1 //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveVariable analysis pass. For each machine 11 // instruction in the function, this pass calculates the set of registers that 12 // are immediately dead after the instruction (i.e., the instruction calculates 13 // the value, but it is never used) and the set of registers that are used by 14 // the instruction, but are never used after the instruction (i.e., they are 15 // killed). 16 // 17 // This class computes live variables using are sparse implementation based on 18 // the machine code SSA form. This class computes live variable information for 19 // each virtual and _register allocatable_ physical register in a function. It 20 // uses the dominance properties of SSA form to efficiently compute live 21 // variables for virtual registers, and assumes that physical registers are only 22 // live within a single basic block (allowing it to do a single local analysis 23 // to resolve physical register lifetimes in each basic block). If a physical 24 // register is not register allocatable, it is not tracked. This is useful for 25 // things like the stack pointer and condition codes. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/CodeGen/LiveVariables.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/Target/MRegisterInfo.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/ADT/DepthFirstIterator.h" 35 #include "llvm/ADT/STLExtras.h" 36 #include "llvm/Config/alloca.h" 37 #include <algorithm> 38 using namespace llvm; 39 40 static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis"); 41 42 void LiveVariables::VarInfo::dump() const { 43 cerr << "Register Defined by: "; 44 if (DefInst) 45 cerr << *DefInst; 46 else 47 cerr << "<null>\n"; 48 cerr << " Alive in blocks: "; 49 for (unsigned i = 0, e = AliveBlocks.size(); i != e; ++i) 50 if (AliveBlocks[i]) cerr << i << ", "; 51 cerr << "\n Killed by:"; 52 if (Kills.empty()) 53 cerr << " No instructions.\n"; 54 else { 55 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 56 cerr << "\n #" << i << ": " << *Kills[i]; 57 cerr << "\n"; 58 } 59 } 60 61 LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { 62 assert(MRegisterInfo::isVirtualRegister(RegIdx) && 63 "getVarInfo: not a virtual register!"); 64 RegIdx -= MRegisterInfo::FirstVirtualRegister; 65 if (RegIdx >= VirtRegInfo.size()) { 66 if (RegIdx >= 2*VirtRegInfo.size()) 67 VirtRegInfo.resize(RegIdx*2); 68 else 69 VirtRegInfo.resize(2*VirtRegInfo.size()); 70 } 71 return VirtRegInfo[RegIdx]; 72 } 73 74 bool LiveVariables::KillsRegister(MachineInstr *MI, unsigned Reg) const { 75 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 76 MachineOperand &MO = MI->getOperand(i); 77 if (MO.isReg() && MO.isKill()) { 78 if (RegInfo->regsOverlap(Reg, MO.getReg())) 79 return true; 80 } 81 } 82 return false; 83 } 84 85 bool LiveVariables::RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const { 86 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 87 MachineOperand &MO = MI->getOperand(i); 88 if (MO.isReg() && MO.isDead()) 89 if (RegInfo->regsOverlap(Reg, MO.getReg())) 90 return true; 91 } 92 return false; 93 } 94 95 bool LiveVariables::ModifiesRegister(MachineInstr *MI, unsigned Reg) const { 96 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 97 MachineOperand &MO = MI->getOperand(i); 98 if (MO.isReg() && MO.isDef()) { 99 if (RegInfo->regsOverlap(Reg, MO.getReg())) 100 return true; 101 } 102 } 103 return false; 104 } 105 106 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, 107 MachineBasicBlock *MBB) { 108 unsigned BBNum = MBB->getNumber(); 109 110 // Check to see if this basic block is one of the killing blocks. If so, 111 // remove it... 112 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 113 if (VRInfo.Kills[i]->getParent() == MBB) { 114 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry 115 break; 116 } 117 118 if (MBB == VRInfo.DefInst->getParent()) return; // Terminate recursion 119 120 if (VRInfo.AliveBlocks.size() <= BBNum) 121 VRInfo.AliveBlocks.resize(BBNum+1); // Make space... 