1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Collect the sequence of machine instructions for a basic block. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/CodeGen/LiveIntervals.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineDominators.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineLoopInfo.h" 22 #include "llvm/CodeGen/MachineRegisterInfo.h" 23 #include "llvm/CodeGen/SlotIndexes.h" 24 #include "llvm/CodeGen/TargetInstrInfo.h" 25 #include "llvm/CodeGen/TargetRegisterInfo.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/Config/llvm-config.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DebugInfoMetadata.h" 31 #include "llvm/IR/ModuleSlotTracker.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCContext.h" 34 #include "llvm/Support/DataTypes.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include <algorithm> 39 using namespace llvm; 40 41 #define DEBUG_TYPE "codegen" 42 43 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) 44 : BB(B), Number(-1), xParent(&MF) { 45 Insts.Parent = this; 46 if (B) 47 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); 48 } 49 50 MachineBasicBlock::~MachineBasicBlock() { 51 } 52 53 /// Return the MCSymbol for this basic block. 54 MCSymbol *MachineBasicBlock::getSymbol() const { 55 if (!CachedMCSymbol) { 56 const MachineFunction *MF = getParent(); 57 MCContext &Ctx = MF->getContext(); 58 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix(); 59 assert(getNumber() >= 0 && "cannot get label for unreachable MBB"); 60 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" + 61 Twine(MF->getFunctionNumber()) + 62 "_" + Twine(getNumber())); 63 } 64 65 return CachedMCSymbol; 66 } 67 68 69 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { 70 MBB.print(OS); 71 return OS; 72 } 73 74 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { 75 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); 76 } 77 78 /// When an MBB is added to an MF, we need to update the parent pointer of the 79 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right 80 /// operand list for registers. 81 /// 82 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it 83 /// gets the next available unique MBB number. If it is removed from a 84 /// MachineFunction, it goes back to being #-1. 85 void ilist_callback_traits<MachineBasicBlock>::addNodeToList( 86 MachineBasicBlock *N) { 87 MachineFunction &MF = *N->getParent(); 88 N->Number = MF.addToMBBNumbering(N); 89 90 // Make sure the instructions have their operands in the reginfo lists. 91 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 92 for (MachineBasicBlock::instr_iterator 93 I = N->instr_begin(), E = N->instr_end(); I != E; ++I) 94 I->AddRegOperandsToUseLists(RegInfo); 95 } 96 97 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList( 98 MachineBasicBlock *N) { 99 N->getParent()->removeFromMBBNumbering(N->Number); 100 N->Number = -1; 101 } 102 103 /// When we add an instruction to a basic block list, we update its parent 104 /// pointer and add its operands from reg use/def lists if appropriate. 105 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) { 106 assert(!N->getParent() && "machine instruction already in a basic block"); 107 N->setParent(Parent); 108 109 // Add the instruction's register operands to their corresponding 110 // use/def lists. 111 MachineFunction *MF = Parent->getParent(); 112 N->AddRegOperandsToUseLists(MF->getRegInfo()); 113 } 114 115 /// When we remove an instruction from a basic block list, we update its parent 116 /// pointer and remove its operands from reg use/def lists if appropriate. 117 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) { 118 assert(N->getParent() && "machine instruction not in a basic block"); 119 120 // Remove from the use/def lists. 121 if (MachineFunction *MF = N->getMF()) 122 N->RemoveRegOperandsFromUseLists(MF->getRegInfo()); 123 124 N->setParent(nullptr); 125 } 126 127 /// When moving a range of instructions from one MBB list to another, we need to 128 /// update the parent pointers and the use/def lists. 129 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList, 130 instr_iterator First, 131 instr_iterator Last) { 132 assert(Parent->getParent() == FromList.Parent->getParent() && 133 "MachineInstr parent mismatch!"); 134 assert(this != &FromList && "Called without a real transfer..."); 135 assert(Parent != FromList.Parent && "Two lists have the same parent?"); 136 137 // If splicing between two blocks within the same function, just update the 138 // parent pointers. 139 for (; First != Last; ++First) 140 First->setParent(Parent); 141 } 142 143 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) { 144 assert(!MI->getParent() && "MI is still in a block!"); 145 Parent->getParent()->DeleteMachineInstr(MI); 146 } 147 148 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { 149 instr_iterator I = instr_begin(), E = instr_end(); 150 while (I != E && I->isPHI()) 151 ++I; 152 assert((I == E || !I->isInsideBundle()) && 153 "First non-phi MI cannot be inside a bundle!"); 154 return I; 155 } 156 157 MachineBasicBlock::iterator 158 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { 159 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 160 161 iterator E = end(); 162 while (I != E && (I->isPHI() || I->isPosition() || 163 TII->isBasicBlockPrologue(*I))) 164 ++I; 165 // FIXME: This needs to change if we wish to bundle labels 166 // inside the bundle. 167 assert((I == E || !I->isInsideBundle()) && 168 "First non-phi / non-label instruction is inside a bundle!"); 169 return I; 170 } 171 172 MachineBasicBlock::iterator 173 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) { 174 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 175 176 iterator E = end(); 177 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() || 178 TII->isBasicBlockPrologue(*I))) 179 ++I; 180 // FIXME: This needs to change if we wish to bundle labels / dbg_values 181 // inside the bundle. 