1 //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveVariable analysis pass. For each machine 11 // instruction in the function, this pass calculates the set of registers that 12 // are immediately dead after the instruction (i.e., the instruction calculates 13 // the value, but it is never used) and the set of registers that are used by 14 // the instruction, but are never used after the instruction (i.e., they are 15 // killed). 16 // 17 // This class computes live variables using are sparse implementation based on 18 // the machine code SSA form. This class computes live variable information for 19 // each virtual and _register allocatable_ physical register in a function. It 20 // uses the dominance properties of SSA form to efficiently compute live 21 // variables for virtual registers, and assumes that physical registers are only 22 // live within a single basic block (allowing it to do a single local analysis 23 // to resolve physical register lifetimes in each basic block). If a physical 24 // register is not register allocatable, it is not tracked. This is useful for 25 // things like the stack pointer and condition codes. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/CodeGen/LiveVariables.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/Target/MRegisterInfo.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/ADT/DepthFirstIterator.h" 35 #include "llvm/ADT/STLExtras.h" 36 #include "llvm/Config/alloca.h" 37 #include <algorithm> 38 #include <iostream> 39 using namespace llvm; 40 41 static RegisterAnalysis<LiveVariables> X("livevars", "Live Variable Analysis"); 42 43 void LiveVariables::VarInfo::dump() const { 44 std::cerr << "Register Defined by: "; 45 if (DefInst) 46 std::cerr << *DefInst; 47 else 48 std::cerr << "<null>\n"; 49 std::cerr << " Alive in blocks: "; 50 for (unsigned i = 0, e = AliveBlocks.size(); i != e; ++i) 51 if (AliveBlocks[i]) std::cerr << i << ", "; 52 std::cerr << "\n Killed by:"; 53 if (Kills.empty()) 54 std::cerr << " No instructions.\n"; 55 else { 56 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 57 std::cerr << "\n #" << i << ": " << *Kills[i]; 58 std::cerr << "\n"; 59 } 60 } 61 62 LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { 63 assert(MRegisterInfo::isVirtualRegister(RegIdx) && 64 "getVarInfo: not a virtual register!"); 65 RegIdx -= MRegisterInfo::FirstVirtualRegister; 66 if (RegIdx >= VirtRegInfo.size()) { 67 if (RegIdx >= 2*VirtRegInfo.size()) 68 VirtRegInfo.resize(RegIdx*2); 69 else 70 VirtRegInfo.resize(2*VirtRegInfo.size()); 71 } 72 return VirtRegInfo[RegIdx]; 73 } 74 75 bool LiveVariables::KillsRegister(MachineInstr *MI, unsigned Reg) const { 76 std::map<MachineInstr*, std::vector<unsigned> >::const_iterator I = 77 RegistersKilled.find(MI); 78 if (I == RegistersKilled.end()) return false; 79 80 // Do a binary search, as these lists can grow pretty big, particularly for 81 // call instructions on targets with lots of call-clobbered registers. 82 return std::binary_search(I->second.begin(), I->second.end(), Reg); 83 } 84 85 bool LiveVariables::RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const { 86 std::map<MachineInstr*, std::vector<unsigned> >::const_iterator I = 87 RegistersDead.find(MI); 88 if (I == RegistersDead.end()) return false; 89 90 // Do a binary search, as these lists can grow pretty big, particularly for 91 // call instructions on targets with lots of call-clobbered registers. 92 return std::binary_search(I->second.begin(), I->second.end(), Reg); 93 } 94 95 96 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, 97 MachineBasicBlock *MBB) { 98 unsigned BBNum = MBB->getNumber(); 99 100 // Check to see if this basic block is one of the killing blocks. If so, 101 // remove it... 102 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 103 if (VRInfo.Kills[i]->getParent() == MBB) { 104 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry 105 break; 106 } 107 108 if (MBB == VRInfo.DefInst->getParent()) return; // Terminate recursion 109 110 if (VRInfo.AliveBlocks.size() <= BBNum) 111 VRInfo.AliveBlocks.resize(BBNum+1); // Make space... 