1 //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveVariable analysis pass. For each machine 11 // instruction in the function, this pass calculates the set of registers that 12 // are immediately dead after the instruction (i.e., the instruction calculates 13 // the value, but it is never used) and the set of registers that are used by 14 // the instruction, but are never used after the instruction (i.e., they are 15 // killed). 16 // 17 // This class computes live variables using are sparse implementation based on 18 // the machine code SSA form. This class computes live variable information for 19 // each virtual and _register allocatable_ physical register in a function. It 20 // uses the dominance properties of SSA form to efficiently compute live 21 // variables for virtual registers, and assumes that physical registers are only 22 // live within a single basic block (allowing it to do a single local analysis 23 // to resolve physical register lifetimes in each basic block). If a physical 24 // register is not register allocatable, it is not tracked. This is useful for 25 // things like the stack pointer and condition codes. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/CodeGen/LiveVariables.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/Target/MRegisterInfo.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/ADT/DepthFirstIterator.h" 35 #include "llvm/ADT/SmallPtrSet.h" 36 #include "llvm/ADT/STLExtras.h" 37 #include "llvm/Config/alloca.h" 38 #include <algorithm> 39 using namespace llvm; 40 41 char LiveVariables::ID = 0; 42 static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis"); 43 44 void LiveVariables::VarInfo::dump() const { 45 cerr << "Register Defined by: "; 46 if (DefInst) 47 cerr << *DefInst; 48 else 49 cerr << "<null>\n"; 50 cerr << " Alive in blocks: "; 51 for (unsigned i = 0, e = AliveBlocks.size(); i != e; ++i) 52 if (AliveBlocks[i]) cerr << i << ", "; 53 cerr << "\n Killed by:"; 54 if (Kills.empty()) 55 cerr << " No instructions.\n"; 56 else { 57 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 58 cerr << "\n #" << i << ": " << *Kills[i]; 59 cerr << "\n"; 60 } 61 } 62 63 LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { 64 assert(MRegisterInfo::isVirtualRegister(RegIdx) && 65 "getVarInfo: not a virtual register!"); 66 RegIdx -= MRegisterInfo::FirstVirtualRegister; 67 if (RegIdx >= VirtRegInfo.size()) { 68 if (RegIdx >= 2*VirtRegInfo.size()) 69 VirtRegInfo.resize(RegIdx*2); 70 else 71 VirtRegInfo.resize(2*VirtRegInfo.size()); 72 } 73 VarInfo &VI = VirtRegInfo[RegIdx]; 74 VI.AliveBlocks.resize(MF->getNumBlockIDs()); 75 return VI; 76 } 77 78 bool LiveVariables::KillsRegister(MachineInstr *MI, unsigned Reg) const { 79 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 80 MachineOperand &MO = MI->getOperand(i); 81 if (MO.isRegister() && MO.isKill()) { 82 if ((MO.getReg() == Reg) || 83 (MRegisterInfo::isPhysicalRegister(MO.getReg()) && 84 MRegisterInfo::isPhysicalRegister(Reg) && 85 RegInfo->isSubRegister(MO.getReg(), Reg))) 86 return true; 87 } 88 } 89 return false; 90 } 91 92 bool LiveVariables::RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const { 93 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 94 MachineOperand &MO = MI->getOperand(i); 95 if (MO.isRegister() && MO.isDead()) { 96 if ((MO.getReg() == Reg) || 97 (MRegisterInfo::isPhysicalRegister(MO.getReg()) && 98 MRegisterInfo::isPhysicalRegister(Reg) && 99 RegInfo->isSubRegister(MO.getReg(), Reg))) 100 return true; 101 } 102 } 103 return false; 104 } 105 106 bool LiveVariables::ModifiesRegister(MachineInstr *MI, unsigned Reg) const { 107 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 108 MachineOperand &MO = MI->getOperand(i); 109 if (MO.isRegister() && MO.isDef() && MO.getReg() == Reg) 110 return true; 111 } 112 return false; 113 } 114 115 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, 116 MachineBasicBlock *MBB, 117 