182 assert((I == E || !I->isInsideBundle()) && 183 "First non-phi / non-label / non-debug " 184 "instruction is inside a bundle!"); 185 return I; 186 } 187 188 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { 189 iterator B = begin(), E = end(), I = E; 190 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 191 ; /*noop */ 192 while (I != E && !I->isTerminator()) 193 ++I; 194 return I; 195 } 196 197 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { 198 instr_iterator B = instr_begin(), E = instr_end(), I = E; 199 while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) 200 ; /*noop */ 201 while (I != E && !I->isTerminator()) 202 ++I; 203 return I; 204 } 205 206 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() { 207 // Skip over begin-of-block dbg_value instructions. 208 return skipDebugInstructionsForward(begin(), end()); 209 } 210 211 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() { 212 // Skip over end-of-block dbg_value instructions. 213 instr_iterator B = instr_begin(), I = instr_end(); 214 while (I != B) { 215 --I; 216 // Return instruction that starts a bundle. 217 if (I->isDebugInstr() || I->isInsideBundle()) 218 continue; 219 return I; 220 } 221 // The block is all debug values. 222 return end(); 223 } 224 225 bool MachineBasicBlock::hasEHPadSuccessor() const { 226 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I) 227 if ((*I)->isEHPad()) 228 return true; 229 return false; 230 } 231 232 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 233 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { 234 print(dbgs()); 235 } 236 #endif 237 238 bool MachineBasicBlock::isLegalToHoistInto() const { 239 if (isReturnBlock() || hasEHPadSuccessor()) 240 return false; 241 return true; 242 } 243 244 StringRef MachineBasicBlock::getName() const { 245 if (const BasicBlock *LBB = getBasicBlock()) 246 return LBB->getName(); 247 else 248 return StringRef("", 0); 249 } 250 251 /// Return a hopefully unique identifier for this block. 252 std::string MachineBasicBlock::getFullName() const { 253 std::string Name; 254 if (getParent()) 255 Name = (getParent()->getName() + ":").str(); 256 if (getBasicBlock()) 257 Name += getBasicBlock()->getName(); 258 else 259 Name += ("BB" + Twine(getNumber())).str(); 260 return Name; 261 } 262 263 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, 264 bool IsStandalone) const { 265 const MachineFunction *MF = getParent(); 266 if (!MF) { 267 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 268 << " is null\n"; 269 return; 270 } 271 const Function &F = MF->getFunction(); 272 const Module *M = F.getParent(); 273 ModuleSlotTracker MST(M); 274 MST.incorporateFunction(F); 275 print(OS, MST, Indexes, IsStandalone); 276 } 277 278 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, 279 const SlotIndexes *Indexes, 280 bool IsStandalone) const { 281 const MachineFunction *MF = getParent(); 282 if (!MF) { 283 OS << "Can't print out MachineBasicBlock because parent MachineFunction" 284 << " is null\n"; 285 return; 286 } 287 288 if (Indexes) 289 OS << Indexes->getMBBStartIdx(this) << '\t'; 290 291 OS << "bb." << getNumber(); 292 bool HasAttributes = false; 293 if (const auto *BB = getBasicBlock()) { 294 if (BB->hasName()) { 295 OS << "." << BB->getName(); 296 } else { 297 HasAttributes = true; 298 OS << " ("; 299 int Slot = MST.getLocalSlot(BB); 300 if (Slot == -1) 301 OS << "<ir-block badref>"; 302 else 303 OS << (Twine("%ir-block.") + Twine(Slot)).str(); 304 } 305 } 306 307 if (hasAddressTaken()) { 308 OS << (HasAttributes ? ", " : " ("); 309 OS << "address-taken"; 310 HasAttributes = true; 311 } 312 if (isEHPad()) { 313 OS << (HasAttributes ? ", " : " ("); 314 OS << "landing-pad"; 315 HasAttributes = true; 316 } 317 if (getAlignment()) { 318 OS << (HasAttributes ? ", " : " ("); 319 OS << "align " << getAlignment(); 320 HasAttributes = true; 321 } 322 if (HasAttributes) 323 OS << ")"; 324 OS << ":\n"; 325 326 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 327 const MachineRegisterInfo &MRI = MF->getRegInfo(); 328 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 329 bool HasLineAttributes = false; 330 331 // Print the preds of this block according to the CFG. 332 if (!pred_empty() && IsStandalone) { 333 if (Indexes) OS << '\t'; 334 // Don't indent(2), align with previous line attributes. 335 OS << "; predecessors: "; 336 for (auto I = pred_begin(), E = pred_end(); I != E; ++I) { 337 if (I != pred_begin()) 338 OS << ", "; 339 OS << printMBBReference(**I); 340 } 341 OS << '\n'; 342 HasLineAttributes = true; 343 } 344 345 if (!succ_empty()) { 346 if (Indexes) OS << '\t'; 347 // Print the successors 348 OS.indent(2) << "successors: "; 349 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 350 if (I != succ_begin()) 351 OS << ", "; 352 OS << printMBBReference(**I); 353 if (!Probs.empty()) 354 OS << '(' 355 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator()) 356 << ')'; 357 } 358 if (!Probs.empty() && IsStandalone) { 359 // Print human readable probabilities as comments. 360 OS << "; "; 361 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { 362 const BranchProbability &BP = *getProbabilityIterator(I); 363 if (I != succ_begin()) 364 OS << ", "; 365 OS << printMBBReference(**I) << '(' 366 << format("%.2f%%", 367 rint(((double)BP.getNumerator() / BP.getDenominator()) * 368 100.0 * 100.0) / 369 100.0) 370 << ')'; 371 } 372 } 373 374 OS << '\n'; 375 HasLineAttributes = true; 376 } 377 378 if (!livein_empty() && MRI.tracksLiveness()) { 379 if (Indexes) OS << '\t'; 380 OS.indent(2) << "liveins: "; 381 382 bool First = true; 383 for (const auto &LI : liveins()) { 384 if (!First) 385 OS << ", "; 386 First = false; 387 OS << printReg(LI.PhysReg, TRI); 388 if (!LI.LaneMask.all()) 389 OS << ":0x" << PrintLaneMask(LI.LaneMask); 390 } 391 HasLineAttributes = true; 392 } 393 394 if (HasLineAttributes) 395 OS << '\n'; 396 397 bool IsInBundle = false; 398 for (const MachineInstr &MI : instrs()) { 399 if (Indexes) { 400 if (Indexes->hasIndex(MI)) 401 OS << Indexes->getInstructionIndex(MI); 402 OS << '\t'; 403 } 404 405 if (IsInBundle && !MI.isInsideBundle()) { 406 OS.indent(2) << "}\n"; 407 IsInBundle = false; 408 } 409 410 OS.indent(IsInBundle ? 