1 //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveVariable analysis pass. For each machine 11 // instruction in the function, this pass calculates the set of registers that 12 // are immediately dead after the instruction (i.e., the instruction calculates 13 // the value, but it is never used) and the set of registers that are used by 14 // the instruction, but are never used after the instruction (i.e., they are 15 // killed). 16 // 17 // This class computes live variables using are sparse implementation based on 18 // the machine code SSA form. This class computes live variable information for 19 // each virtual and _register allocatable_ physical register in a function. It 20 // uses the dominance properties of SSA form to efficiently compute live 21 // variables for virtual registers, and assumes that physical registers are only 22 // live within a single basic block (allowing it to do a single local analysis 23 // to resolve physical register lifetimes in each basic block). If a physical 24 // register is not register allocatable, it is not tracked. This is useful for 25 // things like the stack pointer and condition codes. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/CodeGen/LiveVariables.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/Passes.h" 33 #include "llvm/Target/TargetRegisterInfo.h" 34 #include "llvm/Target/TargetInstrInfo.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include "llvm/ADT/DepthFirstIterator.h" 37 #include "llvm/ADT/SmallPtrSet.h" 38 #include "llvm/ADT/SmallSet.h" 39 #include "llvm/ADT/STLExtras.h" 40 #include "llvm/Config/alloca.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 char LiveVariables::ID = 0; 45 static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis"); 46 47 48 void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const { 49 AU.addRequiredID(UnreachableMachineBlockElimID); 50 AU.setPreservesAll(); 51 } 52 53 void LiveVariables::VarInfo::dump() const { 54 cerr << " Alive in blocks: "; 55 for (SparseBitVector<>::iterator I = AliveBlocks.begin(), 56 E = AliveBlocks.end(); I != E; ++I) 57 cerr << *I << ", "; 58 cerr << "\n Killed by:"; 59 if (Kills.empty()) 60 cerr << " No instructions.\n"; 61 else { 62 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 63 cerr << "\n #" << i << ": " << *Kills[i]; 64 cerr << "\n"; 65 } 66 } 67 68 /// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg. 69 LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { 70 assert(TargetRegisterInfo::isVirtualRegister(RegIdx) && 71 "getVarInfo: not a virtual register!"); 72 RegIdx -= TargetRegisterInfo::FirstVirtualRegister; 73 if (RegIdx >= VirtRegInfo.size()) { 74 if (RegIdx >= 2*VirtRegInfo.size()) 75 VirtRegInfo.resize(RegIdx*2); 76 else 77 VirtRegInfo.resize(2*VirtRegInfo.size()); 78 } 79 return VirtRegInfo[RegIdx]; 80 } 81 82 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo, 83 MachineBasicBlock *DefBlock, 84 MachineBasicBlock *MBB, 85 std::vector<MachineBasicBlock*> &WorkList) { 86 unsigned BBNum = MBB->getNumber(); 87 88 // Check to see if this basic block is one of the killing blocks. If so, 89 // remove it. 90 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 91 if (VRInfo.Kills[i]->getParent() == MBB) { 92 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry 93 break; 94 } 95 96 if (MBB == DefBlock) return; // Terminate recursion 97 98 if (VRInfo.AliveBlocks.test(BBNum)) 99 return; // We already know the block is live 100 101 // Mark the variable known alive in this bb 102 VRInfo.AliveBlocks.set(BBNum); 103 104 for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(), 105 E = MBB->pred_rend(); PI != E; ++PI) 106 WorkList.push_back(*PI); 107 } 108 109 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, 110 MachineBasicBlock *DefBlock, 111 MachineBasicBlock *MBB) { 112 std::vector<MachineBasicBlock*> WorkList; 113 MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList); 114 115 while (!WorkList.empty()) { 116 MachineBasicBlock *Pred = WorkList.back(); 117 WorkList.pop_back(); 118 MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList); 119 } 120 } 121 122 void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, 123 MachineInstr *MI) { 124 assert(MRI->getVRegDef(reg) && "Register use before def!"); 125 126 unsigned BBNum = MBB->getNumber(); 127 128 VarInfo& VRInfo = getVarInfo(reg); 129 VRInfo.NumUses++; 130 131 // Check to see if this basic block is already a kill block. 