std::vector<MachineBasicBlock*> &WorkList) { 118 unsigned BBNum = MBB->getNumber(); 119 120 // Check to see if this basic block is one of the killing blocks. If so, 121 // remove it... 122 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 123 if (VRInfo.Kills[i]->getParent() == MBB) { 124 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry 125 break; 126 } 127 128 if (MBB == VRInfo.DefInst->getParent()) return; // Terminate recursion 129 130 if (VRInfo.AliveBlocks[BBNum]) 131 return; // We already know the block is live 132 133 // Mark the variable known alive in this bb 134 VRInfo.AliveBlocks[BBNum] = true; 135 136 for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(), 137 E = MBB->pred_rend(); PI != E; ++PI) 138 WorkList.push_back(*PI); 139 } 140 141 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, 142 MachineBasicBlock *MBB) { 143 std::vector<MachineBasicBlock*> WorkList; 144 MarkVirtRegAliveInBlock(VRInfo, MBB, WorkList); 145 while (!WorkList.empty()) { 146 MachineBasicBlock *Pred = WorkList.back(); 147 WorkList.pop_back(); 148 MarkVirtRegAliveInBlock(VRInfo, Pred, WorkList); 149 } 150 } 151 152 153 void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB, 154 MachineInstr *MI) { 155 assert(VRInfo.DefInst && "Register use before def!"); 156 157 VRInfo.NumUses++; 158 159 // Check to see if this basic block is already a kill block... 160 if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { 161 // Yes, this register is killed in this basic block already. Increase the 162 // live range by updating the kill instruction. 163 VRInfo.Kills.back() = MI; 164 return; 165 } 166 167 #ifndef NDEBUG 168 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 169 assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); 170 #endif 171 172 assert(MBB != VRInfo.DefInst->getParent() && 173 "Should have kill for defblock!"); 174 175 // Add a new kill entry for this basic block. 176 // If this virtual register is already marked as alive in this basic block, 177 // that means it is alive in at least one of the successor block, it's not 178 // a kill. 179 if (!VRInfo.AliveBlocks[MBB->getNumber()]) 180 VRInfo.Kills.push_back(MI); 181 182 // Update all dominating blocks to mark them known live. 183 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 184 E = MBB->pred_end(); PI != E; ++PI) 185 MarkVirtRegAliveInBlock(VRInfo, *PI); 186 } 187 188 bool LiveVariables::addRegisterKilled(unsigned IncomingReg, MachineInstr *MI, 189 bool AddIfNotFound) { 190 bool Found = false; 191 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 192 MachineOperand &MO = MI->getOperand(i); 193 if (MO.isRegister() && MO.isUse()) { 194 unsigned Reg = MO.getReg(); 195 if (!Reg) 196 continue; 197 if (Reg == IncomingReg) { 198 MO.setIsKill(); 199 Found = true; 200 break; 201 } else if (MRegisterInfo::isPhysicalRegister(Reg) && 202 MRegisterInfo::isPhysicalRegister(IncomingReg) && 203 RegInfo->isSuperRegister(IncomingReg, Reg) && 204 MO.isKill()) 205 // A super-register kill already exists. 206 Found = true; 207 } 208 } 209 210 // If not found, this means an alias of one of the operand is killed. Add a 211 // new implicit operand if required. 212 if (!Found && AddIfNotFound) { 213 MI->addRegOperand(IncomingReg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/); 214 return true; 215 } 216 return Found; 217 } 218 219 bool LiveVariables::addRegisterDead(unsigned IncomingReg, MachineInstr *MI, 220 bool AddIfNotFound) { 221 bool Found = false; 222 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 223 MachineOperand &MO = MI->getOperand(i); 224 if (MO.isRegister() && MO.isDef()) { 225 unsigned Reg = MO.getReg(); 226 if (!Reg) 227 continue; 228 if (Reg == IncomingReg) { 229 MO.setIsDead(); 230 Found = true; 231 break; 232 } else if (MRegisterInfo::isPhysicalRegister(Reg) && 233 MRegisterInfo::isPhysicalRegister(IncomingReg) && 234 RegInfo->isSuperRegister(IncomingReg, Reg) && 235 MO.isDead()) 236 // There exists a super-register that's marked dead. 237 return true; 238 } 239 } 240 241 // If not found, this means an alias of one of the operand is dead. Add a 242 // new implicit operand. 