4 : 2); 411 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false, 412 /*AddNewLine=*/false, &TII); 413 414 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) { 415 OS << " {"; 416 IsInBundle = true; 417 } 418 OS << '\n'; 419 } 420 421 if (IsInBundle) 422 OS.indent(2) << "}\n"; 423 424 if (IrrLoopHeaderWeight && IsStandalone) { 425 if (Indexes) OS << '\t'; 426 OS.indent(2) << "; Irreducible loop header weight: " 427 << IrrLoopHeaderWeight.getValue() << '\n'; 428 } 429 } 430 431 void MachineBasicBlock::printAsOperand(raw_ostream &OS, 432 bool /*PrintType*/) const { 433 OS << "%bb." << getNumber(); 434 } 435 436 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { 437 LiveInVector::iterator I = find_if( 438 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 439 if (I == LiveIns.end()) 440 return; 441 442 I->LaneMask &= ~LaneMask; 443 if (I->LaneMask.none()) 444 LiveIns.erase(I); 445 } 446 447 MachineBasicBlock::livein_iterator 448 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { 449 // Get non-const version of iterator. 450 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); 451 return LiveIns.erase(LI); 452 } 453 454 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { 455 livein_iterator I = find_if( 456 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); 457 return I != livein_end() && (I->LaneMask & LaneMask).any(); 458 } 459 460 void MachineBasicBlock::sortUniqueLiveIns() { 461 llvm::sort(LiveIns.begin(), LiveIns.end(), 462 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { 463 return LI0.PhysReg < LI1.PhysReg; 464 }); 465 // Liveins are sorted by physreg now we can merge their lanemasks. 466 LiveInVector::const_iterator I = LiveIns.begin(); 467 LiveInVector::const_iterator J; 468 LiveInVector::iterator Out = LiveIns.begin(); 469 for (; I != LiveIns.end(); ++Out, I = J) { 470 unsigned PhysReg = I->PhysReg; 471 LaneBitmask LaneMask = I->LaneMask; 472 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) 473 LaneMask |= J->LaneMask; 474 Out->PhysReg = PhysReg; 475 Out->LaneMask = LaneMask; 476 } 477 LiveIns.erase(Out, LiveIns.end()); 478 } 479 480 unsigned 481 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) { 482 assert(getParent() && "MBB must be inserted in function"); 483 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg"); 484 assert(RC && "Register class is required"); 485 assert((isEHPad() || this == &getParent()->front()) && 486 "Only the entry block and landing pads can have physreg live ins"); 487 488 bool LiveIn = isLiveIn(PhysReg); 489 iterator I = SkipPHIsAndLabels(begin()), E = end(); 490 MachineRegisterInfo &MRI = getParent()->getRegInfo(); 491 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); 492 493 // Look for an existing copy. 494 if (LiveIn) 495 for (;I != E && I->isCopy(); ++I) 496 if (I->getOperand(1).getReg() == PhysReg) { 497 unsigned VirtReg = I->getOperand(0).getReg(); 498 if (!MRI.constrainRegClass(VirtReg, RC)) 499 llvm_unreachable("Incompatible live-in register class."); 500 return VirtReg; 501 } 502 503 // No luck, create a virtual register. 504 unsigned VirtReg = MRI.createVirtualRegister(RC); 505 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) 506 .addReg(PhysReg, RegState::Kill); 507 if (!LiveIn) 508 addLiveIn(PhysReg); 509 return VirtReg; 510 } 511 512 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { 513 getParent()->splice(NewAfter->getIterator(), getIterator()); 514 } 515 516 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { 517 getParent()->splice(++NewBefore->getIterator(), getIterator()); 518 } 519 520 void MachineBasicBlock::updateTerminator() { 521 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 522 // A block with no successors has no concerns with fall-through edges. 523 if (this->succ_empty()) 524 return; 525 526 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 527 SmallVector<MachineOperand, 4> Cond; 528 DebugLoc DL = findBranchDebugLoc(); 529 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); 530 (void) B; 531 assert(!B && "UpdateTerminators requires analyzable predecessors!"); 532 if (Cond.empty()) { 533 if (TBB) { 534 // The block has an unconditional branch. If its successor is now its 535 // layout successor, delete the branch. 536 if (isLayoutSuccessor(TBB)) 537 TII->removeBranch(*this); 538 } else { 539 // The block has an unconditional fallthrough. If its successor is not its 540 // layout successor, insert a branch. First we have to locate the only 541 // non-landing-pad successor, as that is the fallthrough block. 542 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 543 if ((*SI)->isEHPad()) 544 continue; 545 assert(!TBB && "Found more than one non-landing-pad successor!"); 546 TBB = *SI; 547 } 548 549 // If there is no non-landing-pad successor, the block has no fall-through 550 // edges to be concerned with. 551 if (!TBB) 552 return; 553 554 // Finally update the unconditional successor to be reached via a branch 555 // if it would not be reached by fallthrough. 556 if (!isLayoutSuccessor(TBB)) 557 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 558 } 559 return; 560 } 561 562 if (FBB) { 563 // The block has a non-fallthrough conditional branch. If one of its 564 // successors is its layout successor, rewrite it to a fallthrough 565 // conditional branch. 566 if (isLayoutSuccessor(TBB)) { 567 if (TII->reverseBranchCondition(Cond)) 568 return; 569 TII->removeBranch(*this); 570 TII->insertBranch(*this, FBB, nullptr, Cond, DL); 571 } else if (isLayoutSuccessor(FBB)) { 572 TII->removeBranch(*this); 573 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 574 } 575 return; 576 } 577 578 // Walk through the successors and find the successor which is not a landing 579 // pad and is not the conditional branch destination (in TBB) as the 580 // fallthrough successor. 581 MachineBasicBlock *FallthroughBB = nullptr; 582 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) { 583 if ((*SI)->isEHPad() || *SI == TBB) 584 continue; 585 assert(!FallthroughBB && "Found more than one fallthrough successor."); 586 FallthroughBB = *SI; 587 } 588 589 if (!FallthroughBB) { 590 if (canFallThrough()) { 591 // We fallthrough to the same basic block as the conditional jump targets. 592 // Remove the conditional jump, leaving unconditional fallthrough. 593 // FIXME: This does not seem like a reasonable pattern to support, but it 594 // has been seen in the wild coming out of degenerate ARM test cases. 595 TII->removeBranch(*this); 596 597 // Finally update the unconditional successor to be reached via a branch if 598 // it would not be reached by fallthrough. 599 if (!isLayoutSuccessor(TBB)) 600 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 601 return; 602 } 603 604 // We enter here iff exactly one successor is TBB which cannot fallthrough 605 // and the rest successors if any are EHPads. In this case, we need to 606 // change the conditional branch into unconditional branch. 