122 123 if (VRInfo.AliveBlocks[BBNum]) 124 return; // We already know the block is live 125 126 // Mark the variable known alive in this bb 127 VRInfo.AliveBlocks[BBNum] = true; 128 129 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 130 E = MBB->pred_end(); PI != E; ++PI) 131 MarkVirtRegAliveInBlock(VRInfo, *PI); 132 } 133 134 void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB, 135 MachineInstr *MI) { 136 assert(VRInfo.DefInst && "Register use before def!"); 137 138 // Check to see if this basic block is already a kill block... 139 if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { 140 // Yes, this register is killed in this basic block already. Increase the 141 // live range by updating the kill instruction. 142 VRInfo.Kills.back() = MI; 143 return; 144 } 145 146 #ifndef NDEBUG 147 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 148 assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); 149 #endif 150 151 assert(MBB != VRInfo.DefInst->getParent() && 152 "Should have kill for defblock!"); 153 154 // Add a new kill entry for this basic block. 155 unsigned BBNum = MBB->getNumber(); 156 // If this virtual register is already marked as alive in this basic block, 157 // that means it is alive in at least one of the successor block, it's not 158 // a kill. 159 if (VRInfo.AliveBlocks.size() <= BBNum || !VRInfo.AliveBlocks[BBNum]) 160 VRInfo.Kills.push_back(MI); 161 162 // Update all dominating blocks to mark them known live. 163 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 164 E = MBB->pred_end(); PI != E; ++PI) 165 MarkVirtRegAliveInBlock(VRInfo, *PI); 166 } 167 168 void LiveVariables::addRegisterKilled(unsigned IncomingReg, MachineInstr *MI) { 169 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 170 MachineOperand &MO = MI->getOperand(i); 171 if (MO.isReg() && MO.isUse() && MO.getReg() == IncomingReg) { 172 MO.setIsKill(); 173 break; 174 } 175 } 176 } 177 178 void LiveVariables::addRegisterDead(unsigned IncomingReg, MachineInstr *MI) { 179 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 180 MachineOperand &MO = MI->getOperand(i); 181 if (MO.isReg() && MO.isDef() && MO.getReg() == IncomingReg) { 182 MO.setIsDead(); 183 break; 184 } 185 } 186 } 187 188 void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { 189 PhysRegInfo[Reg] = MI; 190 PhysRegUsed[Reg] = true; 191 192 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); 193 unsigned Alias = *AliasSet; ++AliasSet) { 194 PhysRegInfo[Alias] = MI; 195 PhysRegUsed[Alias] = true; 196 } 197 } 198 199 void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) { 200 // Does this kill a previous version of this register? 201 if (MachineInstr *LastUse = PhysRegInfo[Reg]) { 202 if (PhysRegUsed[Reg]) 203 addRegisterKilled(Reg, LastUse); 204 else 205 addRegisterDead(Reg, LastUse); 206 } 207 PhysRegInfo[Reg] = MI; 208 PhysRegUsed[Reg] = false; 209 210 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); 211 unsigned Alias = *AliasSet; ++AliasSet) { 212 if (MachineInstr *LastUse = PhysRegInfo[Alias]) { 213 if (PhysRegUsed[Alias]) 214 addRegisterKilled(Alias, LastUse); 215 else 216 addRegisterDead(Alias, LastUse); 217 } 218 PhysRegInfo[Alias] = MI; 219 PhysRegUsed[Alias] = false; 220 } 221 } 222 223 bool LiveVariables::runOnMachineFunction(MachineFunction &MF) { 224 const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo(); 225 RegInfo = MF.getTarget().getRegisterInfo(); 226 assert(RegInfo && "Target doesn't have register information?"); 227 228 ReservedRegisters = RegInfo->getReservedRegs(MF); 229 230 // PhysRegInfo - Keep track of which instruction was the last use of a 231 // physical register. This is a purely local property, because all physical 232 // register references as presumed dead across basic blocks. 233 // 234 PhysRegInfo = (MachineInstr**)alloca(sizeof(MachineInstr*) * 235 RegInfo->getNumRegs()); 236 PhysRegUsed = (bool*)alloca(sizeof(bool)*RegInfo->getNumRegs()); 237 std::fill(PhysRegInfo, PhysRegInfo+RegInfo->getNumRegs(), (MachineInstr*)0); 238 239 /// Get some space for a respectable number of registers... 