132 if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { 133 // Yes, this register is killed in this basic block already. Increase the 134 // live range by updating the kill instruction. 135 VRInfo.Kills.back() = MI; 136 return; 137 } 138 139 #ifndef NDEBUG 140 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 141 assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); 142 #endif 143 144 // This situation can occur: 145 // 146 // ,------. 147 // | | 148 // | v 149 // | t2 = phi ... t1 ... 150 // | | 151 // | v 152 // | t1 = ... 153 // | ... = ... t1 ... 154 // | | 155 // `------' 156 // 157 // where there is a use in a PHI node that's a predecessor to the defining 158 // block. We don't want to mark all predecessors as having the value "alive" 159 // in this case. 160 if (MBB == MRI->getVRegDef(reg)->getParent()) return; 161 162 // Add a new kill entry for this basic block. If this virtual register is 163 // already marked as alive in this basic block, that means it is alive in at 164 // least one of the successor blocks, it's not a kill. 165 if (!VRInfo.AliveBlocks.test(BBNum)) 166 VRInfo.Kills.push_back(MI); 167 168 // Update all dominating blocks to mark them as "known live". 169 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 170 E = MBB->pred_end(); PI != E; ++PI) 171 MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI); 172 } 173 174 void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) { 175 VarInfo &VRInfo = getVarInfo(Reg); 176 177 if (VRInfo.AliveBlocks.empty()) 178 // If vr is not alive in any block, then defaults to dead. 179 VRInfo.Kills.push_back(MI); 180 } 181 182 /// FindLastPartialDef - Return the last partial def of the specified register. 183 /// Also returns the sub-register that's defined. 184 MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg, 185 unsigned &PartDefReg) { 186 unsigned LastDefReg = 0; 187 unsigned LastDefDist = 0; 188 MachineInstr *LastDef = NULL; 189 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 190 unsigned SubReg = *SubRegs; ++SubRegs) { 191 MachineInstr *Def = PhysRegDef[SubReg]; 192 if (!Def) 193 continue; 194 unsigned Dist = DistanceMap[Def]; 195 if (Dist > LastDefDist) { 196 LastDefReg = SubReg; 197 LastDef = Def; 198 LastDefDist = Dist; 199 } 200 } 201 PartDefReg = LastDefReg; 202 return LastDef; 203 } 204 205 /// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add 206 /// implicit defs to a machine instruction if there was an earlier def of its 207 /// super-register. 208 void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { 209 // If there was a previous use or a "full" def all is well. 210 if (!PhysRegDef[Reg] && !PhysRegUse[Reg]) { 211 // Otherwise, the last sub-register def implicitly defines this register. 212 // e.g. 213 // AH = 214 // AL = ... <imp-def EAX>, <imp-kill AH> 215 // = AH 216 // ... 217 // = EAX 218 // All of the sub-registers must have been defined before the use of Reg! 219 unsigned PartDefReg = 0; 220 MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefReg); 221 // If LastPartialDef is NULL, it must be using a livein register. 