607 TII->removeBranch(*this); 608 Cond.clear(); 609 TII->insertBranch(*this, TBB, nullptr, Cond, DL); 610 return; 611 } 612 613 // The block has a fallthrough conditional branch. 614 if (isLayoutSuccessor(TBB)) { 615 if (TII->reverseBranchCondition(Cond)) { 616 // We can't reverse the condition, add an unconditional branch. 617 Cond.clear(); 618 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 619 return; 620 } 621 TII->removeBranch(*this); 622 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL); 623 } else if (!isLayoutSuccessor(FallthroughBB)) { 624 TII->removeBranch(*this); 625 TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL); 626 } 627 } 628 629 void MachineBasicBlock::validateSuccProbs() const { 630 #ifndef NDEBUG 631 int64_t Sum = 0; 632 for (auto Prob : Probs) 633 Sum += Prob.getNumerator(); 634 // Due to precision issue, we assume that the sum of probabilities is one if 635 // the difference between the sum of their numerators and the denominator is 636 // no greater than the number of successors. 637 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= 638 Probs.size() && 639 "The sum of successors's probabilities exceeds one."); 640 #endif // NDEBUG 641 } 642 643 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, 644 BranchProbability Prob) { 645 // Probability list is either empty (if successor list isn't empty, this means 646 // disabled optimization) or has the same size as successor list. 647 if (!(Probs.empty() && !Successors.empty())) 648 Probs.push_back(Prob); 649 Successors.push_back(Succ); 650 Succ->addPredecessor(this); 651 } 652 653 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { 654 // We need to make sure probability list is either empty or has the same size 655 // of successor list. When this function is called, we can safely delete all 656 // probability in the list. 657 Probs.clear(); 658 Successors.push_back(Succ); 659 Succ->addPredecessor(this); 660 } 661 662 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old, 663 MachineBasicBlock *New, 664 bool NormalizeSuccProbs) { 665 succ_iterator OldI = llvm::find(successors(), Old); 666 assert(OldI != succ_end() && "Old is not a successor of this block!"); 667 assert(llvm::find(successors(), New) == succ_end() && 668 "New is already a successor of this block!"); 669 670 // Add a new successor with equal probability as the original one. Note 671 // that we directly copy the probability using the iterator rather than 672 // getting a potentially synthetic probability computed when unknown. This 673 // preserves the probabilities as-is and then we can renormalize them and 674 // query them effectively afterward. 675 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown() 676 : *getProbabilityIterator(OldI)); 677 if (NormalizeSuccProbs) 678 normalizeSuccProbs(); 679 } 680 681 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, 682 bool NormalizeSuccProbs) { 683 succ_iterator I = find(Successors, Succ); 684 removeSuccessor(I, NormalizeSuccProbs); 685 } 686 687 MachineBasicBlock::succ_iterator 688 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { 689 assert(I != Successors.end() && "Not a current successor!"); 690 691 // If probability list is empty it means we don't use it (disabled 692 // optimization). 693 if (!Probs.empty()) { 694 probability_iterator WI = getProbabilityIterator(I); 695 Probs.erase(WI); 696 if (NormalizeSuccProbs) 697 normalizeSuccProbs(); 698 } 699 700 (*I)->removePredecessor(this); 701 return Successors.erase(I); 702 } 703 704 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, 705 MachineBasicBlock *New) { 706 if (Old == New) 707 return; 708 709 succ_iterator E = succ_end(); 710 succ_iterator NewI = E; 711 succ_iterator OldI = E; 712 for (succ_iterator I = succ_begin(); I != E; ++I) { 713 if (*I == Old) { 714 OldI = I; 715 if (NewI != E) 716 break; 717 } 718 if (*I == New) { 719 NewI = I; 720 if (OldI != E) 721 break; 722 } 723 } 724 assert(OldI != E && "Old is not a successor of this block"); 725 726 // If New isn't already a successor, let it take Old's place. 727 if (NewI == E) { 728 Old->removePredecessor(this); 729 New->addPredecessor(this); 730 *OldI = New; 731 return; 732 } 733 734 // New is already a successor. 735 // Update its probability instead of adding a duplicate edge. 736 if (!Probs.empty()) { 737 auto ProbIter = getProbabilityIterator(NewI); 738 if (!ProbIter->isUnknown()) 739 *ProbIter += *getProbabilityIterator(OldI); 740 } 741 removeSuccessor(OldI); 742 } 743 744 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig, 745 succ_iterator I) { 746 if (Orig->Probs.empty()) 747 addSuccessor(*I, Orig->getSuccProbability(I)); 748 else 749 addSuccessorWithoutProb(*I); 750 } 751 752 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { 753 Predecessors.push_back(Pred); 754 } 755 756 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { 757 pred_iterator I = find(Predecessors, Pred); 758 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); 759 Predecessors.erase(I); 760 } 761 762 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { 763 if (this == FromMBB) 764 return; 765 766 while (!FromMBB->succ_empty()) { 767 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 768 769 // If probability list is empty it means we don't use it (disabled optimization). 770 if (!FromMBB->Probs.empty()) { 771 auto Prob = *FromMBB->Probs.begin(); 772 addSuccessor(Succ, Prob); 773 } else 774 addSuccessorWithoutProb(Succ); 775 776 FromMBB->removeSuccessor(Succ); 777 } 778 } 779 780 void 781 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { 782 if (this == FromMBB) 783 return; 784 785 while (!FromMBB->succ_empty()) { 786 MachineBasicBlock *Succ = *FromMBB->succ_begin(); 787 if (!FromMBB->Probs.empty()) { 788 auto Prob = *FromMBB->Probs.begin(); 789 addSuccessor(Succ, Prob); 790 } else 791 addSuccessorWithoutProb(Succ); 792 FromMBB->removeSuccessor(Succ); 793 794 // Fix up any PHI nodes in the successor. 