1 //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveVariable analysis pass. For each machine 11 // instruction in the function, this pass calculates the set of registers that 12 // are immediately dead after the instruction (i.e., the instruction calculates 13 // the value, but it is never used) and the set of registers that are used by 14 // the instruction, but are never used after the instruction (i.e., they are 15 // killed). 16 // 17 // This class computes live variables using are sparse implementation based on 18 // the machine code SSA form. This class computes live variable information for 19 // each virtual and _register allocatable_ physical register in a function. It 20 // uses the dominance properties of SSA form to efficiently compute live 21 // variables for virtual registers, and assumes that physical registers are only 22 // live within a single basic block (allowing it to do a single local analysis 23 // to resolve physical register lifetimes in each basic block). If a physical 24 // register is not register allocatable, it is not tracked. This is useful for 25 // things like the stack pointer and condition codes. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/CodeGen/LiveVariables.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/Passes.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Target/TargetRegisterInfo.h" 35 #include "llvm/Target/TargetInstrInfo.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/ADT/DepthFirstIterator.h" 38 #include "llvm/ADT/SmallPtrSet.h" 39 #include "llvm/ADT/SmallSet.h" 40 #include "llvm/ADT/STLExtras.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 char LiveVariables::ID = 0; 45 static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis"); 46 47 48 void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const { 49 AU.addRequiredID(UnreachableMachineBlockElimID); 50 AU.setPreservesAll(); 51 MachineFunctionPass::getAnalysisUsage(AU); 52 } 53 54 MachineInstr * 55 LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const { 56 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 57 if (Kills[i]->getParent() == MBB) 58 return Kills[i]; 59 return NULL; 60 } 61 62 void LiveVariables::VarInfo::dump() const { 63 dbgs() << " Alive in blocks: "; 64 for (SparseBitVector<>::iterator I = AliveBlocks.begin(), 65 E = AliveBlocks.end(); I != E; ++I) 66 dbgs() << *I << ", "; 67 dbgs() << "\n Killed by:"; 68 if (Kills.empty()) 69 dbgs() << " No instructions.\n"; 70 else { 71 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 72 dbgs() << "\n #" << i << ": " << *Kills[i]; 73 dbgs() << "\n"; 74 } 75 } 76 77 /// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg. 78 LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { 79 assert(TargetRegisterInfo::isVirtualRegister(RegIdx) && 80 "getVarInfo: not a virtual register!"); 81 RegIdx -= TargetRegisterInfo::FirstVirtualRegister; 82 if (RegIdx >= VirtRegInfo.size()) { 83 if (RegIdx >= 2*VirtRegInfo.size()) 84 VirtRegInfo.resize(RegIdx*2); 85 else 86 VirtRegInfo.resize(2*VirtRegInfo.size()); 87 } 88 return VirtRegInfo[RegIdx]; 89 } 90 91 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo, 92 MachineBasicBlock *DefBlock, 93 MachineBasicBlock *MBB, 94 std::vector<MachineBasicBlock*> &WorkList) { 95 unsigned BBNum = MBB->getNumber(); 96 97 // Check to see if this basic block is one of the killing blocks. If so, 98 // remove it. 99 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 100 if (VRInfo.Kills[i]->getParent() == MBB) { 101 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry 102 break; 103 } 104 105 if (MBB == DefBlock) return; // Terminate recursion 106 107 if (VRInfo.AliveBlocks.test(BBNum)) 108 return; // We already know the block is live 109 110 // Mark the variable known alive in this bb 111 VRInfo.AliveBlocks.set(BBNum); 112 113 for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(), 114 E = MBB->pred_rend(); PI != E; ++PI) 115 WorkList.push_back(*PI); 116 } 117 118 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, 119 MachineBasicBlock *DefBlock, 120 MachineBasicBlock *MBB) { 121 std::vector<MachineBasicBlock*> WorkList; 122 MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList); 123 124 while (!WorkList.empty()) { 125 MachineBasicBlock *Pred = WorkList.back(); 126 WorkList.pop_back(); 127 MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList); 128 } 129 } 130 131 void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, 132 MachineInstr *MI) { 133 assert(MRI->getVRegDef(reg) && "Register use before def!"); 134 135 unsigned BBNum = MBB->getNumber(); 136 137 VarInfo& VRInfo = getVarInfo(reg); 138 VRInfo.NumUses++; 139 140 // Check to see if this basic block is already a kill block. 141 if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { 142 // Yes, this register is killed in this basic block already. Increase the 143 // live range by updating the kill instruction. 144 VRInfo.Kills.back() = MI; 145 return; 146 } 147 148 #ifndef NDEBUG 149 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 150 assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); 151 #endif 152 153 // This situation can occur: 154 // 155 // ,------. 156 // | | 157 // | v 158 // | t2 = phi ... t1 ... 159 // | | 160 // | v 161 // | t1 = ... 162 // | ... = ... t1 ... 163 // | | 164 // `------' 165 // 166 // where there is a use in a PHI node that's a predecessor to the defining 167 // block. We don't want to mark all predecessors as having the value "alive" 168 // in this case. 169 if (MBB == MRI->getVRegDef(reg)->getParent()) return; 170 171 // Add a new kill entry for this basic block. If this virtual register is 172 // already marked as alive in this basic block, that means it is alive in at 173 // least one of the successor blocks, it's not a kill. 174 if (!VRInfo.AliveBlocks.test(BBNum)) 175 VRInfo.Kills.push_back(MI); 176 177 // Update all dominating blocks to mark them as "known live". 178 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 179 E = MBB->pred_end(); PI != E; ++PI) 180 MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI); 181 } 182 183 void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) { 184 VarInfo &VRInfo = getVarInfo(Reg); 185 186 if (VRInfo.AliveBlocks.empty()) 187 // If vr is not alive in any block, then defaults to dead. 188 VRInfo.Kills.push_back(MI); 189 } 190 191 /// FindLastPartialDef - Return the last partial def of the specified register. 192 /// Also returns the sub-registers that're defined by the instruction. 193 MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg, 194 SmallSet<unsigned,4> &PartDefRegs) { 195 unsigned LastDefReg = 0; 196 unsigned LastDefDist = 0; 197 MachineInstr *LastDef = NULL; 198 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 199 unsigned SubReg = *SubRegs; ++SubRegs) { 200 MachineInstr *Def = PhysRegDef[SubReg]; 201 if (!Def) 202 continue; 203 unsigned Dist = DistanceMap[Def]; 204 if (Dist > LastDefDist) { 205 LastDefReg = SubReg; 206 LastDef = Def; 207 LastDefDist = Dist; 208 } 209 } 210 211 if (!LastDef) 212 return 0; 213 214 PartDefRegs.insert(LastDefReg); 215 for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) { 216 MachineOperand &MO = LastDef->getOperand(i); 217 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) 218 continue; 219 unsigned DefReg = MO.getReg(); 220 if (TRI->isSubRegister(Reg, DefReg)) { 221 PartDefRegs.insert(DefReg); 222 for (const unsigned *SubRegs = TRI->getSubRegisters(DefReg); 223 unsigned SubReg = *SubRegs; ++SubRegs) 224 PartDefRegs.insert(SubReg); 225 } 226 } 227 return LastDef; 228 } 229 230 /// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add 231 /// implicit defs to a machine instruction if there was an earlier def of its 232 /// super-register. 