112 113 if (VRInfo.AliveBlocks[BBNum]) 114 return; // We already know the block is live 115 116 // Mark the variable known alive in this bb 117 VRInfo.AliveBlocks[BBNum] = true; 118 119 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 120 E = MBB->pred_end(); PI != E; ++PI) 121 MarkVirtRegAliveInBlock(VRInfo, *PI); 122 } 123 124 void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB, 125 MachineInstr *MI) { 126 assert(VRInfo.DefInst && "Register use before def!"); 127 128 // Check to see if this basic block is already a kill block... 129 if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { 130 // Yes, this register is killed in this basic block already. Increase the 131 // live range by updating the kill instruction. 132 VRInfo.Kills.back() = MI; 133 return; 134 } 135 136 #ifndef NDEBUG 137 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 138 assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); 139 #endif 140 141 assert(MBB != VRInfo.DefInst->getParent() && 142 "Should have kill for defblock!"); 143 144 // Add a new kill entry for this basic block. 145 VRInfo.Kills.push_back(MI); 146 147 // Update all dominating blocks to mark them known live. 148 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 149 E = MBB->pred_end(); PI != E; ++PI) 150 MarkVirtRegAliveInBlock(VRInfo, *PI); 151 } 152 153 void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { 154 PhysRegInfo[Reg] = MI; 155 PhysRegUsed[Reg] = true; 156 157 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); 158 unsigned Alias = *AliasSet; ++AliasSet) { 159 PhysRegInfo[Alias] = MI; 160 PhysRegUsed[Alias] = true; 161 } 162 } 163 164 void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) { 165 // Does this kill a previous version of this register? 166 if (MachineInstr *LastUse = PhysRegInfo[Reg]) { 167 if (PhysRegUsed[Reg]) 168 RegistersKilled[LastUse].push_back(Reg); 169 else 170 RegistersDead[LastUse].push_back(Reg); 171 } 172 PhysRegInfo[Reg] = MI; 173 PhysRegUsed[Reg] = false; 174 175 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); 176 unsigned Alias = *AliasSet; ++AliasSet) { 177 if (MachineInstr *LastUse = PhysRegInfo[Alias]) { 178 if (PhysRegUsed[Alias]) 179 RegistersKilled[LastUse].push_back(Alias); 180 else 181 RegistersDead[LastUse].push_back(Alias); 182 } 183 PhysRegInfo[Alias] = MI; 184 PhysRegUsed[Alias] = false; 185 } 186 } 187 188 bool LiveVariables::runOnMachineFunction(MachineFunction &MF) { 189 const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo(); 190 RegInfo = MF.getTarget().getRegisterInfo(); 191 assert(RegInfo && "Target doesn't have register information?"); 192 193 AllocatablePhysicalRegisters = RegInfo->getAllocatableSet(MF); 194 195 // PhysRegInfo - Keep track of which instruction was the last use of a 196 // physical register. This is a purely local property, because all physical 197 // register references as presumed dead across basic blocks. 198 // 199 PhysRegInfo = (MachineInstr**)alloca(sizeof(MachineInstr*) * 200 RegInfo->getNumRegs()); 201 PhysRegUsed = (bool*)alloca(sizeof(bool)*RegInfo->getNumRegs()); 202 std::fill(PhysRegInfo, PhysRegInfo+RegInfo->getNumRegs(), (MachineInstr*)0); 203 204 /// Get some space for a respectable number of registers... 205 VirtRegInfo.resize(64); 206 207 // Mark live-in registers as live-in. 208 for (MachineFunction::livein_iterator I = MF.livein_begin(), 209 E = MF.livein_end(); I != E; ++I) { 210 assert(MRegisterInfo::isPhysicalRegister(I->first) && 211 "Cannot have a live-in virtual register!"); 212 HandlePhysRegDef(I->first, 0); 213 } 214 215 // Calculate live variable information in depth first order on the CFG of the 216 // function. This guarantees that we will see the definition of a virtual 217 // register before its uses due to dominance properties of SSA (except for PHI 218 // nodes, which are treated as a special case). 