = 1206 ConstMIOperands(I).analyzePhysReg(Reg, TRI); 1207 1208 if (Analysis.ReadsOverlap) 1209 // Used, therefore must have been live. 1210 return (Analysis.Reads) ? 1211 LQR_Live : LQR_OverlappingLive; 1212 1213 else if (Analysis.Clobbers || Analysis.Defines) 1214 // Defined (but not read) therefore cannot have been live. 1215 return LQR_Dead; 1216 } 1217 } 1218 1219 // At this point we have no idea of the liveness of the register. 1220 return LQR_Unknown; 1221 } 1222