240 VirtRegInfo.resize(64); 241 242 analyzePHINodes(MF); 243 244 // Calculate live variable information in depth first order on the CFG of the 245 // function. This guarantees that we will see the definition of a virtual 246 // register before its uses due to dominance properties of SSA (except for PHI 247 // nodes, which are treated as a special case). 248 // 249 MachineBasicBlock *Entry = MF.begin(); 250 std::set<MachineBasicBlock*> Visited; 251 for (df_ext_iterator<MachineBasicBlock*> DFI = df_ext_begin(Entry, Visited), 252 E = df_ext_end(Entry, Visited); DFI != E; ++DFI) { 253 MachineBasicBlock *MBB = *DFI; 254 255 // Mark live-in registers as live-in. 256 for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(), 257 EE = MBB->livein_end(); II != EE; ++II) { 258 assert(MRegisterInfo::isPhysicalRegister(*II) && 259 "Cannot have a live-in virtual register!"); 260 HandlePhysRegDef(*II, 0); 261 } 262 263 // Loop over all of the instructions, processing them. 264 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 265 I != E; ++I) { 266 MachineInstr *MI = I; 267 268 // Process all of the operands of the instruction... 269 unsigned NumOperandsToProcess = MI->getNumOperands(); 270 271 // Unless it is a PHI node. In this case, ONLY process the DEF, not any 272 // of the uses. They will be handled in other basic blocks. 273 if (MI->getOpcode() == TargetInstrInfo::PHI) 274 NumOperandsToProcess = 1; 275 276 // Process all uses... 277 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 278 MachineOperand &MO = MI->getOperand(i); 279 if (MO.isRegister() && MO.isUse() && MO.getReg()) { 280 if (MRegisterInfo::isVirtualRegister(MO.getReg())){ 281 HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI); 282 } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && 283 !ReservedRegisters[MO.getReg()]) { 284 HandlePhysRegUse(MO.getReg(), MI); 285 } 286 } 287 } 288 289 // Process all defs... 290 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 291 MachineOperand &MO = MI->getOperand(i); 292 if (MO.isRegister() && MO.isDef() && MO.getReg()) { 293 if (MRegisterInfo::isVirtualRegister(MO.getReg())) { 294 VarInfo &VRInfo = getVarInfo(MO.getReg()); 295 296 assert(VRInfo.DefInst == 0 && "Variable multiply defined!"); 297 VRInfo.DefInst = MI; 298 // Defaults to dead 299 VRInfo.Kills.push_back(MI); 300 } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && 301 !ReservedRegisters[MO.getReg()]) { 302 HandlePhysRegDef(MO.getReg(), MI); 303 } 304 } 305 } 306 } 307 308 // Handle any virtual assignments from PHI nodes which might be at the 309 // bottom of this basic block. We check all of our successor blocks to see 310 // if they have PHI nodes, and if so, we simulate an assignment at the end 311 // of the current block. 312 if (!PHIVarInfo[MBB].empty()) { 313 std::vector<unsigned>& VarInfoVec = PHIVarInfo[MBB]; 314 315 for (std::vector<unsigned>::iterator I = VarInfoVec.begin(), 316 E = VarInfoVec.end(); I != E; ++I) { 317 VarInfo& VRInfo = getVarInfo(*I); 318 assert(VRInfo.DefInst && "Register use before def (or no def)!"); 319 320 // Only mark it alive only in the block we are representing. 321 MarkVirtRegAliveInBlock(VRInfo, MBB); 322 } 323 } 324 325 // Finally, if the last instruction in the block is a return, make sure to mark 326 // it as using all of the live-out values in the function. 327 if (!MBB->empty() && TII.isReturn(MBB->back().getOpcode())) { 328 MachineInstr *Ret = &MBB->back(); 329 for (MachineFunction::liveout_iterator I = MF.liveout_begin(), 330 E = MF.liveout_end(); I != E; ++I) { 331 assert(MRegisterInfo::isPhysicalRegister(*I) && 332 "Cannot have a live-in virtual register!"); 333 HandlePhysRegUse(*I, Ret); 334 // Add live-out registers as implicit uses. 335 Ret->addRegOperand(*I, false, true); 336 } 337 } 338 339 // Loop over PhysRegInfo, killing any registers that are available at the 340 // end of the basic block. This also resets the PhysRegInfo map. 341 for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i) 342 if (PhysRegInfo[i]) 343 HandlePhysRegDef(i, 0); 344 } 345 