219 // 220 MachineBasicBlock *Entry = MF.begin(); 221 std::set<MachineBasicBlock*> Visited; 222 for (df_ext_iterator<MachineBasicBlock*> DFI = df_ext_begin(Entry, Visited), 223 E = df_ext_end(Entry, Visited); DFI != E; ++DFI) { 224 MachineBasicBlock *MBB = *DFI; 225 unsigned BBNum = MBB->getNumber(); 226 227 // Loop over all of the instructions, processing them. 228 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 229 I != E; ++I) { 230 MachineInstr *MI = I; 231 const TargetInstrDescriptor &MID = TII.get(MI->getOpcode()); 232 233 // Process all of the operands of the instruction... 234 unsigned NumOperandsToProcess = MI->getNumOperands(); 235 236 // Unless it is a PHI node. In this case, ONLY process the DEF, not any 237 // of the uses. They will be handled in other basic blocks. 238 if (MI->getOpcode() == TargetInstrInfo::PHI) 239 NumOperandsToProcess = 1; 240 241 // Loop over implicit uses, using them. 242 for (const unsigned *ImplicitUses = MID.ImplicitUses; 243 *ImplicitUses; ++ImplicitUses) 244 HandlePhysRegUse(*ImplicitUses, MI); 245 246 // Process all explicit uses... 247 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 248 MachineOperand &MO = MI->getOperand(i); 249 if (MO.isUse() && MO.isRegister() && MO.getReg()) { 250 if (MRegisterInfo::isVirtualRegister(MO.getReg())){ 251 HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI); 252 } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && 253 AllocatablePhysicalRegisters[MO.getReg()]) { 254 HandlePhysRegUse(MO.getReg(), MI); 255 } 256 } 257 } 258 259 // Loop over implicit defs, defining them. 260 for (const unsigned *ImplicitDefs = MID.ImplicitDefs; 261 *ImplicitDefs; ++ImplicitDefs) 262 HandlePhysRegDef(*ImplicitDefs, MI); 263 264 // Process all explicit defs... 265 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 266 MachineOperand &MO = MI->getOperand(i); 267 if (MO.isDef() && MO.isRegister() && MO.getReg()) { 268 if (MRegisterInfo::isVirtualRegister(MO.getReg())) { 269 VarInfo &VRInfo = getVarInfo(MO.getReg()); 270 271 assert(VRInfo.DefInst == 0 && "Variable multiply defined!"); 272 VRInfo.DefInst = MI; 273 // Defaults to dead 274 VRInfo.Kills.push_back(MI); 275 } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && 276 AllocatablePhysicalRegisters[MO.getReg()]) { 277 HandlePhysRegDef(MO.getReg(), MI); 278 } 279 } 280 } 281 } 282 283 // Handle any virtual assignments from PHI nodes which might be at the 284 // bottom of this basic block. We check all of our successor blocks to see 285 // if they have PHI nodes, and if so, we simulate an assignment at the end 286 // of the current block. 287 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), 288 E = MBB->succ_end(); SI != E; ++SI) { 289 MachineBasicBlock *Succ = *SI; 290 291 // PHI nodes are guaranteed to be at the top of the block... 292 for (MachineBasicBlock::iterator MI = Succ->begin(), ME = Succ->end(); 293 MI != ME && MI->getOpcode() == TargetInstrInfo::PHI; ++MI) { 294 for (unsigned i = 1; ; i += 2) { 295 assert(MI->getNumOperands() > i+1 && 296 "Didn't find an entry for our predecessor??"); 297 if (MI->getOperand(i+1).getMachineBasicBlock() == MBB) { 298 MachineOperand &MO = MI->getOperand(i); 299 if (!MO.getVRegValueOrNull()) { 300 VarInfo &VRInfo = getVarInfo(MO.getReg()); 301 assert(VRInfo.DefInst && "Register use before def (or no def)!"); 302 303 // Only mark it alive only in the block we are representing. 304 MarkVirtRegAliveInBlock(VRInfo, MBB); 305 break; // Found the PHI entry for this block. 306 } 307 } 308 } 309 } 310 } 311 312 // Finally, if the last block in the function is a return, make sure to mark 313 // it as using all of the live-out values in the function. 