1 //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveVariable analysis pass. For each machine 11 // instruction in the function, this pass calculates the set of registers that 12 // are immediately dead after the instruction (i.e., the instruction calculates 13 // the value, but it is never used) and the set of registers that are used by 14 // the instruction, but are never used after the instruction (i.e., they are 15 // killed). 16 // 17 // This class computes live variables using are sparse implementation based on 18 // the machine code SSA form. This class computes live variable information for 19 // each virtual and _register allocatable_ physical register in a function. It 20 // uses the dominance properties of SSA form to efficiently compute live 21 // variables for virtual registers, and assumes that physical registers are only 22 // live within a single basic block (allowing it to do a single local analysis 23 // to resolve physical register lifetimes in each basic block). If a physical 24 // register is not register allocatable, it is not tracked. This is useful for 25 // things like the stack pointer and condition codes. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/CodeGen/LiveVariables.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/Passes.h" 33 #include "llvm/Target/TargetRegisterInfo.h" 34 #include "llvm/Target/TargetInstrInfo.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include "llvm/ADT/DepthFirstIterator.h" 37 #include "llvm/ADT/SmallPtrSet.h" 38 #include "llvm/ADT/SmallSet.h" 39 #include "llvm/ADT/STLExtras.h" 40 #include "llvm/Config/alloca.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 char LiveVariables::ID = 0; 45 static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis"); 46 47 48 void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const { 49 AU.addRequiredID(UnreachableMachineBlockElimID); 50 AU.setPreservesAll(); 51 } 52 53 void LiveVariables::VarInfo::dump() const { 54 cerr << " Alive in blocks: "; 55 for (SparseBitVector<>::iterator I = AliveBlocks.begin(), 56 E = AliveBlocks.end(); I != E; ++I) 57 cerr << *I << ", "; 58 cerr << "\n Killed by:"; 59 if (Kills.empty()) 60 cerr << " No instructions.\n"; 61 else { 62 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 63 cerr << "\n #" << i << ": " << *Kills[i]; 64 cerr << "\n"; 65 } 66 } 67 68 /// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg. 69 LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { 70 assert(TargetRegisterInfo::isVirtualRegister(RegIdx) && 71 "getVarInfo: not a virtual register!"); 72 RegIdx -= TargetRegisterInfo::FirstVirtualRegister; 73 if (RegIdx >= VirtRegInfo.size()) { 74 if (RegIdx >= 2*VirtRegInfo.size()) 75 VirtRegInfo.resize(RegIdx*2); 76 else 77 VirtRegInfo.resize(2*VirtRegInfo.size()); 78 } 79 return VirtRegInfo[RegIdx]; 80 } 81 82 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo, 83 MachineBasicBlock *DefBlock, 84 MachineBasicBlock *MBB, 85 std::vector<MachineBasicBlock*> &WorkList) { 86 unsigned BBNum = MBB->getNumber(); 87 88 // Check to see if this basic block is one of the killing blocks. If so, 89 // remove it. 90 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 91 if (VRInfo.Kills[i]->getParent() == MBB) { 92 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry 93 break; 94 } 95 96 if (MBB == DefBlock) return; // Terminate recursion 97 98 if (VRInfo.AliveBlocks.test(BBNum)) 99 return; // We already know the block is live 100 101 // Mark the variable known alive in this bb 102 VRInfo.AliveBlocks.set(BBNum); 103 104 for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(), 105 E = MBB->pred_rend(); PI != E; ++PI) 106 WorkList.push_back(*PI); 107 } 108 109 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, 110 MachineBasicBlock *DefBlock, 111 MachineBasicBlock *MBB) { 112 std::vector<MachineBasicBlock*> WorkList; 113 MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList); 114 115 while (!WorkList.empty()) { 116 MachineBasicBlock *Pred = WorkList.back(); 117 WorkList.pop_back(); 118 MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList); 119 } 120 } 121 122 void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, 123 MachineInstr *MI) { 124 assert(MRI->getVRegDef(reg) && "Register use before def!"); 125 126 unsigned BBNum = MBB->getNumber(); 127 128 VarInfo& VRInfo = getVarInfo(reg); 129 VRInfo.NumUses++; 130 131 // Check to see if this basic block is already a kill block. 132 if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { 133 // Yes, this register is killed in this basic block already. Increase the 134 // live range by updating the kill instruction. 