222 if (LastPartialDef) { 223 LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/, 224 true/*IsImp*/)); 225 PhysRegDef[Reg] = LastPartialDef; 226 SmallSet<unsigned, 8> Processed; 227 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 228 unsigned SubReg = *SubRegs; ++SubRegs) { 229 if (Processed.count(SubReg)) 230 continue; 231 if (SubReg == PartDefReg || TRI->isSubRegister(PartDefReg, SubReg)) 232 continue; 233 // This part of Reg was defined before the last partial def. It's killed 234 // here. 235 LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg, 236 false/*IsDef*/, 237 true/*IsImp*/)); 238 PhysRegDef[SubReg] = LastPartialDef; 239 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 240 Processed.insert(*SS); 241 } 242 } 243 } 244 245 // Remember this use. 246 PhysRegUse[Reg] = MI; 247 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 248 unsigned SubReg = *SubRegs; ++SubRegs) 249 PhysRegUse[SubReg] = MI; 250 } 251 252 /// hasRegisterUseBelow - Return true if the specified register is used after 253 /// the current instruction and before it's next definition. 254 bool LiveVariables::hasRegisterUseBelow(unsigned Reg, 255 MachineBasicBlock::iterator I, 256 MachineBasicBlock *MBB) { 257 if (I == MBB->end()) 258 return false; 259 260 // First find out if there are any uses / defs below. 261 bool hasDistInfo = true; 262 unsigned CurDist = DistanceMap[I]; 263 SmallVector<MachineInstr*, 4> Uses; 264 SmallVector<MachineInstr*, 4> Defs; 265 for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg), 266 RE = MRI->reg_end(); RI != RE; ++RI) { 267 MachineOperand &UDO = RI.getOperand(); 268 MachineInstr *UDMI = &*RI; 269 if (UDMI->getParent() != MBB) 270 continue; 271 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI); 272 bool isBelow = false; 273 if (DI == DistanceMap.end()) { 274 // Must be below if it hasn't been assigned a distance yet. 275 isBelow = true; 276 hasDistInfo = false; 277 } else if (DI->second > CurDist) 278 isBelow = true; 279 if (isBelow) { 280 if (UDO.isUse()) 281 Uses.push_back(UDMI); 282 if (UDO.isDef()) 283 Defs.push_back(UDMI); 284 } 285 } 286 287 if (Uses.empty()) 288 // No uses below. 289 return false; 290 else if (!Uses.empty() && Defs.empty()) 291 // There are uses below but no defs below. 292 return true; 293 // There are both uses and defs below. We need to know which comes first. 294 if (!hasDistInfo) { 295 // Complete DistanceMap for this MBB. This information is computed only 296 // once per MBB. 297 ++I; 298 ++CurDist; 299 for (MachineBasicBlock::iterator E = MBB->end(); I != E; ++I, ++CurDist) 300 DistanceMap.insert(std::make_pair(I, CurDist)); 301 } 302 303 unsigned EarliestUse = DistanceMap[Uses[0]]; 304 for (unsigned i = 1, e = Uses.size(); i != e; ++i) { 305 unsigned Dist = DistanceMap[Uses[i]]; 306 if (Dist < EarliestUse) 307 EarliestUse = Dist; 308 } 309 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 310 unsigned Dist = DistanceMap[Defs[i]]; 311 if (Dist < EarliestUse) 312 // The register is defined before its first use below. 313 return false; 314 } 315 return true; 316 } 317 318 bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) { 319 if (!PhysRegUse[Reg] && !PhysRegDef[Reg]) 320 return false; 321 322 MachineInstr *LastRefOrPartRef = PhysRegUse[Reg] 323 ? PhysRegUse[Reg] : PhysRegDef[Reg]; 324 unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; 325 // The whole register is used. 326 // AL = 327 // AH = 328 // 329 // = AX 330 // = AL, AX<imp-use, kill> 331 // AX = 332 // 333 // Or whole register is defined, but not used at all. 334 // AX<dead> = 335 // ... 336 // AX = 337 // 338 // Or whole register is defined, but only partly used. 339 // AX<dead> = AL<imp-def> 340 // = AL<kill> 341 // AX = 342 SmallSet<unsigned, 8> PartUses; 343 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 344 unsigned SubReg = *SubRegs; ++SubRegs) { 345 if (MachineInstr *Use = PhysRegUse[SubReg]) { 346 PartUses.insert(SubReg); 347 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 348 PartUses.insert(*SS); 349 unsigned Dist = DistanceMap[Use]; 350 if (Dist > LastRefOrPartRefDist) { 351 LastRefOrPartRefDist = Dist; 352 LastRefOrPartRef = Use; 353 } 354 } 355 } 356 357 if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) 358 // If the last reference is the last def, then it's not used at all. 359 // That is, unless we are currently processing the last reference itself. 