xref: /llvm-project/llvm/lib/CodeGen/LiveVariables.cpp (revision bbd9a43d206d12a04562ecd676c5cd55b9964bc0)
1 //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveVariable analysis pass.  For each machine
11 // instruction in the function, this pass calculates the set of registers that
12 // are immediately dead after the instruction (i.e., the instruction calculates
13 // the value, but it is never used) and the set of registers that are used by
14 // the instruction, but are never used after the instruction (i.e., they are
15 // killed).
16 //
17 // This class computes live variables using are sparse implementation based on
18 // the machine code SSA form.  This class computes live variable information for
19 // each virtual and _register allocatable_ physical register in a function.  It
20 // uses the dominance properties of SSA form to efficiently compute live
21 // variables for virtual registers, and assumes that physical registers are only
22 // live within a single basic block (allowing it to do a single local analysis
23 // to resolve physical register lifetimes in each basic block).  If a physical
24 // register is not register allocatable, it is not tracked.  This is useful for
25 // things like the stack pointer and condition codes.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/CodeGen/LiveVariables.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Support/CFG.h"
34 #include "Support/DepthFirstIterator.h"
35 using namespace llvm;
36 
37 static RegisterAnalysis<LiveVariables> X("livevars", "Live Variable Analysis");
38 
39 const std::pair<MachineBasicBlock*, unsigned> &
40 LiveVariables::getMachineBasicBlockInfo(MachineBasicBlock *MBB) const{
41   return BBMap.find(MBB->getBasicBlock())->second;
42 }
43 
44 /// getIndexMachineBasicBlock() - Given a block index, return the
45 /// MachineBasicBlock corresponding to it.
46 MachineBasicBlock *LiveVariables::getIndexMachineBasicBlock(unsigned Idx) {
47   if (BBIdxMap.empty()) {
48     BBIdxMap.resize(BBMap.size());
49     for (std::map<const BasicBlock*, std::pair<MachineBasicBlock*, unsigned> >
50            ::iterator I = BBMap.begin(), E = BBMap.end(); I != E; ++I) {
51       assert(BBIdxMap.size() > I->second.second &&"Indices are not sequential");
52       assert(BBIdxMap[I->second.second] == 0 && "Multiple idx collision!");
53       BBIdxMap[I->second.second] = I->second.first;
54     }
55   }
56   assert(Idx < BBIdxMap.size() && "BB Index out of range!");
57   return BBIdxMap[Idx];
58 }
59 
60 LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
61   assert(MRegisterInfo::isVirtualRegister(RegIdx) &&
62          "getVarInfo: not a virtual register!");
63   RegIdx -= MRegisterInfo::FirstVirtualRegister;
64   if (RegIdx >= VirtRegInfo.size()) {
65     if (RegIdx >= 2*VirtRegInfo.size())
66       VirtRegInfo.resize(RegIdx*2);
67     else
68       VirtRegInfo.resize(2*VirtRegInfo.size());
69   }
70   return VirtRegInfo[RegIdx];
71 }
72 
73 
74 
75 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
76 					    const BasicBlock *BB) {
77   const std::pair<MachineBasicBlock*,unsigned> &Info = BBMap.find(BB)->second;
78   MachineBasicBlock *MBB = Info.first;
79   unsigned BBNum = Info.second;
80 
81   // Check to see if this basic block is one of the killing blocks.  If so,
82   // remove it...
83   for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
84     if (VRInfo.Kills[i].first == MBB) {
85       VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
86       break;
87     }
88 
89   if (MBB == VRInfo.DefBlock) return;  // Terminate recursion
90 
91   if (VRInfo.AliveBlocks.size() <= BBNum)
92     VRInfo.AliveBlocks.resize(BBNum+1);  // Make space...
93 
94   if (VRInfo.AliveBlocks[BBNum])
95     return;  // We already know the block is live
96 
97   // Mark the variable known alive in this bb
98   VRInfo.AliveBlocks[BBNum] = true;
99 
100   for (pred_const_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
101     MarkVirtRegAliveInBlock(VRInfo, *PI);
102 }
103 
104 void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB,
105 				     MachineInstr *MI) {
106   // Check to see if this basic block is already a kill block...
107   if (!VRInfo.Kills.empty() && VRInfo.Kills.back().first == MBB) {
108     // Yes, this register is killed in this basic block already.  Increase the
109     // live range by updating the kill instruction.