233 void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { 234 MachineInstr *LastDef = PhysRegDef[Reg]; 235 // If there was a previous use or a "full" def all is well. 236 if (!LastDef && !PhysRegUse[Reg]) { 237 // Otherwise, the last sub-register def implicitly defines this register. 238 // e.g. 239 // AH = 240 // AL = ... <imp-def EAX>, <imp-kill AH> 241 // = AH 242 // ... 243 // = EAX 244 // All of the sub-registers must have been defined before the use of Reg! 245 SmallSet<unsigned, 4> PartDefRegs; 246 MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs); 247 // If LastPartialDef is NULL, it must be using a livein register. 248 if (LastPartialDef) { 249 LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/, 250 true/*IsImp*/)); 251 PhysRegDef[Reg] = LastPartialDef; 252 SmallSet<unsigned, 8> Processed; 253 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 254 unsigned SubReg = *SubRegs; ++SubRegs) { 255 if (Processed.count(SubReg)) 256 continue; 257 if (PartDefRegs.count(SubReg)) 258 continue; 259 // This part of Reg was defined before the last partial def. It's killed 260 // here. 261 LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg, 262 false/*IsDef*/, 263 true/*IsImp*/)); 264 PhysRegDef[SubReg] = LastPartialDef; 265 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 266 Processed.insert(*SS); 267 } 268 } 269 } 270 else if (LastDef && !PhysRegUse[Reg] && 271 !LastDef->findRegisterDefOperand(Reg)) 272 // Last def defines the super register, add an implicit def of reg. 273 LastDef->addOperand(MachineOperand::CreateReg(Reg, 274 true/*IsDef*/, true/*IsImp*/)); 275 276 // Remember this use. 277 PhysRegUse[Reg] = MI; 278 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 279 unsigned SubReg = *SubRegs; ++SubRegs) 280 PhysRegUse[SubReg] = MI; 281 } 282 283 /// FindLastRefOrPartRef - Return the last reference or partial reference of 284 /// the specified register. 285 MachineInstr *LiveVariables::FindLastRefOrPartRef(unsigned Reg) { 286 MachineInstr *LastDef = PhysRegDef[Reg]; 287 MachineInstr *LastUse = PhysRegUse[Reg]; 288 if (!LastDef && !LastUse) 289 return false; 290 291 MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef; 292 unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; 293 MachineInstr *LastPartDef = 0; 294 unsigned LastPartDefDist = 0; 295 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 296 unsigned SubReg = *SubRegs; ++SubRegs) { 297 MachineInstr *Def = PhysRegDef[SubReg]; 298 if (Def && Def != LastDef) { 299 // There was a def of this sub-register in between. This is a partial 300 // def, keep track of the last one. 301 unsigned Dist = DistanceMap[Def]; 302 if (Dist > LastPartDefDist) { 303 LastPartDefDist = Dist; 304 LastPartDef = Def; 305 } 306 continue; 307 } 308 if (MachineInstr *Use = PhysRegUse[SubReg]) { 309 unsigned Dist = DistanceMap[Use]; 310 if (Dist > LastRefOrPartRefDist) { 311 LastRefOrPartRefDist = Dist; 312 LastRefOrPartRef = Use; 313 } 314 } 315 } 316 317 return LastRefOrPartRef; 318 } 319 320 bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) { 321 MachineInstr *LastDef = PhysRegDef[Reg]; 322 MachineInstr *LastUse = PhysRegUse[Reg]; 323 if (!LastDef && !LastUse) 324 return false; 325 326 MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef; 327 unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; 328 // The whole register is used. 329 // AL = 330 // AH = 331 // 332 // = AX 333 // = AL, AX<imp-use, kill> 334 // AX = 335 // 336 // Or whole register is defined, but not used at all. 337 // AX<dead> = 338 // ... 