1 //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveVariable analysis pass. For each machine 11 // instruction in the function, this pass calculates the set of registers that 12 // are immediately dead after the instruction (i.e., the instruction calculates 13 // the value, but it is never used) and the set of registers that are used by 14 // the instruction, but are never used after the instruction (i.e., they are 15 // killed). 16 // 17 // This class computes live variables using are sparse implementation based on 18 // the machine code SSA form. This class computes live variable information for 19 // each virtual and _register allocatable_ physical register in a function. It 20 // uses the dominance properties of SSA form to efficiently compute live 21 // variables for virtual registers, and assumes that physical registers are only 22 // live within a single basic block (allowing it to do a single local analysis 23 // to resolve physical register lifetimes in each basic block). If a physical 24 // register is not register allocatable, it is not tracked. This is useful for 25 // things like the stack pointer and condition codes. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/CodeGen/LiveVariables.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/Target/MRegisterInfo.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Support/CFG.h" 35 #include "Support/DepthFirstIterator.h" 36 using namespace llvm; 37 38 static RegisterAnalysis<LiveVariables> X("livevars", "Live Variable Analysis"); 39 40 const std::pair<MachineBasicBlock*, unsigned> & 41 LiveVariables::getMachineBasicBlockInfo(MachineBasicBlock *MBB) const{ 42 return BBMap.find(MBB->getBasicBlock())->second; 43 } 44 45 /// getIndexMachineBasicBlock() - Given a block index, return the 46 /// MachineBasicBlock corresponding to it. 47 MachineBasicBlock *LiveVariables::getIndexMachineBasicBlock(unsigned Idx) { 48 if (BBIdxMap.empty()) { 49 BBIdxMap.resize(BBMap.size()); 50 for (std::map<const BasicBlock*, std::pair<MachineBasicBlock*, unsigned> > 51 ::iterator I = BBMap.begin(), E = BBMap.end(); I != E; ++I) { 52 assert(BBIdxMap.size() > I->second.second &&"Indices are not sequential"); 53 assert(BBIdxMap[I->second.second] == 0 && "Multiple idx collision!"); 54 BBIdxMap[I->second.second] = I->second.first; 55 } 56 } 57 assert(Idx < BBIdxMap.size() && "BB Index out of range!"); 58 return BBIdxMap[Idx]; 59 } 60 61 LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { 62 assert(MRegisterInfo::isVirtualRegister(RegIdx) && 63 "getVarInfo: not a virtual register!"); 64 RegIdx -= MRegisterInfo::FirstVirtualRegister; 65 if (RegIdx >= VirtRegInfo.size()) { 66 if (RegIdx >= 2*VirtRegInfo.size()) 67 VirtRegInfo.resize(RegIdx*2); 68 else 69 VirtRegInfo.resize(2*VirtRegInfo.size()); 70 } 71 return VirtRegInfo[RegIdx]; 72 } 73 74 75 76 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, 77 const BasicBlock *BB) { 78 const std::pair<MachineBasicBlock*,unsigned> &Info = BBMap.find(BB)->second; 79 MachineBasicBlock *MBB = Info.first; 80 unsigned BBNum = Info.second; 81 82 // Check to see if this basic block is one of the killing blocks. If so, 83 // remove it... 84 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 85 if (VRInfo.Kills[i].first == MBB) { 86 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry 87 break; 88 } 89 90 if (MBB == VRInfo.DefBlock) return; // Terminate recursion 91 92 if (VRInfo.AliveBlocks.size() <= BBNum) 93 VRInfo.AliveBlocks.resize(BBNum+1); // Make space... 94 95 if (VRInfo.AliveBlocks[BBNum]) 96 return; // We already know the block is live 97 98 // Mark the variable known alive in this bb 99 VRInfo.AliveBlocks[BBNum] = true; 100 101 for (pred_const_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 102 MarkVirtRegAliveInBlock(VRInfo, *PI); 103 } 104 105 void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB, 106 MachineInstr *MI) { 107 // Check to see if this basic block is already a kill block... 