360 LastRefOrPartRef->addRegisterDead(Reg, TRI, true); 361 362 // Partial uses. Mark register def dead and add implicit def of 363 // sub-registers which are used. 364 // EAX<dead> = op AL<imp-def> 365 // That is, EAX def is dead but AL def extends pass it. 366 // Enable this after live interval analysis is fixed to improve codegen! 367 else if (!PhysRegUse[Reg]) { 368 PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true); 369 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 370 unsigned SubReg = *SubRegs; ++SubRegs) { 371 if (PartUses.count(SubReg)) { 372 PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg, 373 true, true)); 374 LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true); 375 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 376 PartUses.erase(*SS); 377 } 378 } 379 } 380 else 381 LastRefOrPartRef->addRegisterKilled(Reg, TRI, true); 382 return true; 383 } 384 385 void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) { 386 // What parts of the register are previously defined? 387 SmallSet<unsigned, 32> Live; 388 if (PhysRegDef[Reg] || PhysRegUse[Reg]) { 389 Live.insert(Reg); 390 for (const unsigned *SS = TRI->getSubRegisters(Reg); *SS; ++SS) 391 Live.insert(*SS); 392 } else { 393 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 394 unsigned SubReg = *SubRegs; ++SubRegs) { 395 // If a register isn't itself defined, but all parts that make up of it 396 // are defined, then consider it also defined. 397 // e.g. 398 // AL = 399 // AH = 400 // = AX 401 if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) { 402 Live.insert(SubReg); 403 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 404 Live.insert(*SS); 405 } 406 } 407 } 408 409 // Start from the largest piece, find the last time any part of the register 410 // is referenced. 411 if (!HandlePhysRegKill(Reg, MI)) { 412 // Only some of the sub-registers are used. 413 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 414 unsigned SubReg = *SubRegs; ++SubRegs) { 415 if (!Live.count(SubReg)) 416 // Skip if this sub-register isn't defined. 417 continue; 418 if (HandlePhysRegKill(SubReg, MI)) { 419 Live.erase(SubReg); 420 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 421 Live.erase(*SS); 422 } 423 } 424 assert(Live.empty() && "Not all defined registers are killed / dead?"); 425 } 426 427 if (MI) { 428 // Does this extend the live range of a super-register? 429 SmallSet<unsigned, 8> Processed; 430 for (const unsigned *SuperRegs = TRI->getSuperRegisters(Reg); 431 unsigned SuperReg = *SuperRegs; ++SuperRegs) { 432 if (Processed.count(SuperReg)) 433 continue; 434 MachineInstr *LastRef = PhysRegUse[SuperReg] 435 ? PhysRegUse[SuperReg] : PhysRegDef[SuperReg]; 436 if (LastRef && LastRef != MI) { 437 // The larger register is previously defined. Now a smaller part is 438 // being re-defined. Treat it as read/mod/write if there are uses 439 // below. 440 // EAX = 441 // AX = EAX<imp-use,kill>, EAX<imp-def> 442 // ... 443 /// = EAX 444 if (hasRegisterUseBelow(SuperReg, MI, MI->getParent())) { 445 MI->addOperand(MachineOperand::CreateReg(SuperReg, false/*IsDef*/, 446 true/*IsImp*/,true/*IsKill*/)); 447 MI->addOperand(MachineOperand::CreateReg(SuperReg, true/*IsDef*/, 448 true/*IsImp*/)); 449 PhysRegDef[SuperReg] = MI; 450 PhysRegUse[SuperReg] = NULL; 451 Processed.insert(SuperReg); 452 for (const unsigned *SS = TRI->getSubRegisters(SuperReg); *SS; ++SS) { 453 PhysRegDef[*SS] = MI; 454 PhysRegUse[*SS] = NULL; 455 Processed.insert(*SS); 456 } 457 } else { 458 // Otherwise, the super register is killed. 