243 if (!Found && AddIfNotFound) { 244 MI->addRegOperand(IncomingReg, true/*IsDef*/,true/*IsImp*/,false/*IsKill*/, 245 true/*IsDead*/); 246 return true; 247 } 248 return Found; 249 } 250 251 void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { 252 // Turn previous partial def's into read/mod/write. 253 for (unsigned i = 0, e = PhysRegPartDef[Reg].size(); i != e; ++i) { 254 MachineInstr *Def = PhysRegPartDef[Reg][i]; 255 // First one is just a def. This means the use is reading some undef bits. 256 if (i != 0) 257 Def->addRegOperand(Reg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/); 258 Def->addRegOperand(Reg, true/*IsDef*/,true/*IsImp*/); 259 } 260 PhysRegPartDef[Reg].clear(); 261 262 // There was an earlier def of a super-register. Add implicit def to that MI. 263 // A: EAX = ... 264 // B: = AX 265 // Add implicit def to A. 266 if (PhysRegInfo[Reg] && PhysRegInfo[Reg] != PhysRegPartUse[Reg] && 267 !PhysRegUsed[Reg]) { 268 MachineInstr *Def = PhysRegInfo[Reg]; 269 if (!Def->findRegisterDefOperand(Reg)) 270 Def->addRegOperand(Reg, true/*IsDef*/,true/*IsImp*/); 271 } 272 273 // There is a now a proper use, forget about the last partial use. 274 PhysRegPartUse[Reg] = NULL; 275 PhysRegInfo[Reg] = MI; 276 PhysRegUsed[Reg] = true; 277 278 for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg); 279 unsigned SubReg = *SubRegs; ++SubRegs) { 280 PhysRegInfo[SubReg] = MI; 281 PhysRegUsed[SubReg] = true; 282 } 283 284 for (const unsigned *SuperRegs = RegInfo->getSuperRegisters(Reg); 285 unsigned SuperReg = *SuperRegs; ++SuperRegs) { 286 // Remember the partial use of this superreg if it was previously defined. 287 bool HasPrevDef = PhysRegInfo[SuperReg] != NULL; 288 if (!HasPrevDef) { 289 for (const unsigned *SSRegs = RegInfo->getSuperRegisters(SuperReg); 290 unsigned SSReg = *SSRegs; ++SSRegs) { 291 if (PhysRegInfo[SSReg] != NULL) { 292 HasPrevDef = true; 293 break; 294 } 295 } 296 } 297 if (HasPrevDef) { 298 PhysRegInfo[SuperReg] = MI; 299 PhysRegPartUse[SuperReg] = MI; 300 } 301 } 302 } 303 304 bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *RefMI, 305 SmallSet<unsigned, 4> &SubKills) { 306 for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg); 307 unsigned SubReg = *SubRegs; ++SubRegs) { 308 MachineInstr *LastRef = PhysRegInfo[SubReg]; 309 if (LastRef != RefMI || 310 !HandlePhysRegKill(SubReg, RefMI, SubKills)) 311 SubKills.insert(SubReg); 312 } 313 314 if (*RegInfo->getImmediateSubRegisters(Reg) == 0) { 315 // No sub-registers, just check if reg is killed by RefMI. 316 if (PhysRegInfo[Reg] == RefMI) 317 return true; 318 } else if (SubKills.empty()) 319 // None of the sub-registers are killed elsewhere... 320 return true; 321 return false; 322 } 323 324 void LiveVariables::addRegisterKills(unsigned Reg, MachineInstr *MI, 325 SmallSet<unsigned, 4> &SubKills) { 326 if (SubKills.count(Reg) == 0) 327 addRegisterKilled(Reg, MI, true); 328 else { 329 for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg); 330 unsigned SubReg = *SubRegs; ++SubRegs) 331 addRegisterKills(SubReg, MI, SubKills); 332 } 333 } 334 335 bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *RefMI) { 336 SmallSet<unsigned, 4> SubKills; 337 if (HandlePhysRegKill(Reg, RefMI, SubKills)) { 338 addRegisterKilled(Reg, RefMI, true); 339 return true; 340 } else { 341 // Some sub-registers are killed by another MI. 342 for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg); 343 unsigned SubReg = *SubRegs; ++SubRegs) 344 addRegisterKills(SubReg, RefMI, SubKills); 345 return false; 346 } 347 } 348 349 void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) { 350 // Does this kill a previous version of this register? 