314 if (!MBB->empty() && TII.isReturn(MBB->back().getOpcode())) { 315 MachineInstr *Ret = &MBB->back(); 316 for (MachineFunction::liveout_iterator I = MF.liveout_begin(), 317 E = MF.liveout_end(); I != E; ++I) { 318 assert(MRegisterInfo::isPhysicalRegister(*I) && 319 "Cannot have a live-in virtual register!"); 320 HandlePhysRegUse(*I, Ret); 321 } 322 } 323 324 // Loop over PhysRegInfo, killing any registers that are available at the 325 // end of the basic block. This also resets the PhysRegInfo map. 326 for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i) 327 if (PhysRegInfo[i]) 328 HandlePhysRegDef(i, 0); 329 } 330 331 // Convert the information we have gathered into VirtRegInfo and transform it 332 // into a form usable by RegistersKilled. 333 // 334 for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i) 335 for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) { 336 if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst) 337 RegistersDead[VirtRegInfo[i].Kills[j]].push_back( 338 i + MRegisterInfo::FirstVirtualRegister); 339 340 else 341 RegistersKilled[VirtRegInfo[i].Kills[j]].push_back( 342 i + MRegisterInfo::FirstVirtualRegister); 343 } 344 345 // Walk through the RegistersKilled/Dead sets, and sort the registers killed 346 // or dead. This allows us to use efficient binary search for membership 347 // testing. 348 for (std::map<MachineInstr*, std::vector<unsigned> >::iterator 349 I = RegistersKilled.begin(), E = RegistersKilled.end(); I != E; ++I) 350 std::sort(I->second.begin(), I->second.end()); 351 for (std::map<MachineInstr*, std::vector<unsigned> >::iterator 352 I = RegistersDead.begin(), E = RegistersDead.end(); I != E; ++I) 353 std::sort(I->second.begin(), I->second.end()); 354 355 // Check to make sure there are no unreachable blocks in the MC CFG for the 356 // function. If so, it is due to a bug in the instruction selector or some 357 // other part of the code generator if this happens. 358 #ifndef NDEBUG 359 for(MachineFunction::iterator i = MF.begin(), e = MF.end(); i != e; ++i) 360 assert(Visited.count(&*i) != 0 && "unreachable basic block found"); 361 #endif 362 363 return false; 364 } 365 366 /// instructionChanged - When the address of an instruction changes, this 367 /// method should be called so that live variables can update its internal 368 /// data structures. This removes the records for OldMI, transfering them to 369 /// the records for NewMI. 370 void LiveVariables::instructionChanged(MachineInstr *OldMI, 371 MachineInstr *NewMI) { 372 // If the instruction defines any virtual registers, update the VarInfo for 373 // the instruction. 374 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 375 MachineOperand &MO = OldMI->getOperand(i); 376 if (MO.isRegister() && MO.getReg() && 377 MRegisterInfo::isVirtualRegister(MO.getReg())) { 378 unsigned Reg = MO.getReg(); 379 VarInfo &VI = getVarInfo(Reg); 380 if (MO.isDef()) { 381 // Update the defining instruction. 382 if (VI.DefInst == OldMI) 383 VI.DefInst = NewMI; 384 } 385 if (MO.isUse()) { 386 // If this is a kill of the value, update the VI kills list. 387 if (VI.removeKill(OldMI)) 388 VI.Kills.push_back(NewMI); // Yes, there was a kill of it 389 } 390 } 391 } 392 393 // Move the killed information over... 394 killed_iterator I, E; 395 tie(I, E) = killed_range(OldMI); 396 if (I != E) { 397 std::vector<unsigned> &V = RegistersKilled[NewMI]; 398 bool WasEmpty = V.empty(); 399 V.insert(V.end(), I, E); 400 if (!WasEmpty) 401 std::sort(V.begin(), V.end()); // Keep the reg list sorted. 402 RegistersKilled.erase(OldMI); 403 } 404 405 // Move the dead information over... 406 tie(I, E) = dead_range(OldMI); 407 if (I != E) { 408 std::vector<unsigned> &V = RegistersDead[NewMI]; 409 bool WasEmpty = V.empty(); 410 V.insert(V.end(), I, E); 411 if (!WasEmpty) 412 std::sort(V.begin(), V.end()); // Keep the reg list sorted. 413 RegistersDead.erase(OldMI); 414 } 415 } 416