346 // Convert and transfer the dead / killed information we have gathered into 347 // VirtRegInfo onto MI's. 348 // 349 for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) 350 for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j) { 351 if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst) 352 addRegisterDead(i + MRegisterInfo::FirstVirtualRegister, 353 VirtRegInfo[i].Kills[j]); 354 else 355 addRegisterKilled(i + MRegisterInfo::FirstVirtualRegister, 356 VirtRegInfo[i].Kills[j]); 357 } 358 359 // Check to make sure there are no unreachable blocks in the MC CFG for the 360 // function. If so, it is due to a bug in the instruction selector or some 361 // other part of the code generator if this happens. 362 #ifndef NDEBUG 363 for(MachineFunction::iterator i = MF.begin(), e = MF.end(); i != e; ++i) 364 assert(Visited.count(&*i) != 0 && "unreachable basic block found"); 365 #endif 366 367 PHIVarInfo.clear(); 368 return false; 369 } 370 371 /// instructionChanged - When the address of an instruction changes, this 372 /// method should be called so that live variables can update its internal 373 /// data structures. This removes the records for OldMI, transfering them to 374 /// the records for NewMI. 375 void LiveVariables::instructionChanged(MachineInstr *OldMI, 376 MachineInstr *NewMI) { 377 // If the instruction defines any virtual registers, update the VarInfo, 378 // kill and dead information for the instruction. 379 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 380 MachineOperand &MO = OldMI->getOperand(i); 381 if (MO.isRegister() && MO.getReg() && 382 MRegisterInfo::isVirtualRegister(MO.getReg())) { 383 unsigned Reg = MO.getReg(); 384 VarInfo &VI = getVarInfo(Reg); 385 if (MO.isDef()) { 386 if (MO.isDead()) { 387 MO.unsetIsDead(); 388 addVirtualRegisterDead(Reg, NewMI); 389 } 390 // Update the defining instruction. 391 if (VI.DefInst == OldMI) 392 VI.DefInst = NewMI; 393 } 394 if (MO.isUse()) { 395 if (MO.isKill()) { 396 MO.unsetIsKill(); 397 addVirtualRegisterKilled(Reg, NewMI); 398 } 399 // If this is a kill of the value, update the VI kills list. 400 if (VI.removeKill(OldMI)) 401 VI.Kills.push_back(NewMI); // Yes, there was a kill of it 402 } 403 } 404 } 405 } 406 407 /// removeVirtualRegistersKilled - Remove all killed info for the specified 408 /// instruction. 409 void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) { 410 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 411 MachineOperand &MO = MI->getOperand(i); 412 if (MO.isReg() && MO.isKill()) { 413 MO.unsetIsKill(); 414 unsigned Reg = MO.getReg(); 415 if (MRegisterInfo::isVirtualRegister(Reg)) { 416 bool removed = getVarInfo(Reg).removeKill(MI); 417 assert(removed && "kill not in register's VarInfo?"); 418 } 419 } 420 } 421 } 422 423 /// removeVirtualRegistersDead - Remove all of the dead registers for the 424 /// specified instruction from the live variable information. 425 void LiveVariables::removeVirtualRegistersDead(MachineInstr *MI) { 426 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 427 MachineOperand &MO = MI->getOperand(i); 428 if (MO.isReg() && MO.isDead()) { 429 MO.unsetIsDead(); 430 unsigned Reg = MO.getReg(); 431 if (MRegisterInfo::isVirtualRegister(Reg)) { 432 bool removed = getVarInfo(Reg).removeKill(MI); 433 assert(removed && "kill not in register's VarInfo?"); 434 } 435 } 436 } 437 } 438 439 /// analyzePHINodes - Gather information about the PHI nodes in here. In 440 /// particular, we want to map the variable information of a virtual 441 /// register which is used in a PHI node. We map that to the BB the vreg is 442 /// coming from. 443 /// 444 void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { 445 for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); 446 I != E; ++I) 447 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); 448 BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) 449 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) 450 PHIVarInfo[BBI->getOperand(i + 1).getMachineBasicBlock()]. 451 push_back(BBI->getOperand(i).getReg()); 452 } 453