1 //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveVariable analysis pass. For each machine 11 // instruction in the function, this pass calculates the set of registers that 12 // are immediately dead after the instruction (i.e., the instruction calculates 13 // the value, but it is never used) and the set of registers that are used by 14 // the instruction, but are never used after the instruction (i.e., they are 15 // killed). 16 // 17 // This class computes live variables using are sparse implementation based on 18 // the machine code SSA form. This class computes live variable information for 19 // each virtual and _register allocatable_ physical register in a function. It 20 // uses the dominance properties of SSA form to efficiently compute live 21 // variables for virtual registers, and assumes that physical registers are only 22 // live within a single basic block (allowing it to do a single local analysis 23 // to resolve physical register lifetimes in each basic block). If a physical 24 // register is not register allocatable, it is not tracked. This is useful for 25 // things like the stack pointer and condition codes. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/CodeGen/LiveVariables.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/Target/MRegisterInfo.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/ADT/DepthFirstIterator.h" 35 #include "llvm/ADT/STLExtras.h" 36 #include "llvm/Config/alloca.h" 37 #include <algorithm> 38 #include <iostream> 39 using namespace llvm; 40 41 static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis"); 42 43 void LiveVariables::VarInfo::dump() const { 44 std::cerr << "Register Defined by: "; 45 if (DefInst) 46 std::cerr << *DefInst; 47 else 48 std::cerr << "<null>\n"; 49 std::cerr << " Alive in blocks: "; 50 for (unsigned i = 0, e = AliveBlocks.size(); i != e; ++i) 51 if (AliveBlocks[i]) std::cerr << i << ", "; 52 std::cerr << "\n Killed by:"; 53 if (Kills.empty()) 54 std::cerr << " No instructions.\n"; 55 else { 56 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 57 std::cerr << "\n #" << i << ": " << *Kills[i]; 58 std::cerr << "\n"; 59 } 60 } 61 62 LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { 63 assert(MRegisterInfo::isVirtualRegister(RegIdx) && 64 "getVarInfo: not a virtual register!"); 65 RegIdx -= MRegisterInfo::FirstVirtualRegister; 66 if (RegIdx >= VirtRegInfo.size()) { 67 if (RegIdx >= 2*VirtRegInfo.size()) 68 VirtRegInfo.resize(RegIdx*2); 69 else 70 VirtRegInfo.resize(2*VirtRegInfo.size()); 71 } 72 return VirtRegInfo[RegIdx]; 73 } 74 75 bool LiveVariables::KillsRegister(MachineInstr *MI, unsigned Reg) const { 76 std::map<MachineInstr*, std::vector<unsigned> >::const_iterator I = 77 RegistersKilled.find(MI); 78 if (I == RegistersKilled.end()) return false; 79 80 // Do a binary search, as these lists can grow pretty big, particularly for 81 // call instructions on targets with lots of call-clobbered registers. 82 return std::binary_search(I->second.begin(), I->second.end(), Reg); 83 } 84 85 bool LiveVariables::RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const { 86 std::map<MachineInstr*, std::vector<unsigned> >::const_iterator I = 87 RegistersDead.find(MI); 88 if (I == RegistersDead.end()) return false; 89 90 // Do a binary search, as these lists can grow pretty big, particularly for 91 // call instructions on targets with lots of call-clobbered registers. 92 return std::binary_search(I->second.begin(), I->second.end(), Reg); 93 } 94 95 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, 96 MachineBasicBlock *MBB) { 97 unsigned BBNum = MBB->getNumber(); 98 99 // Check to see if this basic block is one of the killing blocks. If so, 100 // remove it... 101 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 102 if (VRInfo.Kills[i]->getParent() == MBB) { 103 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry 104 break; 105 } 106 107 if (MBB == VRInfo.DefInst->getParent()) return; // Terminate recursion 108 109 if (VRInfo.AliveBlocks.size() <= BBNum) 110 VRInfo.AliveBlocks.resize(BBNum+1); // Make space... 