795 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(), 796 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI) 797 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) { 798 MachineOperand &MO = MI->getOperand(i); 799 if (MO.getMBB() == FromMBB) 800 MO.setMBB(this); 801 } 802 } 803 normalizeSuccProbs(); 804 } 805 806 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { 807 return is_contained(predecessors(), MBB); 808 } 809 810 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { 811 return is_contained(successors(), MBB); 812 } 813 814 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { 815 MachineFunction::const_iterator I(this); 816 return std::next(I) == MachineFunction::const_iterator(MBB); 817 } 818 819 MachineBasicBlock *MachineBasicBlock::getFallThrough() { 820 MachineFunction::iterator Fallthrough = getIterator(); 821 ++Fallthrough; 822 // If FallthroughBlock is off the end of the function, it can't fall through. 823 if (Fallthrough == getParent()->end()) 824 return nullptr; 825 826 // If FallthroughBlock isn't a successor, no fallthrough is possible. 827 if (!isSuccessor(&*Fallthrough)) 828 return nullptr; 829 830 // Analyze the branches, if any, at the end of the block. 831 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 832 SmallVector<MachineOperand, 4> Cond; 833 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 834 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { 835 // If we couldn't analyze the branch, examine the last instruction. 836 // If the block doesn't end in a known control barrier, assume fallthrough 837 // is possible. The isPredicated check is needed because this code can be 838 // called during IfConversion, where an instruction which is normally a 839 // Barrier is predicated and thus no longer an actual control barrier. 840 return (empty() || !back().isBarrier() || TII->isPredicated(back())) 841 ? &*Fallthrough 842 : nullptr; 843 } 844 845 // If there is no branch, control always falls through. 846 if (!TBB) return &*Fallthrough; 847 848 // If there is some explicit branch to the fallthrough block, it can obviously 849 // reach, even though the branch should get folded to fall through implicitly. 850 if (MachineFunction::iterator(TBB) == Fallthrough || 851 MachineFunction::iterator(FBB) == Fallthrough) 852 return &*Fallthrough; 853 854 // If it's an unconditional branch to some block not the fall through, it 855 // doesn't fall through. 856 if (Cond.empty()) return nullptr; 857 858 // Otherwise, if it is conditional and has no explicit false block, it falls 859 // through. 860 return (FBB == nullptr) ? &*Fallthrough : nullptr; 861 } 862 863 bool MachineBasicBlock::canFallThrough() { 864 return getFallThrough() != nullptr; 865 } 866 867 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, 868 Pass &P) { 869 if (!canSplitCriticalEdge(Succ)) 870 return nullptr; 871 872 MachineFunction *MF = getParent(); 873 DebugLoc DL; // FIXME: this is nowhere 874 875 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); 876 MF->insert(std::next(MachineFunction::iterator(this)), NMBB); 877 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) 878 << " -- " << printMBBReference(*NMBB) << " -- " 879 << printMBBReference(*Succ) << '\n'); 880 881 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>(); 882 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>(); 883 if (LIS) 884 LIS->insertMBBInMaps(NMBB); 885 else if (Indexes) 886 Indexes->insertMBBInMaps(NMBB); 887 888 // On some targets like Mips, branches may kill virtual registers. Make sure 889 // that LiveVariables is properly updated after updateTerminator replaces the 890 // terminators. 891 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>(); 892 893 // Collect a list of virtual registers killed by the terminators. 894 SmallVector<unsigned, 4> KilledRegs; 895 if (LV) 896 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 897 I != E; ++I) { 898 MachineInstr *MI = &*I; 899 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 900 OE = MI->operands_end(); OI != OE; ++OI) { 901 if (!OI->isReg() || OI->getReg() == 0 || 902 !OI->isUse() || !OI->isKill() || OI->isUndef()) 903 continue; 904 unsigned Reg = OI->getReg(); 905 if (TargetRegisterInfo::isPhysicalRegister(Reg) || 906 LV->getVarInfo(Reg).removeKill(*MI)) { 907 KilledRegs.push_back(Reg); 908 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI); 909 OI->setIsKill(false); 910 } 911 } 912 } 913 914 SmallVector<unsigned, 4> UsedRegs; 915 if (LIS) { 916 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 917 I != E; ++I) { 918 MachineInstr *MI = &*I; 919 920 for (MachineInstr::mop_iterator OI = MI->operands_begin(), 921 OE = MI->operands_end(); OI != OE; ++OI) { 922 if (!OI->isReg() || OI->getReg() == 0) 923 continue; 924 925 unsigned Reg = OI->getReg(); 926 if (!is_contained(UsedRegs, Reg)) 927 UsedRegs.push_back(Reg); 928 } 929 } 930 } 931 932 ReplaceUsesOfBlockWith(Succ, NMBB); 933 934 // If updateTerminator() removes instructions, we need to remove them from 935 // SlotIndexes. 936 SmallVector<MachineInstr*, 4> Terminators; 937 if (Indexes) { 938 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 939 I != E; ++I) 940 Terminators.push_back(&*I); 941 } 942 943 updateTerminator(); 944 945 if (Indexes) { 946 SmallVector<MachineInstr*, 4> NewTerminators; 947 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end(); 948 I != E; ++I) 949 NewTerminators.push_back(&*I); 950 951 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(), 952 E = Terminators.end(); I != E; ++I) { 953 if (!is_contained(NewTerminators, *I)) 954 Indexes->removeMachineInstrFromMaps(**I); 955 } 956 } 957 958 // Insert unconditional "jump Succ" instruction in NMBB if necessary. 959 NMBB->addSuccessor(Succ); 960 if (!NMBB->isLayoutSuccessor(Succ)) { 961 SmallVector<MachineOperand, 4> Cond; 962 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); 963 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); 964 965 if (Indexes) { 966 for (MachineInstr &MI : NMBB->instrs()) { 967 // Some instructions may have been moved to NMBB by updateTerminator(), 968 // so we first remove any instruction that already has an index. 969 if (Indexes->hasIndex(MI)) 970 Indexes->removeMachineInstrFromMaps(MI); 971 Indexes->insertMachineInstrInMaps(MI); 972 } 973 } 974 } 975 976 // Fix PHI nodes in Succ so they refer to NMBB instead of this 977 for (MachineBasicBlock::instr_iterator 978 i = Succ->instr_begin(),e = Succ->instr_end(); 979 i != e && i->isPHI(); ++i) 980 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2) 981 if (i->getOperand(ni+1).getMBB() == this) 982 i->getOperand(ni+1).setMBB(NMBB); 983 984 // Inherit live-ins from the successor 985 for (const auto &LI : Succ->liveins()) 986 NMBB->addLiveIn(LI); 987 988 // Update LiveVariables. 