459 if (HandlePhysRegKill(SuperReg, MI)) { 460 PhysRegDef[SuperReg] = NULL; 461 PhysRegUse[SuperReg] = NULL; 462 for (const unsigned *SS = TRI->getSubRegisters(SuperReg); *SS; ++SS) { 463 PhysRegDef[*SS] = NULL; 464 PhysRegUse[*SS] = NULL; 465 Processed.insert(*SS); 466 } 467 } 468 } 469 } 470 } 471 472 // Remember this def. 473 PhysRegDef[Reg] = MI; 474 PhysRegUse[Reg] = NULL; 475 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 476 unsigned SubReg = *SubRegs; ++SubRegs) { 477 PhysRegDef[SubReg] = MI; 478 PhysRegUse[SubReg] = NULL; 479 } 480 } 481 } 482 483 bool LiveVariables::runOnMachineFunction(MachineFunction &mf) { 484 MF = &mf; 485 MRI = &mf.getRegInfo(); 486 TRI = MF->getTarget().getRegisterInfo(); 487 488 ReservedRegisters = TRI->getReservedRegs(mf); 489 490 unsigned NumRegs = TRI->getNumRegs(); 491 PhysRegDef = new MachineInstr*[NumRegs]; 492 PhysRegUse = new MachineInstr*[NumRegs]; 493 PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()]; 494 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); 495 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); 496 497 /// Get some space for a respectable number of registers. 498 VirtRegInfo.resize(64); 499 500 analyzePHINodes(mf); 501 502 // Calculate live variable information in depth first order on the CFG of the 503 // function. This guarantees that we will see the definition of a virtual 504 // register before its uses due to dominance properties of SSA (except for PHI 505 // nodes, which are treated as a special case). 506 MachineBasicBlock *Entry = MF->begin(); 507 SmallPtrSet<MachineBasicBlock*,16> Visited; 508 509 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> > 510 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); 511 DFI != E; ++DFI) { 512 MachineBasicBlock *MBB = *DFI; 513 514 // Mark live-in registers as live-in. 515 for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(), 516 EE = MBB->livein_end(); II != EE; ++II) { 517 assert(TargetRegisterInfo::isPhysicalRegister(*II) && 518 "Cannot have a live-in virtual register!"); 519 HandlePhysRegDef(*II, 0); 520 } 521 522 // Loop over all of the instructions, processing them. 523 DistanceMap.clear(); 524 unsigned Dist = 0; 525 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 526 I != E; ++I) { 527 MachineInstr *MI = I; 528 DistanceMap.insert(std::make_pair(MI, Dist++)); 529 530 // Process all of the operands of the instruction... 531 unsigned NumOperandsToProcess = MI->getNumOperands(); 532 533 // Unless it is a PHI node. In this case, ONLY process the DEF, not any 534 // of the uses. They will be handled in other basic blocks. 535 if (MI->getOpcode() == TargetInstrInfo::PHI) 536 NumOperandsToProcess = 1; 537 538 SmallVector<unsigned, 4> UseRegs; 539 SmallVector<unsigned, 4> DefRegs; 540 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 541 const MachineOperand &MO = MI->getOperand(i); 542 if (!MO.isReg() || MO.getReg() == 0) 543 continue; 544 unsigned MOReg = MO.getReg(); 545 if (MO.isUse()) 546 UseRegs.push_back(MOReg); 547 if (MO.isDef()) 548 DefRegs.push_back(MOReg); 549 } 550 551 // Process all uses. 552 for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) { 553 unsigned MOReg = UseRegs[i]; 554 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 555 HandleVirtRegUse(MOReg, MBB, MI); 556 else if (!ReservedRegisters[MOReg]) 557 HandlePhysRegUse(MOReg, MI); 558 } 559 560 // Process all defs. 561 for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) { 562 unsigned MOReg = DefRegs[i]; 563 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 564 HandleVirtRegDef(MOReg, MI); 565 else if (!ReservedRegisters[MOReg]) 566 HandlePhysRegDef(MOReg, MI); 567 } 568 } 569 570 // Handle any virtual assignments from PHI nodes which might be at the 571 // bottom of this basic block. We check all of our successor blocks to see 572 // if they have PHI nodes, and if so, we simulate an assignment at the end 573 // of the current block. 574 if (!PHIVarInfo[MBB->getNumber()].empty()) { 575 SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()]; 576 577 for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(), 578 E = VarInfoVec.end(); I != E; ++I) 579 // Mark it alive only in the block we are representing. 