111 112 if (VRInfo.AliveBlocks[BBNum]) 113 return; // We already know the block is live 114 115 // Mark the variable known alive in this bb 116 VRInfo.AliveBlocks[BBNum] = true; 117 118 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 119 E = MBB->pred_end(); PI != E; ++PI) 120 MarkVirtRegAliveInBlock(VRInfo, *PI); 121 } 122 123 void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB, 124 MachineInstr *MI) { 125 assert(VRInfo.DefInst && "Register use before def!"); 126 127 // Check to see if this basic block is already a kill block... 128 if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { 129 // Yes, this register is killed in this basic block already. Increase the 130 // live range by updating the kill instruction. 131 VRInfo.Kills.back() = MI; 132 return; 133 } 134 135 #ifndef NDEBUG 136 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 137 assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); 138 #endif 139 140 assert(MBB != VRInfo.DefInst->getParent() && 141 "Should have kill for defblock!"); 142 143 // Add a new kill entry for this basic block. 144 VRInfo.Kills.push_back(MI); 145 146 // Update all dominating blocks to mark them known live. 147 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 148 E = MBB->pred_end(); PI != E; ++PI) 149 MarkVirtRegAliveInBlock(VRInfo, *PI); 150 } 151 152 void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { 153 PhysRegInfo[Reg] = MI; 154 PhysRegUsed[Reg] = true; 155 156 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); 157 unsigned Alias = *AliasSet; ++AliasSet) { 158 PhysRegInfo[Alias] = MI; 159 PhysRegUsed[Alias] = true; 160 } 161 } 162 163 void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) { 164 // Does this kill a previous version of this register? 165 if (MachineInstr *LastUse = PhysRegInfo[Reg]) { 166 if (PhysRegUsed[Reg]) 167 RegistersKilled[LastUse].push_back(Reg); 168 else 169 RegistersDead[LastUse].push_back(Reg); 170 } 171 PhysRegInfo[Reg] = MI; 172 PhysRegUsed[Reg] = false; 173 174 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); 175 unsigned Alias = *AliasSet; ++AliasSet) { 176 if (MachineInstr *LastUse = PhysRegInfo[Alias]) { 177 if (PhysRegUsed[Alias]) 178 RegistersKilled[LastUse].push_back(Alias); 179 else 180 RegistersDead[LastUse].push_back(Alias); 181 } 182 PhysRegInfo[Alias] = MI; 183 PhysRegUsed[Alias] = false; 184 } 185 } 186 187 bool LiveVariables::runOnMachineFunction(MachineFunction &MF) { 188 const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo(); 189 RegInfo = MF.getTarget().getRegisterInfo(); 190 assert(RegInfo && "Target doesn't have register information?"); 191 192 AllocatablePhysicalRegisters = RegInfo->getAllocatableSet(MF); 193 194 // PhysRegInfo - Keep track of which instruction was the last use of a 195 // physical register. This is a purely local property, because all physical 196 // register references as presumed dead across basic blocks. 197 // 198 PhysRegInfo = (MachineInstr**)alloca(sizeof(MachineInstr*) * 199 RegInfo->getNumRegs()); 200 PhysRegUsed = (bool*)alloca(sizeof(bool)*RegInfo->getNumRegs()); 201 std::fill(PhysRegInfo, PhysRegInfo+RegInfo->getNumRegs(), (MachineInstr*)0); 202 203 /// Get some space for a respectable number of registers... 204 VirtRegInfo.resize(64); 205 206 // Mark live-in registers as live-in. 207 for (MachineFunction::livein_iterator I = MF.livein_begin(), 208 E = MF.livein_end(); I != E; ++I) { 209 assert(MRegisterInfo::isPhysicalRegister(I->first) && 210 "Cannot have a live-in virtual register!"); 211 HandlePhysRegDef(I->first, 0); 212 } 213 214 analyzePHINodes(MF); 215 216 // Calculate live variable information in depth first order on the CFG of the 217 // function. This guarantees that we will see the definition of a virtual 218 // register before its uses due to dominance properties of SSA (except for PHI 219 // nodes, which are treated as a special case). 220 // 221 MachineBasicBlock *Entry = MF.begin(); 222 std::set<MachineBasicBlock*> Visited; 223 for (df_ext_iterator<MachineBasicBlock*> DFI = df_ext_begin(Entry, Visited), 224 E = df_ext_end(Entry, Visited); DFI != E; ++DFI) { 225 MachineBasicBlock *MBB = *DFI; 226 227 // Loop over all of the instructions, processing them. 228 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 229 I != E; ++I) { 230 MachineInstr *MI = I; 231 const TargetInstrDescriptor &MID = TII.get(MI->getOpcode()); 232 233 // Process all of the operands of the instruction... 