989 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 990 if (LV) { 991 // Restore kills of virtual registers that were killed by the terminators. 992 while (!KilledRegs.empty()) { 993 unsigned Reg = KilledRegs.pop_back_val(); 994 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { 995 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false)) 996 continue; 997 if (TargetRegisterInfo::isVirtualRegister(Reg)) 998 LV->getVarInfo(Reg).Kills.push_back(&*I); 999 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I); 1000 break; 1001 } 1002 } 1003 // Update relevant live-through information. 1004 LV->addNewBlock(NMBB, this, Succ); 1005 } 1006 1007 if (LIS) { 1008 // After splitting the edge and updating SlotIndexes, live intervals may be 1009 // in one of two situations, depending on whether this block was the last in 1010 // the function. If the original block was the last in the function, all 1011 // live intervals will end prior to the beginning of the new split block. If 1012 // the original block was not at the end of the function, all live intervals 1013 // will extend to the end of the new split block. 1014 1015 bool isLastMBB = 1016 std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); 1017 1018 SlotIndex StartIndex = Indexes->getMBBEndIdx(this); 1019 SlotIndex PrevIndex = StartIndex.getPrevSlot(); 1020 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); 1021 1022 // Find the registers used from NMBB in PHIs in Succ. 1023 SmallSet<unsigned, 8> PHISrcRegs; 1024 for (MachineBasicBlock::instr_iterator 1025 I = Succ->instr_begin(), E = Succ->instr_end(); 1026 I != E && I->isPHI(); ++I) { 1027 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { 1028 if (I->getOperand(ni+1).getMBB() == NMBB) { 1029 MachineOperand &MO = I->getOperand(ni); 1030 unsigned Reg = MO.getReg(); 1031 PHISrcRegs.insert(Reg); 1032 if (MO.isUndef()) 1033 continue; 1034 1035 LiveInterval &LI = LIS->getInterval(Reg); 1036 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1037 assert(VNI && 1038 "PHI sources should be live out of their predecessors."); 1039 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1040 } 1041 } 1042 } 1043 1044 MachineRegisterInfo *MRI = &getParent()->getRegInfo(); 1045 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1046 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1047 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) 1048 continue; 1049 1050 LiveInterval &LI = LIS->getInterval(Reg); 1051 if (!LI.liveAt(PrevIndex)) 1052 continue; 1053 1054 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); 1055 if (isLiveOut && isLastMBB) { 1056 VNInfo *VNI = LI.getVNInfoAt(PrevIndex); 1057 assert(VNI && "LiveInterval should have VNInfo where it is live."); 1058 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); 1059 } else if (!isLiveOut && !isLastMBB) { 1060 LI.removeSegment(StartIndex, EndIndex); 1061 } 1062 } 1063 1064 // Update all intervals for registers whose uses may have been modified by 1065 // updateTerminator(). 1066 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); 1067 } 1068 1069 if (MachineDominatorTree *MDT = 1070 P.getAnalysisIfAvailable<MachineDominatorTree>()) 1071 MDT->recordSplitCriticalEdge(this, Succ, NMBB); 1072 1073 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>()) 1074 if (MachineLoop *TIL = MLI->getLoopFor(this)) { 1075 // If one or the other blocks were not in a loop, the new block is not 1076 // either, and thus LI doesn't need to be updated. 1077 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { 1078 if (TIL == DestLoop) { 1079 // Both in the same loop, the NMBB joins loop. 1080 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1081 } else if (TIL->contains(DestLoop)) { 1082 // Edge from an outer loop to an inner loop. Add to the outer loop. 1083 TIL->addBasicBlockToLoop(NMBB, MLI->getBase()); 1084 } else if (DestLoop->contains(TIL)) { 1085 // Edge from an inner loop to an outer loop. Add to the outer loop. 1086 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase()); 1087 } else { 1088 // Edge from two loops with no containment relation. Because these 1089 // are natural loops, we know that the destination block must be the 1090 // header of its loop (adding a branch into a loop elsewhere would 1091 // create an irreducible loop). 1092 assert(DestLoop->getHeader() == Succ && 1093 "Should not create irreducible loops!"); 1094 if (MachineLoop *P = DestLoop->getParentLoop()) 1095 P->addBasicBlockToLoop(NMBB, MLI->getBase()); 1096 } 1097 } 1098 } 1099 1100 return NMBB; 1101 } 1102 1103 bool MachineBasicBlock::canSplitCriticalEdge( 1104 const MachineBasicBlock *Succ) const { 1105 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 1106 // it in this generic function. 1107 if (Succ->isEHPad()) 1108 return false; 1109 1110 const MachineFunction *MF = getParent(); 1111 1112 // Performance might be harmed on HW that implements branching using exec mask 1113 // where both sides of the branches are always executed. 1114 if (MF->getTarget().requiresStructuredCFG()) 1115 return false; 1116 1117 // We may need to update this's terminator, but we can't do that if 1118 // AnalyzeBranch fails. If this uses a jump table, we won't touch it. 1119 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1120 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 1121 SmallVector<MachineOperand, 4> Cond; 1122 // AnalyzeBanch should modify this, since we did not allow modification. 1123 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond, 1124 /*AllowModify*/ false)) 1125 return false; 1126 1127 // Avoid bugpoint weirdness: A block may end with a conditional branch but 1128 // jumps to the same MBB is either case. We have duplicate CFG edges in that 1129 // case that we can't handle. Since this never happens in properly optimized 1130 // code, just skip those edges. 1131 if (TBB && TBB == FBB) { 1132 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate " 1133 << printMBBReference(*this) << '\n'); 1134 return false; 1135 } 1136 return true; 1137 } 1138 1139 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's 1140 /// neighboring instructions so the bundle won't be broken by removing MI. 1141 static void unbundleSingleMI(MachineInstr *MI) { 1142 // Removing the first instruction in a bundle. 