339 // AX = 340 // 341 // Or whole register is defined, but only partly used. 342 // AX<dead> = AL<imp-def> 343 // = AL<kill> 344 // AX = 345 MachineInstr *LastPartDef = 0; 346 unsigned LastPartDefDist = 0; 347 SmallSet<unsigned, 8> PartUses; 348 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 349 unsigned SubReg = *SubRegs; ++SubRegs) { 350 MachineInstr *Def = PhysRegDef[SubReg]; 351 if (Def && Def != LastDef) { 352 // There was a def of this sub-register in between. This is a partial 353 // def, keep track of the last one. 354 unsigned Dist = DistanceMap[Def]; 355 if (Dist > LastPartDefDist) { 356 LastPartDefDist = Dist; 357 LastPartDef = Def; 358 } 359 continue; 360 } 361 if (MachineInstr *Use = PhysRegUse[SubReg]) { 362 PartUses.insert(SubReg); 363 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 364 PartUses.insert(*SS); 365 unsigned Dist = DistanceMap[Use]; 366 if (Dist > LastRefOrPartRefDist) { 367 LastRefOrPartRefDist = Dist; 368 LastRefOrPartRef = Use; 369 } 370 } 371 } 372 373 if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) { 374 if (LastPartDef) 375 // The last partial def kills the register. 376 LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/, 377 true/*IsImp*/, true/*IsKill*/)); 378 else { 379 MachineOperand *MO = 380 LastRefOrPartRef->findRegisterDefOperand(Reg, false, TRI); 381 bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg; 382 // If the last reference is the last def, then it's not used at all. 383 // That is, unless we are currently processing the last reference itself. 384 LastRefOrPartRef->addRegisterDead(Reg, TRI, true); 385 if (NeedEC) { 386 // If we are adding a subreg def and the superreg def is marked early 387 // clobber, add an early clobber marker to the subreg def. 388 MO = LastRefOrPartRef->findRegisterDefOperand(Reg); 389 if (MO) 390 MO->setIsEarlyClobber(); 391 } 392 } 393 } else if (!PhysRegUse[Reg]) { 394 // Partial uses. Mark register def dead and add implicit def of 395 // sub-registers which are used. 396 // EAX<dead> = op AL<imp-def> 397 // That is, EAX def is dead but AL def extends pass it. 398 PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true); 399 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 400 unsigned SubReg = *SubRegs; ++SubRegs) { 401 if (!PartUses.count(SubReg)) 402 continue; 403 bool NeedDef = true; 404 if (PhysRegDef[Reg] == PhysRegDef[SubReg]) { 405 MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg); 406 if (MO) { 407 NeedDef = false; 408 assert(!MO->isDead()); 409 } 410 } 411 if (NeedDef) 412 PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg, 413 true/*IsDef*/, true/*IsImp*/)); 414 MachineInstr *LastSubRef = FindLastRefOrPartRef(SubReg); 415 if (LastSubRef) 416 LastSubRef->addRegisterKilled(SubReg, TRI, true); 417 else { 418 LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true); 419 PhysRegUse[SubReg] = LastRefOrPartRef; 420 for (const unsigned *SSRegs = TRI->getSubRegisters(SubReg); 421 unsigned SSReg = *SSRegs; ++SSRegs) 422 PhysRegUse[SSReg] = LastRefOrPartRef; 423 } 424 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 425 PartUses.erase(*SS); 426 } 427 } else 428 LastRefOrPartRef->addRegisterKilled(Reg, TRI, true); 429 return true; 430 } 431 432 void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI, 433 SmallVector<unsigned, 4> &Defs) { 434 // What parts of the register are previously defined? 435 SmallSet<unsigned, 32> Live; 436 if (PhysRegDef[Reg] || PhysRegUse[Reg]) { 437 Live.insert(Reg); 438 for (const unsigned *SS = TRI->getSubRegisters(Reg); *SS; ++SS) 439 Live.insert(*SS); 440 } else { 441 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 442 unsigned SubReg = *SubRegs; ++SubRegs) { 443 // If a register isn't itself defined, but all parts that make up of it 444 // are defined, then consider it also defined. 445 // e.g. 446 // AL = 447 // AH = 448 // = AX 449 if (Live.count(SubReg)) 450 continue; 451 if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) { 452 Live.insert(SubReg); 453 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 454 Live.insert(*SS); 455 } 456 } 457 } 458 459 // Start from the largest piece, find the last time any part of the register 460 // is referenced. 