234 unsigned NumOperandsToProcess = MI->getNumOperands(); 235 236 // Unless it is a PHI node. In this case, ONLY process the DEF, not any 237 // of the uses. They will be handled in other basic blocks. 238 if (MI->getOpcode() == TargetInstrInfo::PHI) 239 NumOperandsToProcess = 1; 240 241 // Loop over implicit uses, using them. 242 if (MID.ImplicitUses) { 243 for (const unsigned *ImplicitUses = MID.ImplicitUses; 244 *ImplicitUses; ++ImplicitUses) 245 HandlePhysRegUse(*ImplicitUses, MI); 246 } 247 248 // Process all explicit uses... 249 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 250 MachineOperand &MO = MI->getOperand(i); 251 if (MO.isRegister() && MO.isUse() && MO.getReg()) { 252 if (MRegisterInfo::isVirtualRegister(MO.getReg())){ 253 HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI); 254 } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && 255 AllocatablePhysicalRegisters[MO.getReg()]) { 256 HandlePhysRegUse(MO.getReg(), MI); 257 } 258 } 259 } 260 261 // Loop over implicit defs, defining them. 262 if (MID.ImplicitDefs) { 263 for (const unsigned *ImplicitDefs = MID.ImplicitDefs; 264 *ImplicitDefs; ++ImplicitDefs) 265 HandlePhysRegDef(*ImplicitDefs, MI); 266 } 267 268 // Process all explicit defs... 269 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 270 MachineOperand &MO = MI->getOperand(i); 271 if (MO.isRegister() && MO.isDef() && MO.getReg()) { 272 if (MRegisterInfo::isVirtualRegister(MO.getReg())) { 273 VarInfo &VRInfo = getVarInfo(MO.getReg()); 274 275 assert(VRInfo.DefInst == 0 && "Variable multiply defined!"); 276 VRInfo.DefInst = MI; 277 // Defaults to dead 278 VRInfo.Kills.push_back(MI); 279 } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && 280 AllocatablePhysicalRegisters[MO.getReg()]) { 281 HandlePhysRegDef(MO.getReg(), MI); 282 } 283 } 284 } 285 } 286 287 // Handle any virtual assignments from PHI nodes which might be at the 288 // bottom of this basic block. We check all of our successor blocks to see 289 // if they have PHI nodes, and if so, we simulate an assignment at the end 290 // of the current block. 291 if (!PHIVarInfo[MBB].empty()) { 292 std::vector<unsigned>& VarInfoVec = PHIVarInfo[MBB]; 293 294 for (std::vector<unsigned>::iterator I = VarInfoVec.begin(), 295 E = VarInfoVec.end(); I != E; ++I) { 296 VarInfo& VRInfo = getVarInfo(*I); 297 assert(VRInfo.DefInst && "Register use before def (or no def)!"); 298 299 // Only mark it alive only in the block we are representing. 300 MarkVirtRegAliveInBlock(VRInfo, MBB); 301 } 302 } 303 304 // Finally, if the last block in the function is a return, make sure to mark 305 // it as using all of the live-out values in the function. 306 if (!MBB->empty() && TII.isReturn(MBB->back().getOpcode())) { 307 MachineInstr *Ret = &MBB->back(); 308 for (MachineFunction::liveout_iterator I = MF.liveout_begin(), 309 E = MF.liveout_end(); I != E; ++I) { 310 assert(MRegisterInfo::isPhysicalRegister(*I) && 311 "Cannot have a live-in virtual register!"); 312 HandlePhysRegUse(*I, Ret); 313 } 314 } 315 316 // Loop over PhysRegInfo, killing any registers that are available at the 317 // end of the basic block. This also resets the PhysRegInfo map. 318 for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i) 319 if (PhysRegInfo[i]) 320 HandlePhysRegDef(i, 0); 321 } 322 323 // Convert the information we have gathered into VirtRegInfo and transform it 324 // into a form usable by RegistersKilled. 325 // 326 for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i) 327 for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) { 328 if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst) 329 RegistersDead[VirtRegInfo[i].Kills[j]].push_back( 330 i + MRegisterInfo::FirstVirtualRegister); 331 332 else 333 RegistersKilled[VirtRegInfo[i].Kills[j]].push_back( 334 i + MRegisterInfo::FirstVirtualRegister); 335 } 336 337 // Walk through the RegistersKilled/Dead sets, and sort the registers killed 338 // or dead. This allows us to use efficient binary search for membership 339 // testing. 340 for (std::map<MachineInstr*, std::vector<unsigned> >::iterator 341 I = RegistersKilled.begin(), E = RegistersKilled.end(); I != E; ++I) 342 std::sort(I->second.begin(), I->second.end()); 343 for (std::map<MachineInstr*, std::vector<unsigned> >::iterator 344 I = RegistersDead.begin(), E = RegistersDead.end(); I != E; ++I) 345 std::sort(I->second.begin(), I->second.end()); 346 347 // Check to make sure there are no unreachable blocks in the MC CFG for the 348 // function. If so, it is due to a bug in the instruction selector or some 349 // other part of the code generator if this happens. 