1143 if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) 1144 MI->unbundleFromSucc(); 1145 // Removing the last instruction in a bundle. 1146 if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) 1147 MI->unbundleFromPred(); 1148 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags 1149 // are already fine. 1150 } 1151 1152 MachineBasicBlock::instr_iterator 1153 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { 1154 unbundleSingleMI(&*I); 1155 return Insts.erase(I); 1156 } 1157 1158 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { 1159 unbundleSingleMI(MI); 1160 MI->clearFlag(MachineInstr::BundledPred); 1161 MI->clearFlag(MachineInstr::BundledSucc); 1162 return Insts.remove(MI); 1163 } 1164 1165 MachineBasicBlock::instr_iterator 1166 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { 1167 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && 1168 "Cannot insert instruction with bundle flags"); 1169 // Set the bundle flags when inserting inside a bundle. 1170 if (I != instr_end() && I->isBundledWithPred()) { 1171 MI->setFlag(MachineInstr::BundledPred); 1172 MI->setFlag(MachineInstr::BundledSucc); 1173 } 1174 return Insts.insert(I, MI); 1175 } 1176 1177 /// This method unlinks 'this' from the containing function, and returns it, but 1178 /// does not delete it. 1179 MachineBasicBlock *MachineBasicBlock::removeFromParent() { 1180 assert(getParent() && "Not embedded in a function!"); 1181 getParent()->remove(this); 1182 return this; 1183 } 1184 1185 /// This method unlinks 'this' from the containing function, and deletes it. 1186 void MachineBasicBlock::eraseFromParent() { 1187 assert(getParent() && "Not embedded in a function!"); 1188 getParent()->erase(this); 1189 } 1190 1191 /// Given a machine basic block that branched to 'Old', change the code and CFG 1192 /// so that it branches to 'New' instead. 1193 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, 1194 MachineBasicBlock *New) { 1195 assert(Old != New && "Cannot replace self with self!"); 1196 1197 MachineBasicBlock::instr_iterator I = instr_end(); 1198 while (I != instr_begin()) { 1199 --I; 1200 if (!I->isTerminator()) break; 1201 1202 // Scan the operands of this machine instruction, replacing any uses of Old 1203 // with New. 1204 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 1205 if (I->getOperand(i).isMBB() && 1206 I->getOperand(i).getMBB() == Old) 1207 I->getOperand(i).setMBB(New); 1208 } 1209 1210 // Update the successor information. 1211 replaceSuccessor(Old, New); 1212 } 1213 1214 /// Various pieces of code can cause excess edges in the CFG to be inserted. If 1215 /// we have proven that MBB can only branch to DestA and DestB, remove any other 1216 /// MBB successors from the CFG. DestA and DestB can be null. 1217 /// 1218 /// Besides DestA and DestB, retain other edges leading to LandingPads 1219 /// (currently there can be only one; we don't check or require that here). 1220 /// Note it is possible that DestA and/or DestB are LandingPads. 1221 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA, 1222 MachineBasicBlock *DestB, 1223 bool IsCond) { 1224 // The values of DestA and DestB frequently come from a call to the 1225 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial 1226 // values from there. 1227 // 1228 // 1. If both DestA and DestB are null, then the block ends with no branches 1229 // (it falls through to its successor). 1230 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends 1231 // with only an unconditional branch. 1232 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends 1233 // with a conditional branch that falls through to a successor (DestB). 1234 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a 1235 // conditional branch followed by an unconditional branch. DestA is the 1236 // 'true' destination and DestB is the 'false' destination. 1237 1238 bool Changed = false; 1239 1240 MachineBasicBlock *FallThru = getNextNode(); 1241 1242 if (!DestA && !DestB) { 1243 // Block falls through to successor. 1244 DestA = FallThru; 1245 DestB = FallThru; 1246 } else if (DestA && !DestB) { 1247 if (IsCond) 1248 // Block ends in conditional jump that falls through to successor. 1249 DestB = FallThru; 1250 } else { 1251 assert(DestA && DestB && IsCond && 1252 "CFG in a bad state. Cannot correct CFG edges"); 1253 } 1254 1255 // Remove superfluous edges. I.e., those which aren't destinations of this 1256 // basic block, duplicate edges, or landing pads. 1257 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs; 1258 MachineBasicBlock::succ_iterator SI = succ_begin(); 1259 while (SI != succ_end()) { 1260 const MachineBasicBlock *MBB = *SI; 1261 if (!SeenMBBs.insert(MBB).second || 1262 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) { 1263 // This is a superfluous edge, remove it. 1264 SI = removeSuccessor(SI); 1265 Changed = true; 1266 } else { 1267 ++SI; 1268 } 1269 } 1270 1271 if (Changed) 1272 normalizeSuccProbs(); 1273 return Changed; 1274 } 1275 1276 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE 1277 /// instructions. Return UnknownLoc if there is none. 1278 DebugLoc 1279 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { 1280 // Skip debug declarations, we don't want a DebugLoc from them. 1281 MBBI = skipDebugInstructionsForward(MBBI, instr_end()); 1282 if (MBBI != instr_end()) 1283 return MBBI->getDebugLoc(); 1284 return {}; 1285 } 1286 1287 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE 1288 /// instructions. Return UnknownLoc if there is none. 1289 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) { 1290 if (MBBI == instr_begin()) return {}; 1291 // Skip debug declarations, we don't want a DebugLoc from them. 1292 MBBI = skipDebugInstructionsBackward(std::prev(MBBI), instr_begin()); 1293 if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc(); 1294 return {}; 1295 } 1296 1297 /// Find and return the merged DebugLoc of the branch instructions of the block. 