351 if (MachineInstr *LastRef = PhysRegInfo[Reg]) { 352 if (PhysRegUsed[Reg]) { 353 if (!HandlePhysRegKill(Reg, LastRef)) { 354 if (PhysRegPartUse[Reg]) 355 addRegisterKilled(Reg, PhysRegPartUse[Reg], true); 356 } 357 } else if (PhysRegPartUse[Reg]) 358 // Add implicit use / kill to last partial use. 359 addRegisterKilled(Reg, PhysRegPartUse[Reg], true); 360 else if (LastRef != MI) 361 // Defined, but not used. However, watch out for cases where a super-reg 362 // is also defined on the same MI. 363 addRegisterDead(Reg, LastRef); 364 } 365 366 for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg); 367 unsigned SubReg = *SubRegs; ++SubRegs) { 368 if (MachineInstr *LastRef = PhysRegInfo[SubReg]) { 369 if (PhysRegUsed[SubReg]) { 370 if (!HandlePhysRegKill(SubReg, LastRef)) { 371 if (PhysRegPartUse[SubReg]) 372 addRegisterKilled(SubReg, PhysRegPartUse[SubReg], true); 373 } 374 } else if (PhysRegPartUse[SubReg]) 375 // Add implicit use / kill to last use of a sub-register. 376 addRegisterKilled(SubReg, PhysRegPartUse[SubReg], true); 377 else if (LastRef != MI) 378 // This must be a def of the subreg on the same MI. 379 addRegisterDead(SubReg, LastRef); 380 } 381 } 382 383 if (MI) { 384 for (const unsigned *SuperRegs = RegInfo->getSuperRegisters(Reg); 385 unsigned SuperReg = *SuperRegs; ++SuperRegs) { 386 if (PhysRegInfo[SuperReg] && PhysRegInfo[SuperReg] != MI) { 387 // The larger register is previously defined. Now a smaller part is 388 // being re-defined. Treat it as read/mod/write. 389 // EAX = 390 // AX = EAX<imp-use,kill>, EAX<imp-def> 391 MI->addRegOperand(SuperReg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/); 392 MI->addRegOperand(SuperReg, true/*IsDef*/,true/*IsImp*/); 393 PhysRegInfo[SuperReg] = MI; 394 PhysRegUsed[SuperReg] = false; 395 PhysRegPartUse[SuperReg] = NULL; 396 } else { 397 // Remember this partial def. 398 PhysRegPartDef[SuperReg].push_back(MI); 399 } 400 } 401 402 PhysRegInfo[Reg] = MI; 403 PhysRegUsed[Reg] = false; 404 PhysRegPartDef[Reg].clear(); 405 PhysRegPartUse[Reg] = NULL; 406 for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg); 407 unsigned SubReg = *SubRegs; ++SubRegs) { 408 PhysRegInfo[SubReg] = MI; 409 PhysRegUsed[SubReg] = false; 410 PhysRegPartDef[SubReg].clear(); 411 PhysRegPartUse[SubReg] = NULL; 412 } 413 } 414 } 415 416 bool LiveVariables::runOnMachineFunction(MachineFunction &mf) { 417 MF = &mf; 418 const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo(); 419 RegInfo = MF->getTarget().getRegisterInfo(); 420 assert(RegInfo && "Target doesn't have register information?"); 421 422 ReservedRegisters = RegInfo->getReservedRegs(mf); 423 424 unsigned NumRegs = RegInfo->getNumRegs(); 425 PhysRegInfo = new MachineInstr*[NumRegs]; 426 PhysRegUsed = new bool[NumRegs]; 427 PhysRegPartUse = new MachineInstr*[NumRegs]; 428 PhysRegPartDef = new SmallVector<MachineInstr*,4>[NumRegs]; 429 PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()]; 430 std::fill(PhysRegInfo, PhysRegInfo + NumRegs, (MachineInstr*)0); 431 std::fill(PhysRegUsed, PhysRegUsed + NumRegs, false); 432 std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0); 433 434 /// Get some space for a respectable number of registers... 435 VirtRegInfo.resize(64); 436 437 analyzePHINodes(mf); 438 439 // Calculate live variable information in depth first order on the CFG of the 440 // function. This guarantees that we will see the definition of a virtual 441 // register before its uses due to dominance properties of SSA (except for PHI 442 // nodes, which are treated as a special case). 443 // 444 MachineBasicBlock *Entry = MF->begin(); 445 SmallPtrSet<MachineBasicBlock*,16> Visited; 446 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> > 447 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); 448 DFI != E; ++DFI) { 449 MachineBasicBlock *MBB = *DFI; 450 451 // Mark live-in registers as live-in. 452 for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(), 453 EE = MBB->livein_end(); II != EE; ++II) { 454 assert(MRegisterInfo::isPhysicalRegister(*II) && 455 "Cannot have a live-in virtual register!"); 456 HandlePhysRegDef(*II, 0); 457 } 458 459 // Loop over all of the instructions, processing them. 460 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 461 I != E; ++I) { 462 MachineInstr *MI = I; 463 464 // Process all of the operands of the instruction... 