110     VRInfo.Kills.back().second = MI;
111     return;
112   }
113 
114 #ifndef NDEBUG
115   for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
116     assert(VRInfo.Kills[i].first != MBB && "entry should be at end!");
117 #endif
118 
119   assert(MBB != VRInfo.DefBlock && "Should have kill for defblock!");
120 
121   // Add a new kill entry for this basic block.
122   VRInfo.Kills.push_back(std::make_pair(MBB, MI));
123 
124   // Update all dominating blocks to mark them known live.
125   const BasicBlock *BB = MBB->getBasicBlock();
126   for (pred_const_iterator PI = pred_begin(BB), E = pred_end(BB);
127        PI != E; ++PI)
128     MarkVirtRegAliveInBlock(VRInfo, *PI);
129 }
130 
131 void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
132   PhysRegInfo[Reg] = MI;
133   PhysRegUsed[Reg] = true;
134 }
135 
136 void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
137   // Does this kill a previous version of this register?
138   if (MachineInstr *LastUse = PhysRegInfo[Reg]) {
139     if (PhysRegUsed[Reg])
140       RegistersKilled.insert(std::make_pair(LastUse, Reg));
141     else
142       RegistersDead.insert(std::make_pair(LastUse, Reg));
143   }
144   PhysRegInfo[Reg] = MI;
145   PhysRegUsed[Reg] = false;
146 
147   for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
148        *AliasSet; ++AliasSet) {
149     unsigned Alias = *AliasSet;
150     if (MachineInstr *LastUse = PhysRegInfo[Alias]) {
151       if (PhysRegUsed[Alias])
152 	RegistersKilled.insert(std::make_pair(LastUse, Alias));
153       else
154 	RegistersDead.insert(std::make_pair(LastUse, Alias));
155     }
156     PhysRegInfo[Alias] = MI;
157     PhysRegUsed[Alias] = false;
158   }
159 }
160 
161 bool LiveVariables::runOnMachineFunction(MachineFunction &MF) {
162   const TargetInstrInfo &TII = MF.getTarget().getInstrInfo();
163   RegInfo = MF.getTarget().getRegisterInfo();
164   assert(RegInfo && "Target doesn't have register information?");
165 
166   // First time though, initialize AllocatablePhysicalRegisters for the target
167   if (AllocatablePhysicalRegisters.empty()) {
168     // Make space, initializing to false...
169     AllocatablePhysicalRegisters.resize(RegInfo->getNumRegs());
170 
171     // Loop over all of the register classes...
172     for (MRegisterInfo::regclass_iterator RCI = RegInfo->regclass_begin(),
173            E = RegInfo->regclass_end(); RCI != E; ++RCI)
174       // Loop over all of the allocatable registers in the function...
175       for (TargetRegisterClass::iterator I = (*RCI)->allocation_order_begin(MF),
176              E = (*RCI)->allocation_order_end(MF); I != E; ++I)
177         AllocatablePhysicalRegisters[*I] = true;  // The reg is allocatable!
178   }
179 
180   // Build BBMap...
181   unsigned BBNum = 0;
182   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
183     BBMap[I->getBasicBlock()] = std::make_pair(I, BBNum++);
184 
185   // PhysRegInfo - Keep track of which instruction was the last use of a
186   // physical register.  This is a purely local property, because all physical
187   // register references as presumed dead across basic blocks.
188   //
189   MachineInstr *PhysRegInfoA[MRegisterInfo::FirstVirtualRegister];
190   bool          PhysRegUsedA[MRegisterInfo::FirstVirtualRegister];
191   std::fill(PhysRegInfoA, PhysRegInfoA+MRegisterInfo::FirstVirtualRegister,
192 	    (MachineInstr*)0);
193   PhysRegInfo = PhysRegInfoA;
194   PhysRegUsed = PhysRegUsedA;
195 
196   /// Get some space for a respectable number of registers...
197   VirtRegInfo.resize(64);
198 
199   // Calculate live variable information in depth first order on the CFG of the
200   // function.  This guarantees that we will see the definition of a virtual
201   // register before its uses due to dominance properties of SSA (except for PHI
202   // nodes, which are treated as a special case).
203   //
204   const BasicBlock *Entry = MF.getFunction()->begin();
205   for (df_iterator<const BasicBlock*> DFI = df_begin(Entry), E = df_end(Entry);
206        DFI != E; ++DFI) {
207     const BasicBlock *BB = *DFI;
208     std::pair<MachineBasicBlock*, unsigned> &BBRec = BBMap.find(BB)->second;
209     MachineBasicBlock *MBB = BBRec.first;
210     unsigned BBNum = BBRec.second;
211 
212     // Loop over all of the instructions, processing them.