461 HandlePhysRegKill(Reg, MI); 462 // Only some of the sub-registers are used. 463 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 464 unsigned SubReg = *SubRegs; ++SubRegs) { 465 if (!Live.count(SubReg)) 466 // Skip if this sub-register isn't defined. 467 continue; 468 HandlePhysRegKill(SubReg, MI); 469 } 470 471 if (MI) 472 Defs.push_back(Reg); // Remember this def. 473 } 474 475 void LiveVariables::UpdatePhysRegDefs(MachineInstr *MI, 476 SmallVector<unsigned, 4> &Defs) { 477 while (!Defs.empty()) { 478 unsigned Reg = Defs.back(); 479 Defs.pop_back(); 480 PhysRegDef[Reg] = MI; 481 PhysRegUse[Reg] = NULL; 482 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 483 unsigned SubReg = *SubRegs; ++SubRegs) { 484 PhysRegDef[SubReg] = MI; 485 PhysRegUse[SubReg] = NULL; 486 } 487 } 488 } 489 490 namespace { 491 struct RegSorter { 492 const TargetRegisterInfo *TRI; 493 494 RegSorter(const TargetRegisterInfo *tri) : TRI(tri) { } 495 bool operator()(unsigned A, unsigned B) { 496 if (TRI->isSubRegister(A, B)) 497 return true; 498 else if (TRI->isSubRegister(B, A)) 499 return false; 500 return A < B; 501 } 502 }; 503 } 504 505 bool LiveVariables::runOnMachineFunction(MachineFunction &mf) { 506 MF = &mf; 507 MRI = &mf.getRegInfo(); 508 TRI = MF->getTarget().getRegisterInfo(); 509 510 ReservedRegisters = TRI->getReservedRegs(mf); 511 512 unsigned NumRegs = TRI->getNumRegs(); 513 PhysRegDef = new MachineInstr*[NumRegs]; 514 PhysRegUse = new MachineInstr*[NumRegs]; 515 PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()]; 516 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); 517 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); 518 519 /// Get some space for a respectable number of registers. 520 VirtRegInfo.resize(64); 521 522 analyzePHINodes(mf); 523 524 // Calculate live variable information in depth first order on the CFG of the 525 // function. This guarantees that we will see the definition of a virtual 526 // register before its uses due to dominance properties of SSA (except for PHI 527 // nodes, which are treated as a special case). 528 MachineBasicBlock *Entry = MF->begin(); 529 SmallPtrSet<MachineBasicBlock*,16> Visited; 530 531 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> > 532 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); 533 DFI != E; ++DFI) { 534 MachineBasicBlock *MBB = *DFI; 535 536 // Mark live-in registers as live-in. 537 SmallVector<unsigned, 4> Defs; 538 for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(), 539 EE = MBB->livein_end(); II != EE; ++II) { 540 assert(TargetRegisterInfo::isPhysicalRegister(*II) && 541 "Cannot have a live-in virtual register!"); 542 HandlePhysRegDef(*II, 0, Defs); 543 } 544 545 // Loop over all of the instructions, processing them. 546 DistanceMap.clear(); 547 unsigned Dist = 0; 548 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 549 I != E; ++I) { 550 MachineInstr *MI = I; 551 DistanceMap.insert(std::make_pair(MI, Dist++)); 552 553 // Process all of the operands of the instruction... 554 unsigned NumOperandsToProcess = MI->getNumOperands(); 555 556 // Unless it is a PHI node. In this case, ONLY process the DEF, not any 557 // of the uses. They will be handled in other basic blocks. 558 if (MI->getOpcode() == TargetInstrInfo::PHI) 559 NumOperandsToProcess = 1; 560 561 SmallVector<unsigned, 4> UseRegs; 562 SmallVector<unsigned, 4> DefRegs; 563 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 564 const MachineOperand &MO = MI->getOperand(i); 565 if (!MO.isReg() || MO.getReg() == 0) 566 continue; 567 unsigned MOReg = MO.getReg(); 568 if (MO.isUse()) 569 UseRegs.push_back(MOReg); 570 if (MO.isDef()) 571 DefRegs.push_back(MOReg); 572 } 573 574 // Process all uses. 575 for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) { 576 unsigned MOReg = UseRegs[i]; 577 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 578 HandleVirtRegUse(MOReg, MBB, MI); 579 else if (!ReservedRegisters[MOReg]) 580 HandlePhysRegUse(MOReg, MI); 581 } 582 