350 #ifndef NDEBUG 351 for(MachineFunction::iterator i = MF.begin(), e = MF.end(); i != e; ++i) 352 assert(Visited.count(&*i) != 0 && "unreachable basic block found"); 353 #endif 354 355 PHIVarInfo.clear(); 356 return false; 357 } 358 359 /// instructionChanged - When the address of an instruction changes, this 360 /// method should be called so that live variables can update its internal 361 /// data structures. This removes the records for OldMI, transfering them to 362 /// the records for NewMI. 363 void LiveVariables::instructionChanged(MachineInstr *OldMI, 364 MachineInstr *NewMI) { 365 // If the instruction defines any virtual registers, update the VarInfo for 366 // the instruction. 367 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 368 MachineOperand &MO = OldMI->getOperand(i); 369 if (MO.isRegister() && MO.getReg() && 370 MRegisterInfo::isVirtualRegister(MO.getReg())) { 371 unsigned Reg = MO.getReg(); 372 VarInfo &VI = getVarInfo(Reg); 373 if (MO.isDef()) { 374 // Update the defining instruction. 375 if (VI.DefInst == OldMI) 376 VI.DefInst = NewMI; 377 } 378 if (MO.isUse()) { 379 // If this is a kill of the value, update the VI kills list. 380 if (VI.removeKill(OldMI)) 381 VI.Kills.push_back(NewMI); // Yes, there was a kill of it 382 } 383 } 384 } 385 386 // Move the killed information over... 387 killed_iterator I, E; 388 tie(I, E) = killed_range(OldMI); 389 if (I != E) { 390 std::vector<unsigned> &V = RegistersKilled[NewMI]; 391 bool WasEmpty = V.empty(); 392 V.insert(V.end(), I, E); 393 if (!WasEmpty) 394 std::sort(V.begin(), V.end()); // Keep the reg list sorted. 395 RegistersKilled.erase(OldMI); 396 } 397 398 // Move the dead information over... 399 tie(I, E) = dead_range(OldMI); 400 if (I != E) { 401 std::vector<unsigned> &V = RegistersDead[NewMI]; 402 bool WasEmpty = V.empty(); 403 V.insert(V.end(), I, E); 404 if (!WasEmpty) 405 std::sort(V.begin(), V.end()); // Keep the reg list sorted. 406 RegistersDead.erase(OldMI); 407 } 408 } 409 410 /// removeVirtualRegistersKilled - Remove all killed info for the specified 411 /// instruction. 412 void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) { 413 std::map<MachineInstr*, std::vector<unsigned> >::iterator I = 414 RegistersKilled.find(MI); 415 if (I == RegistersKilled.end()) return; 416 417 std::vector<unsigned> &Regs = I->second; 418 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 419 if (MRegisterInfo::isVirtualRegister(Regs[i])) { 420 bool removed = getVarInfo(Regs[i]).removeKill(MI); 421 assert(removed && "kill not in register's VarInfo?"); 422 } 423 } 424 RegistersKilled.erase(I); 425 } 426 427 /// removeVirtualRegistersDead - Remove all of the dead registers for the 428 /// specified instruction from the live variable information. 429 void LiveVariables::removeVirtualRegistersDead(MachineInstr *MI) { 430 std::map<MachineInstr*, std::vector<unsigned> >::iterator I = 431 RegistersDead.find(MI); 432 if (I == RegistersDead.end()) return; 433 434 std::vector<unsigned> &Regs = I->second; 435 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 436 if (MRegisterInfo::isVirtualRegister(Regs[i])) { 437 bool removed = getVarInfo(Regs[i]).removeKill(MI); 438 assert(removed && "kill not in register's VarInfo?"); 439 } 440 } 441 RegistersDead.erase(I); 442 } 443 444 /// analyzePHINodes - Gather information about the PHI nodes in here. In 445 /// particular, we want to map the variable information of a virtual 446 /// register which is used in a PHI node. We map that to the BB the vreg is 447 /// coming from. 448 /// 449 void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { 450 for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); 451 I != E; ++I) 452 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); 453 BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) 454 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) 455 PHIVarInfo[BBI->getOperand(i + 1).getMachineBasicBlock()]. 456 push_back(BBI->getOperand(i).getReg()); 457 } 458