465 unsigned NumOperandsToProcess = MI->getNumOperands(); 466 467 // Unless it is a PHI node. In this case, ONLY process the DEF, not any 468 // of the uses. They will be handled in other basic blocks. 469 if (MI->getOpcode() == TargetInstrInfo::PHI) 470 NumOperandsToProcess = 1; 471 472 // Process all uses... 473 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 474 MachineOperand &MO = MI->getOperand(i); 475 if (MO.isRegister() && MO.isUse() && MO.getReg()) { 476 if (MRegisterInfo::isVirtualRegister(MO.getReg())){ 477 HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI); 478 } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && 479 !ReservedRegisters[MO.getReg()]) { 480 HandlePhysRegUse(MO.getReg(), MI); 481 } 482 } 483 } 484 485 // Process all defs... 486 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 487 MachineOperand &MO = MI->getOperand(i); 488 if (MO.isRegister() && MO.isDef() && MO.getReg()) { 489 if (MRegisterInfo::isVirtualRegister(MO.getReg())) { 490 VarInfo &VRInfo = getVarInfo(MO.getReg()); 491 492 assert(VRInfo.DefInst == 0 && "Variable multiply defined!"); 493 VRInfo.DefInst = MI; 494 // Defaults to dead 495 VRInfo.Kills.push_back(MI); 496 } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && 497 !ReservedRegisters[MO.getReg()]) { 498 HandlePhysRegDef(MO.getReg(), MI); 499 } 500 } 501 } 502 } 503 504 // Handle any virtual assignments from PHI nodes which might be at the 505 // bottom of this basic block. We check all of our successor blocks to see 506 // if they have PHI nodes, and if so, we simulate an assignment at the end 507 // of the current block. 508 if (!PHIVarInfo[MBB->getNumber()].empty()) { 509 SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()]; 510 511 for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(), 512 E = VarInfoVec.end(); I != E; ++I) { 513 VarInfo& VRInfo = getVarInfo(*I); 514 assert(VRInfo.DefInst && "Register use before def (or no def)!"); 515 516 // Only mark it alive only in the block we are representing. 517 MarkVirtRegAliveInBlock(VRInfo, MBB); 518 } 519 } 520 521 // Finally, if the last instruction in the block is a return, make sure to mark 522 // it as using all of the live-out values in the function. 523 if (!MBB->empty() && TII.isReturn(MBB->back().getOpcode())) { 524 MachineInstr *Ret = &MBB->back(); 525 for (MachineFunction::liveout_iterator I = MF->liveout_begin(), 526 E = MF->liveout_end(); I != E; ++I) { 527 assert(MRegisterInfo::isPhysicalRegister(*I) && 528 "Cannot have a live-in virtual register!"); 529 HandlePhysRegUse(*I, Ret); 530 // Add live-out registers as implicit uses. 531 if (Ret->findRegisterUseOperandIdx(*I) == -1) 532 Ret->addRegOperand(*I, false, true); 533 } 534 } 535 536 // Loop over PhysRegInfo, killing any registers that are available at the 537 // end of the basic block. This also resets the PhysRegInfo map. 538 for (unsigned i = 0; i != NumRegs; ++i) 539 if (PhysRegInfo[i]) 540 HandlePhysRegDef(i, 0); 541 542 // Clear some states between BB's. These are purely local information. 543 for (unsigned i = 0; i != NumRegs; ++i) 544 PhysRegPartDef[i].clear(); 545 std::fill(PhysRegInfo, PhysRegInfo + NumRegs, (MachineInstr*)0); 546 std::fill(PhysRegUsed, PhysRegUsed + NumRegs, false); 547 std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0); 548 } 549 550 // Convert and transfer the dead / killed information we have gathered into 551 // VirtRegInfo onto MI's. 552 // 553 for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) 554 for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j) { 555 if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst) 556 addRegisterDead(i + MRegisterInfo::FirstVirtualRegister, 557 VirtRegInfo[i].Kills[j]); 558 else 559 addRegisterKilled(i + MRegisterInfo::FirstVirtualRegister, 560 VirtRegInfo[i].Kills[j]); 561 } 562 563 // Check to make sure there are no unreachable blocks in the MC CFG for the 564 // function. If so, it is due to a bug in the instruction selector or some 565 // other part of the code generator if this happens. 