108 if (!VRInfo.Kills.empty() && VRInfo.Kills.back().first == MBB) { 109 // Yes, this register is killed in this basic block already. Increase the 110 // live range by updating the kill instruction. 111 VRInfo.Kills.back().second = MI; 112 return; 113 } 114 115 #ifndef NDEBUG 116 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 117 assert(VRInfo.Kills[i].first != MBB && "entry should be at end!"); 118 #endif 119 120 assert(MBB != VRInfo.DefBlock && "Should have kill for defblock!"); 121 122 // Add a new kill entry for this basic block. 123 VRInfo.Kills.push_back(std::make_pair(MBB, MI)); 124 125 // Update all dominating blocks to mark them known live. 126 const BasicBlock *BB = MBB->getBasicBlock(); 127 for (pred_const_iterator PI = pred_begin(BB), E = pred_end(BB); 128 PI != E; ++PI) 129 MarkVirtRegAliveInBlock(VRInfo, *PI); 130 } 131 132 void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { 133 PhysRegInfo[Reg] = MI; 134 PhysRegUsed[Reg] = true; 135 } 136 137 void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) { 138 // Does this kill a previous version of this register? 139 if (MachineInstr *LastUse = PhysRegInfo[Reg]) { 140 if (PhysRegUsed[Reg]) 141 RegistersKilled.insert(std::make_pair(LastUse, Reg)); 142 else 143 RegistersDead.insert(std::make_pair(LastUse, Reg)); 144 } 145 PhysRegInfo[Reg] = MI; 146 PhysRegUsed[Reg] = false; 147 148 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); 149 *AliasSet; ++AliasSet) { 150 unsigned Alias = *AliasSet; 151 if (MachineInstr *LastUse = PhysRegInfo[Alias]) { 152 if (PhysRegUsed[Alias]) 153 RegistersKilled.insert(std::make_pair(LastUse, Alias)); 154 else 155 RegistersDead.insert(std::make_pair(LastUse, Alias)); 156 } 157 PhysRegInfo[Alias] = MI; 158 PhysRegUsed[Alias] = false; 159 } 160 } 161 162 bool LiveVariables::runOnMachineFunction(MachineFunction &MF) { 163 const TargetInstrInfo &TII = MF.getTarget().getInstrInfo(); 164 RegInfo = MF.getTarget().getRegisterInfo(); 165 assert(RegInfo && "Target doesn't have register information?"); 166 167 // First time though, initialize AllocatablePhysicalRegisters for the target 168 if (AllocatablePhysicalRegisters.empty()) { 169 // Make space, initializing to false... 170 AllocatablePhysicalRegisters.resize(RegInfo->getNumRegs()); 171 172 // Loop over all of the register classes... 173 for (MRegisterInfo::regclass_iterator RCI = RegInfo->regclass_begin(), 174 E = RegInfo->regclass_end(); RCI != E; ++RCI) 175 // Loop over all of the allocatable registers in the function... 176 for (TargetRegisterClass::iterator I = (*RCI)->allocation_order_begin(MF), 177 E = (*RCI)->allocation_order_end(MF); I != E; ++I) 178 AllocatablePhysicalRegisters[*I] = true; // The reg is allocatable! 179 } 180 181 // Build BBMap... 182 unsigned BBNum = 0; 183 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) 184 BBMap[I->getBasicBlock()] = std::make_pair(I, BBNum++); 185 186 // PhysRegInfo - Keep track of which instruction was the last use of a 187 // physical register. This is a purely local property, because all physical 188 // register references as presumed dead across basic blocks. 189 // 190 MachineInstr *PhysRegInfoA[MRegisterInfo::FirstVirtualRegister]; 191 bool PhysRegUsedA[MRegisterInfo::FirstVirtualRegister]; 192 std::fill(PhysRegInfoA, PhysRegInfoA+MRegisterInfo::FirstVirtualRegister, 193 (MachineInstr*)0); 194 PhysRegInfo = PhysRegInfoA; 195 PhysRegUsed = PhysRegUsedA; 196 197 /// Get some space for a respectable number of registers... 198 VirtRegInfo.resize(64); 199 200 // Calculate live variable information in depth first order on the CFG of the 201 // function. This guarantees that we will see the definition of a virtual 202 // register before its uses due to dominance properties of SSA (except for PHI 203 // nodes, which are treated as a special case). 