580 MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(), 581 MBB); 582 } 583 584 // Finally, if the last instruction in the block is a return, make sure to 585 // mark it as using all of the live-out values in the function. 586 if (!MBB->empty() && MBB->back().getDesc().isReturn()) { 587 MachineInstr *Ret = &MBB->back(); 588 589 for (MachineRegisterInfo::liveout_iterator 590 I = MF->getRegInfo().liveout_begin(), 591 E = MF->getRegInfo().liveout_end(); I != E; ++I) { 592 assert(TargetRegisterInfo::isPhysicalRegister(*I) && 593 "Cannot have a live-out virtual register!"); 594 HandlePhysRegUse(*I, Ret); 595 596 // Add live-out registers as implicit uses. 597 if (!Ret->readsRegister(*I)) 598 Ret->addOperand(MachineOperand::CreateReg(*I, false, true)); 599 } 600 } 601 602 // Loop over PhysRegDef / PhysRegUse, killing any registers that are 603 // available at the end of the basic block. 604 for (unsigned i = 0; i != NumRegs; ++i) 605 if (PhysRegDef[i] || PhysRegUse[i]) 606 HandlePhysRegDef(i, 0); 607 608 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); 609 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); 610 } 611 612 // Convert and transfer the dead / killed information we have gathered into 613 // VirtRegInfo onto MI's. 614 for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) 615 for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j) 616 if (VirtRegInfo[i].Kills[j] == 617 MRI->getVRegDef(i + TargetRegisterInfo::FirstVirtualRegister)) 618 VirtRegInfo[i] 619 .Kills[j]->addRegisterDead(i + 620 TargetRegisterInfo::FirstVirtualRegister, 621 TRI); 622 else 623 VirtRegInfo[i] 624 .Kills[j]->addRegisterKilled(i + 625 TargetRegisterInfo::FirstVirtualRegister, 626 TRI); 627 628 // Check to make sure there are no unreachable blocks in the MC CFG for the 629 // function. If so, it is due to a bug in the instruction selector or some 630 // other part of the code generator if this happens. 631 #ifndef NDEBUG 632 for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i) 633 assert(Visited.count(&*i) != 0 && "unreachable basic block found"); 634 #endif 635 636 delete[] PhysRegDef; 637 delete[] PhysRegUse; 638 delete[] PHIVarInfo; 639 640 return false; 641 } 642 643 /// replaceKillInstruction - Update register kill info by replacing a kill 644 /// instruction with a new one. 645 void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI, 646 MachineInstr *NewMI) { 647 VarInfo &VI = getVarInfo(Reg); 648 std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI); 649 } 650 651 /// removeVirtualRegistersKilled - Remove all killed info for the specified 652 /// instruction. 653 void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) { 654 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 655 MachineOperand &MO = MI->getOperand(i); 656 if (MO.isReg() && MO.isKill()) { 657 MO.setIsKill(false); 658 unsigned Reg = MO.getReg(); 659 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 660 bool removed = getVarInfo(Reg).removeKill(MI); 661 assert(removed && "kill not in register's VarInfo?"); 662 removed = true; 663 } 664 } 665 } 666 } 667 668 /// analyzePHINodes - Gather information about the PHI nodes in here. In 669 /// particular, we want to map the variable information of a virtual register 670 /// which is used in a PHI node. We map that to the BB the vreg is coming from. 671 /// 672 void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { 673 for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); 674 I != E; ++I) 675 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); 676 BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) 677 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) 678 PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()] 679 .push_back(BBI->getOperand(i).getReg()); 680 } 681