583 // Process all defs. 584 for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) { 585 unsigned MOReg = DefRegs[i]; 586 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 587 HandleVirtRegDef(MOReg, MI); 588 else if (!ReservedRegisters[MOReg]) 589 HandlePhysRegDef(MOReg, MI, Defs); 590 } 591 UpdatePhysRegDefs(MI, Defs); 592 } 593 594 // Handle any virtual assignments from PHI nodes which might be at the 595 // bottom of this basic block. We check all of our successor blocks to see 596 // if they have PHI nodes, and if so, we simulate an assignment at the end 597 // of the current block. 598 if (!PHIVarInfo[MBB->getNumber()].empty()) { 599 SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()]; 600 601 for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(), 602 E = VarInfoVec.end(); I != E; ++I) 603 // Mark it alive only in the block we are representing. 604 MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(), 605 MBB); 606 } 607 608 // Finally, if the last instruction in the block is a return, make sure to 609 // mark it as using all of the live-out values in the function. 610 if (!MBB->empty() && MBB->back().getDesc().isReturn()) { 611 MachineInstr *Ret = &MBB->back(); 612 613 for (MachineRegisterInfo::liveout_iterator 614 I = MF->getRegInfo().liveout_begin(), 615 E = MF->getRegInfo().liveout_end(); I != E; ++I) { 616 assert(TargetRegisterInfo::isPhysicalRegister(*I) && 617 "Cannot have a live-out virtual register!"); 618 HandlePhysRegUse(*I, Ret); 619 620 // Add live-out registers as implicit uses. 621 if (!Ret->readsRegister(*I)) 622 Ret->addOperand(MachineOperand::CreateReg(*I, false, true)); 623 } 624 } 625 626 // Loop over PhysRegDef / PhysRegUse, killing any registers that are 627 // available at the end of the basic block. 628 for (unsigned i = 0; i != NumRegs; ++i) 629 if (PhysRegDef[i] || PhysRegUse[i]) 630 HandlePhysRegDef(i, 0, Defs); 631 632 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); 633 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); 634 } 635 636 // Convert and transfer the dead / killed information we have gathered into 637 // VirtRegInfo onto MI's. 638 for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) 639 for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j) 640 if (VirtRegInfo[i].Kills[j] == 641 MRI->getVRegDef(i + TargetRegisterInfo::FirstVirtualRegister)) 642 VirtRegInfo[i] 643 .Kills[j]->addRegisterDead(i + 644 TargetRegisterInfo::FirstVirtualRegister, 645 TRI); 646 else 647 VirtRegInfo[i] 648 .Kills[j]->addRegisterKilled(i + 649 TargetRegisterInfo::FirstVirtualRegister, 650 TRI); 651 652 // Check to make sure there are no unreachable blocks in the MC CFG for the 653 // function. If so, it is due to a bug in the instruction selector or some 654 // other part of the code generator if this happens. 655 #ifndef NDEBUG 656 for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i) 657 assert(Visited.count(&*i) != 0 && "unreachable basic block found"); 658 #endif 659 660 delete[] PhysRegDef; 661 delete[] PhysRegUse; 662 delete[] PHIVarInfo; 663 664 return false; 665 } 666 667 /// replaceKillInstruction - Update register kill info by replacing a kill 668 /// instruction with a new one. 669 void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI, 670 MachineInstr *NewMI) { 671 VarInfo &VI = getVarInfo(Reg); 672 std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI); 673 } 674 675 /// removeVirtualRegistersKilled - Remove all killed info for the specified 676 /// instruction. 