213     for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
214 	 I != E; ++I) {
215       MachineInstr *MI = *I;
216       const TargetInstrDescriptor &MID = TII.get(MI->getOpcode());
217 
218       // Process all of the operands of the instruction...
219       unsigned NumOperandsToProcess = MI->getNumOperands();
220 
221       // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
222       // of the uses.  They will be handled in other basic blocks.
223       if (MI->getOpcode() == TargetInstrInfo::PHI)
224 	NumOperandsToProcess = 1;
225 
226       // Loop over implicit uses, using them.
227       for (const unsigned *ImplicitUses = MID.ImplicitUses;
228            *ImplicitUses; ++ImplicitUses)
229 	HandlePhysRegUse(*ImplicitUses, MI);
230 
231       // Process all explicit uses...
232       for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
233 	MachineOperand &MO = MI->getOperand(i);
234 	if (MO.isUse()) {
235 	  if (MO.isVirtualRegister() && !MO.getVRegValueOrNull()) {
236 	    HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI);
237 	  } else if (MO.isPhysicalRegister() &&
238                      AllocatablePhysicalRegisters[MO.getReg()]) {
239 	    HandlePhysRegUse(MO.getReg(), MI);
240 	  }
241 	}
242       }
243 
244       // Loop over implicit defs, defining them.
245       for (const unsigned *ImplicitDefs = MID.ImplicitDefs;
246            *ImplicitDefs; ++ImplicitDefs)
247         HandlePhysRegDef(*ImplicitDefs, MI);
248 
249       // Process all explicit defs...
250       for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
251 	MachineOperand &MO = MI->getOperand(i);
252 	if (MO.isDef()) {
253 	  if (MO.isVirtualRegister()) {
254 	    VarInfo &VRInfo = getVarInfo(MO.getReg());
255 
256 	    assert(VRInfo.DefBlock == 0 && "Variable multiply defined!");
257 	    VRInfo.DefBlock = MBB;                           // Created here...
258 	    VRInfo.DefInst = MI;
259 	    VRInfo.Kills.push_back(std::make_pair(MBB, MI)); // Defaults to dead
260 	  } else if (MO.isPhysicalRegister() &&
261                      AllocatablePhysicalRegisters[MO.getReg()]) {
262 	    HandlePhysRegDef(MO.getReg(), MI);
263 	  }
264 	}
265       }
266     }
267 
268     // Handle any virtual assignments from PHI nodes which might be at the
269     // bottom of this basic block.  We check all of our successor blocks to see
270     // if they have PHI nodes, and if so, we simulate an assignment at the end
271     // of the current block.
272     for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB);
273          SI != E; ++SI) {
274       MachineBasicBlock *Succ = BBMap.find(*SI)->second.first;
275 
276       // PHI nodes are guaranteed to be at the top of the block...
277       for (MachineBasicBlock::iterator I = Succ->begin(), E = Succ->end();
278 	   I != E && (*I)->getOpcode() == TargetInstrInfo::PHI; ++I) {
279         MachineInstr *MI = *I;
280 	for (unsigned i = 1; ; i += 2)
281 	  if (MI->getOperand(i+1).getMachineBasicBlock() == MBB) {
282 	    MachineOperand &MO = MI->getOperand(i);
283 	    if (!MO.getVRegValueOrNull()) {
284 	      VarInfo &VRInfo = getVarInfo(MO.getReg());
285 
286 	      // Only mark it alive only in the block we are representing...
287 	      MarkVirtRegAliveInBlock(VRInfo, BB);
288 	      break;   // Found the PHI entry for this block...
289 	    }
290 	  }
291       }
292     }
293 
294     // Loop over PhysRegInfo, killing any registers that are available at the
295     // end of the basic block.  This also resets the PhysRegInfo map.
296     for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
297       if (PhysRegInfo[i])
298 	HandlePhysRegDef(i, 0);
299   }
300 
301   // Convert the information we have gathered into VirtRegInfo and transform it
302   // into a form usable by RegistersKilled.
303   //
304   for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i)
305     for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) {
306       if (VirtRegInfo[i].Kills[j].second == VirtRegInfo[i].DefInst)
307 	RegistersDead.insert(std::make_pair(VirtRegInfo[i].Kills[j].second,
308 		    i + MRegisterInfo::FirstVirtualRegister));
309 
310       else
311 	RegistersKilled.insert(std::make_pair(VirtRegInfo[i].Kills[j].second,
312 		    i + MRegisterInfo::FirstVirtualRegister));
313     }
314 
315   return false;
316 }
317