1298 /// Return UnknownLoc if there is none. 1299 DebugLoc 1300 MachineBasicBlock::findBranchDebugLoc() { 1301 DebugLoc DL; 1302 auto TI = getFirstTerminator(); 1303 while (TI != end() && !TI->isBranch()) 1304 ++TI; 1305 1306 if (TI != end()) { 1307 DL = TI->getDebugLoc(); 1308 for (++TI ; TI != end() ; ++TI) 1309 if (TI->isBranch()) 1310 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); 1311 } 1312 return DL; 1313 } 1314 1315 /// Return probability of the edge from this block to MBB. 1316 BranchProbability 1317 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { 1318 if (Probs.empty()) 1319 return BranchProbability(1, succ_size()); 1320 1321 const auto &Prob = *getProbabilityIterator(Succ); 1322 if (Prob.isUnknown()) { 1323 // For unknown probabilities, collect the sum of all known ones, and evenly 1324 // ditribute the complemental of the sum to each unknown probability. 1325 unsigned KnownProbNum = 0; 1326 auto Sum = BranchProbability::getZero(); 1327 for (auto &P : Probs) { 1328 if (!P.isUnknown()) { 1329 Sum += P; 1330 KnownProbNum++; 1331 } 1332 } 1333 return Sum.getCompl() / (Probs.size() - KnownProbNum); 1334 } else 1335 return Prob; 1336 } 1337 1338 /// Set successor probability of a given iterator. 1339 void MachineBasicBlock::setSuccProbability(succ_iterator I, 1340 BranchProbability Prob) { 1341 assert(!Prob.isUnknown()); 1342 if (Probs.empty()) 1343 return; 1344 *getProbabilityIterator(I) = Prob; 1345 } 1346 1347 /// Return probability iterator corresonding to the I successor iterator 1348 MachineBasicBlock::const_probability_iterator 1349 MachineBasicBlock::getProbabilityIterator( 1350 MachineBasicBlock::const_succ_iterator I) const { 1351 assert(Probs.size() == Successors.size() && "Async probability list!"); 1352 const size_t index = std::distance(Successors.begin(), I); 1353 assert(index < Probs.size() && "Not a current successor!"); 1354 return Probs.begin() + index; 1355 } 1356 1357 /// Return probability iterator corresonding to the I successor iterator. 1358 MachineBasicBlock::probability_iterator 1359 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { 1360 assert(Probs.size() == Successors.size() && "Async probability list!"); 1361 const size_t index = std::distance(Successors.begin(), I); 1362 assert(index < Probs.size() && "Not a current successor!"); 1363 return Probs.begin() + index; 1364 } 1365 1366 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed 1367 /// as of just before "MI". 1368 /// 1369 /// Search is localised to a neighborhood of 1370 /// Neighborhood instructions before (searching for defs or kills) and N 1371 /// instructions after (searching just for defs) MI. 1372 MachineBasicBlock::LivenessQueryResult 1373 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, 1374 unsigned Reg, const_iterator Before, 1375 unsigned Neighborhood) const { 1376 unsigned N = Neighborhood; 1377 1378 // Try searching forwards from Before, looking for reads or defs. 1379 const_iterator I(Before); 1380 // If this is the last insn in the block, don't search forwards. 1381 if (I != end()) { 1382 for (++I; I != end() && N > 0; ++I, --N) { 1383 MachineOperandIteratorBase::PhysRegInfo Info = 1384 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1385 1386 // Register is live when we read it here. 1387 if (Info.Read) 1388 return LQR_Live; 1389 // Register is dead if we can fully overwrite or clobber it here. 1390 if (Info.FullyDefined || Info.Clobbered) 1391 return LQR_Dead; 1392 } 1393 } 1394 1395 // If we reached the end, it is safe to clobber Reg at the end of a block of 1396 // no successor has it live in. 1397 if (I == end()) { 1398 for (MachineBasicBlock *S : successors()) { 1399 for (MCSubRegIterator SubReg(Reg, TRI, /*IncludeSelf*/true); 1400 SubReg.isValid(); ++SubReg) { 1401 if (S->isLiveIn(*SubReg)) 1402 return LQR_Live; 1403 } 1404 } 1405 1406 return LQR_Dead; 1407 } 1408 1409 1410 N = Neighborhood; 1411 1412 // Start by searching backwards from Before, looking for kills, reads or defs. 1413 I = const_iterator(Before); 1414 // If this is the first insn in the block, don't search backwards. 1415 if (I != begin()) { 1416 do { 1417 --I; 1418 1419 MachineOperandIteratorBase::PhysRegInfo Info = 1420 ConstMIOperands(*I).analyzePhysReg(Reg, TRI); 1421 1422 // Defs happen after uses so they take precedence if both are present. 1423 1424 // Register is dead after a dead def of the full register. 1425 if (Info.DeadDef) 1426 return LQR_Dead; 1427 // Register is (at least partially) live after a def. 1428 if (Info.Defined) { 1429 if (!Info.PartialDeadDef) 1430 return LQR_Live; 1431 // As soon as we saw a partial definition (dead or not), 1432 // we cannot tell if the value is partial live without 1433 // tracking the lanemasks. We are not going to do this, 1434 // so fall back on the remaining of the analysis. 1435 break; 1436 } 1437 // Register is dead after a full kill or clobber and no def. 1438 if (Info.Killed || Info.Clobbered) 1439 return LQR_Dead; 1440 // Register must be live if we read it. 1441 if (Info.Read) 1442 return LQR_Live; 1443 } while (I != begin() && --N > 0); 1444 } 1445 1446 // Did we get to the start of the block? 1447 if (I == begin()) { 1448 // If so, the register's state is definitely defined by the live-in state. 1449 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid(); 1450 ++RAI) 1451 if (isLiveIn(*RAI)) 1452 return LQR_Live; 1453 1454 return LQR_Dead; 1455 } 1456 1457 1458 // At this point we have no idea of the liveness of the register. 1459 return LQR_Unknown; 1460 } 1461 1462 const uint32_t * 1463 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { 1464 // EH funclet entry does not preserve any registers. 1465 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; 1466 } 1467 1468 const uint32_t * 1469 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { 1470 // If we see a return block with successors, this must be a funclet return, 1471 // which does not preserve any registers. If there are no successors, we don't 1472 // care what kind of return it is, putting a mask after it is a no-op. 1473 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; 1474 } 1475 1476 void MachineBasicBlock::clearLiveIns() { 1477 LiveIns.clear(); 1478 } 1479 1480 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { 1481 assert(getParent()->getProperties().hasProperty( 1482 MachineFunctionProperties::Property::TracksLiveness) && 1483 "Liveness information is accurate"); 1484 return LiveIns.begin(); 1485 } 1486