677 void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) { 678 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 679 MachineOperand &MO = MI->getOperand(i); 680 if (MO.isReg() && MO.isKill()) { 681 MO.setIsKill(false); 682 unsigned Reg = MO.getReg(); 683 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 684 bool removed = getVarInfo(Reg).removeKill(MI); 685 assert(removed && "kill not in register's VarInfo?"); 686 removed = true; 687 } 688 } 689 } 690 } 691 692 /// analyzePHINodes - Gather information about the PHI nodes in here. In 693 /// particular, we want to map the variable information of a virtual register 694 /// which is used in a PHI node. We map that to the BB the vreg is coming from. 695 /// 696 void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { 697 for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); 698 I != E; ++I) 699 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); 700 BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) 701 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) 702 PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()] 703 .push_back(BBI->getOperand(i).getReg()); 704 } 705 706 bool LiveVariables::VarInfo::isLiveIn(const MachineBasicBlock &MBB, 707 unsigned Reg, 708 MachineRegisterInfo &MRI) { 709 unsigned Num = MBB.getNumber(); 710 711 // Reg is live-through. 712 if (AliveBlocks.test(Num)) 713 return true; 714 715 // Registers defined in MBB cannot be live in. 716 const MachineInstr *Def = MRI.getVRegDef(Reg); 717 if (Def && Def->getParent() == &MBB) 718 return false; 719 720 // Reg was not defined in MBB, was it killed here? 721 return findKill(&MBB); 722 } 723 724 bool LiveVariables::isLiveOut(unsigned Reg, const MachineBasicBlock &MBB) { 725 LiveVariables::VarInfo &VI = getVarInfo(Reg); 726 727 // Loop over all of the successors of the basic block, checking to see if 728 // the value is either live in the block, or if it is killed in the block. 729 std::vector<MachineBasicBlock*> OpSuccBlocks; 730 for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(), 731 E = MBB.succ_end(); SI != E; ++SI) { 732 MachineBasicBlock *SuccMBB = *SI; 733 734 // Is it alive in this successor? 735 unsigned SuccIdx = SuccMBB->getNumber(); 736 if (VI.AliveBlocks.test(SuccIdx)) 737 return true; 738 OpSuccBlocks.push_back(SuccMBB); 739 } 740 741 // Check to see if this value is live because there is a use in a successor 742 // that kills it. 743 switch (OpSuccBlocks.size()) { 744 case 1: { 745 MachineBasicBlock *SuccMBB = OpSuccBlocks[0]; 746 for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i) 747 if (VI.Kills[i]->getParent() == SuccMBB) 748 return true; 749 break; 750 } 751 case 2: { 752 MachineBasicBlock *SuccMBB1 = OpSuccBlocks[0], *SuccMBB2 = OpSuccBlocks[1]; 753 for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i) 754 if (VI.Kills[i]->getParent() == SuccMBB1 || 755 VI.Kills[i]->getParent() == SuccMBB2) 756 return true; 757 break; 758 } 759 default: 760 std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end()); 761 for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i) 762 if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(), 763 VI.Kills[i]->getParent())) 764 return true; 765 } 766 return false; 767 } 768 769 /// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All 770 /// variables that are live out of DomBB will be marked as passing live through 771 /// BB. 772 void LiveVariables::addNewBlock(MachineBasicBlock *BB, 773 MachineBasicBlock *DomBB, 774 MachineBasicBlock *SuccBB) { 775 const unsigned NumNew = BB->getNumber(); 776 777 // All registers used by PHI nodes in SuccBB must be live through BB. 778 for (MachineBasicBlock::const_iterator BBI = SuccBB->begin(), 779 BBE = SuccBB->end(); 780 BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) 781 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) 782 if (BBI->getOperand(i+1).getMBB() == BB) 783 getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew); 784 785 // Update info for all live variables 786 for (unsigned Reg = TargetRegisterInfo::FirstVirtualRegister, 787 E = MRI->getLastVirtReg()+1; Reg != E; ++Reg) { 788 VarInfo &VI = getVarInfo(Reg); 789 if (!VI.AliveBlocks.test(NumNew) && VI.isLiveIn(*SuccBB, Reg, *MRI)) 790 VI.AliveBlocks.set(NumNew); 791 } 792 } 793