204 // 205 const BasicBlock *Entry = MF.getFunction()->begin(); 206 for (df_iterator<const BasicBlock*> DFI = df_begin(Entry), E = df_end(Entry); 207 DFI != E; ++DFI) { 208 const BasicBlock *BB = *DFI; 209 std::pair<MachineBasicBlock*, unsigned> &BBRec = BBMap.find(BB)->second; 210 MachineBasicBlock *MBB = BBRec.first; 211 unsigned BBNum = BBRec.second; 212 213 // Loop over all of the instructions, processing them. 214 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 215 I != E; ++I) { 216 MachineInstr *MI = I; 217 const TargetInstrDescriptor &MID = TII.get(MI->getOpcode()); 218 219 // Process all of the operands of the instruction... 220 unsigned NumOperandsToProcess = MI->getNumOperands(); 221 222 // Unless it is a PHI node. In this case, ONLY process the DEF, not any 223 // of the uses. They will be handled in other basic blocks. 224 if (MI->getOpcode() == TargetInstrInfo::PHI) 225 NumOperandsToProcess = 1; 226 227 // Loop over implicit uses, using them. 228 for (const unsigned *ImplicitUses = MID.ImplicitUses; 229 *ImplicitUses; ++ImplicitUses) 230 HandlePhysRegUse(*ImplicitUses, MI); 231 232 // Process all explicit uses... 233 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 234 MachineOperand &MO = MI->getOperand(i); 235 if (MO.isUse() && MO.isRegister()) { 236 if (MRegisterInfo::isVirtualRegister(MO.getReg())){ 237 HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI); 238 } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && 239 AllocatablePhysicalRegisters[MO.getReg()]) { 240 HandlePhysRegUse(MO.getReg(), MI); 241 } 242 } 243 } 244 245 // Loop over implicit defs, defining them. 246 for (const unsigned *ImplicitDefs = MID.ImplicitDefs; 247 *ImplicitDefs; ++ImplicitDefs) 248 HandlePhysRegDef(*ImplicitDefs, MI); 249 250 // Process all explicit defs... 251 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 252 MachineOperand &MO = MI->getOperand(i); 253 if (MO.isDef() && MO.isRegister()) { 254 if (MRegisterInfo::isVirtualRegister(MO.getReg())) { 255 VarInfo &VRInfo = getVarInfo(MO.getReg()); 256 257 assert(VRInfo.DefBlock == 0 && "Variable multiply defined!"); 258 VRInfo.DefBlock = MBB; // Created here... 259 VRInfo.DefInst = MI; 260 VRInfo.Kills.push_back(std::make_pair(MBB, MI)); // Defaults to dead 261 } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && 262 AllocatablePhysicalRegisters[MO.getReg()]) { 263 HandlePhysRegDef(MO.getReg(), MI); 264 } 265 } 266 } 267 } 268 269 // Handle any virtual assignments from PHI nodes which might be at the 270 // bottom of this basic block. We check all of our successor blocks to see 271 // if they have PHI nodes, and if so, we simulate an assignment at the end 272 // of the current block. 273 for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); 274 SI != E; ++SI) { 275 MachineBasicBlock *Succ = BBMap.find(*SI)->second.first; 276 277 // PHI nodes are guaranteed to be at the top of the block... 278 for (MachineBasicBlock::iterator MI = Succ->begin(), ME = Succ->end(); 279 MI != ME && MI->getOpcode() == TargetInstrInfo::PHI; ++MI) { 280 for (unsigned i = 1; ; i += 2) 281 if (MI->getOperand(i+1).getMachineBasicBlock() == MBB) { 282 MachineOperand &MO = MI->getOperand(i); 283 if (!MO.getVRegValueOrNull()) { 284 VarInfo &VRInfo = getVarInfo(MO.getReg()); 285 286 // Only mark it alive only in the block we are representing... 287 MarkVirtRegAliveInBlock(VRInfo, BB); 288 break; // Found the PHI entry for this block... 289 } 290 } 291 } 292 } 293 294 // Loop over PhysRegInfo, killing any registers that are available at the 295 // end of the basic block. This also resets the PhysRegInfo map. 296 for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i) 297 if (PhysRegInfo[i]) 298 HandlePhysRegDef(i, 0); 299 } 300 301 // Convert the information we have gathered into VirtRegInfo and transform it 302 // into a form usable by RegistersKilled. 303 // 304 for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i) 305 for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) { 306 if (VirtRegInfo[i].Kills[j].second == VirtRegInfo[i].DefInst) 307 RegistersDead.insert(std::make_pair(VirtRegInfo[i].Kills[j].second, 308 i + MRegisterInfo::FirstVirtualRegister)); 309 310 else 311 RegistersKilled.insert(std::make_pair(VirtRegInfo[i].Kills[j].second, 312 i + MRegisterInfo::FirstVirtualRegister)); 313 } 314 315 return false; 316 } 317