566 #ifndef NDEBUG 567 for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i) 568 assert(Visited.count(&*i) != 0 && "unreachable basic block found"); 569 #endif 570 571 delete[] PhysRegInfo; 572 delete[] PhysRegUsed; 573 delete[] PhysRegPartUse; 574 delete[] PhysRegPartDef; 575 delete[] PHIVarInfo; 576 577 return false; 578 } 579 580 /// instructionChanged - When the address of an instruction changes, this 581 /// method should be called so that live variables can update its internal 582 /// data structures. This removes the records for OldMI, transfering them to 583 /// the records for NewMI. 584 void LiveVariables::instructionChanged(MachineInstr *OldMI, 585 MachineInstr *NewMI) { 586 // If the instruction defines any virtual registers, update the VarInfo, 587 // kill and dead information for the instruction. 588 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 589 MachineOperand &MO = OldMI->getOperand(i); 590 if (MO.isRegister() && MO.getReg() && 591 MRegisterInfo::isVirtualRegister(MO.getReg())) { 592 unsigned Reg = MO.getReg(); 593 VarInfo &VI = getVarInfo(Reg); 594 if (MO.isDef()) { 595 if (MO.isDead()) { 596 MO.unsetIsDead(); 597 addVirtualRegisterDead(Reg, NewMI); 598 } 599 // Update the defining instruction. 600 if (VI.DefInst == OldMI) 601 VI.DefInst = NewMI; 602 } 603 if (MO.isKill()) { 604 MO.unsetIsKill(); 605 addVirtualRegisterKilled(Reg, NewMI); 606 } 607 // If this is a kill of the value, update the VI kills list. 608 if (VI.removeKill(OldMI)) 609 VI.Kills.push_back(NewMI); // Yes, there was a kill of it 610 } 611 } 612 } 613 614 /// removeVirtualRegistersKilled - Remove all killed info for the specified 615 /// instruction. 616 void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) { 617 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 618 MachineOperand &MO = MI->getOperand(i); 619 if (MO.isRegister() && MO.isKill()) { 620 MO.unsetIsKill(); 621 unsigned Reg = MO.getReg(); 622 if (MRegisterInfo::isVirtualRegister(Reg)) { 623 bool removed = getVarInfo(Reg).removeKill(MI); 624 assert(removed && "kill not in register's VarInfo?"); 625 } 626 } 627 } 628 } 629 630 /// removeVirtualRegistersDead - Remove all of the dead registers for the 631 /// specified instruction from the live variable information. 632 void LiveVariables::removeVirtualRegistersDead(MachineInstr *MI) { 633 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 634 MachineOperand &MO = MI->getOperand(i); 635 if (MO.isRegister() && MO.isDead()) { 636 MO.unsetIsDead(); 637 unsigned Reg = MO.getReg(); 638 if (MRegisterInfo::isVirtualRegister(Reg)) { 639 bool removed = getVarInfo(Reg).removeKill(MI); 640 assert(removed && "kill not in register's VarInfo?"); 641 } 642 } 643 } 644 } 645 646 /// analyzePHINodes - Gather information about the PHI nodes in here. In 647 /// particular, we want to map the variable information of a virtual 648 /// register which is used in a PHI node. We map that to the BB the vreg is 649 /// coming from. 650 /// 651 void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { 652 for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); 653 I != E; ++I) 654 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); 655 BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) 656 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) 657 PHIVarInfo[BBI->getOperand(i + 1).getMachineBasicBlock()->getNumber()]. 658 push_back(BBI->getOperand(i).getReg()); 659 } 660