135 VRInfo.Kills.back() = MI; 136 return; 137 } 138 139 #ifndef NDEBUG 140 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 141 assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); 142 #endif 143 144 // This situation can occur: 145 // 146 // ,------. 147 // | | 148 // | v 149 // | t2 = phi ... t1 ... 150 // | | 151 // | v 152 // | t1 = ... 153 // | ... = ... t1 ... 154 // | | 155 // `------' 156 // 157 // where there is a use in a PHI node that's a predecessor to the defining 158 // block. We don't want to mark all predecessors as having the value "alive" 159 // in this case. 160 if (MBB == MRI->getVRegDef(reg)->getParent()) return; 161 162 // Add a new kill entry for this basic block. If this virtual register is 163 // already marked as alive in this basic block, that means it is alive in at 164 // least one of the successor blocks, it's not a kill. 165 if (!VRInfo.AliveBlocks.test(BBNum)) 166 VRInfo.Kills.push_back(MI); 167 168 // Update all dominating blocks to mark them as "known live". 169 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 170 E = MBB->pred_end(); PI != E; ++PI) 171 MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI); 172 } 173 174 void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) { 175 VarInfo &VRInfo = getVarInfo(Reg); 176 177 if (VRInfo.AliveBlocks.empty()) 178 // If vr is not alive in any block, then defaults to dead. 179 VRInfo.Kills.push_back(MI); 180 } 181 182 /// FindLastPartialDef - Return the last partial def of the specified register. 183 /// Also returns the sub-register that's defined. 184 MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg, 185 unsigned &PartDefReg) { 186 unsigned LastDefReg = 0; 187 unsigned LastDefDist = 0; 188 MachineInstr *LastDef = NULL; 189 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 190 unsigned SubReg = *SubRegs; ++SubRegs) { 191 MachineInstr *Def = PhysRegDef[SubReg]; 192 if (!Def) 193 continue; 194 unsigned Dist = DistanceMap[Def]; 195 if (Dist > LastDefDist) { 196 LastDefReg = SubReg; 197 LastDef = Def; 198 LastDefDist = Dist; 199 } 200 } 201 PartDefReg = LastDefReg; 202 return LastDef; 203 } 204 205 /// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add 206 /// implicit defs to a machine instruction if there was an earlier def of its 207 /// super-register. 208 void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { 209 // If there was a previous use or a "full" def all is well. 210 if (!PhysRegDef[Reg] && !PhysRegUse[Reg]) { 211 // Otherwise, the last sub-register def implicitly defines this register. 212 // e.g. 213 // AH = 214 // AL = ... <imp-def EAX>, <imp-kill AH> 215 // = AH 216 // ... 217 // = EAX 218 // All of the sub-registers must have been defined before the use of Reg! 219 unsigned PartDefReg = 0; 220 MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefReg); 221 // If LastPartialDef is NULL, it must be using a livein register. 222 if (LastPartialDef) { 223 LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/, 224 true/*IsImp*/)); 225 PhysRegDef[Reg] = LastPartialDef; 226 SmallSet<unsigned, 8> Processed; 227 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 228 unsigned SubReg = *SubRegs; ++SubRegs) { 229 if (Processed.count(SubReg)) 230 continue; 231 if (SubReg == PartDefReg || TRI->isSubRegister(PartDefReg, SubReg)) 232 continue; 233 // This part of Reg was defined before the last partial def. It's killed 234 // here. 235 LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg, 236 false/*IsDef*/, 237 true/*IsImp*/)); 238 PhysRegDef[SubReg] = LastPartialDef; 239 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 240 Processed.insert(*SS); 241 } 242 } 243 } 244 245 // There was an earlier def of a super-register. Add implicit def to that MI. 246 // 247 // A: EAX = ... 248 // B: ... = AX 249 // 250 // Add implicit def to A if there isn't a use of AX (or EAX) before B. 251 if (!PhysRegUse[Reg]) { 252 MachineInstr *Def = PhysRegDef[Reg]; 253 if (Def && !Def->modifiesRegister(Reg)) 254 Def->addOperand(MachineOperand::CreateReg(Reg, 255 true /*IsDef*/, 256 true /*IsImp*/)); 257 } 258 259 // Remember this use. 260 PhysRegUse[Reg] = MI; 261 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 262 unsigned SubReg = *SubRegs; ++SubRegs) 263 PhysRegUse[SubReg] = MI; 264 } 265 266 /// hasRegisterUseBelow - Return true if the specified register is used after 267 /// the current instruction and before it's next definition. 268 bool LiveVariables::hasRegisterUseBelow(unsigned Reg, 269 MachineBasicBlock::iterator I, 270 MachineBasicBlock *MBB) { 271 if (I == MBB->end()) 272 return false; 273 274 // First find out if there are any uses / defs below. 275 bool hasDistInfo = true; 276 unsigned CurDist = DistanceMap[I]; 277 SmallVector<MachineInstr*, 4> Uses; 278 SmallVector<MachineInstr*, 4> Defs; 279 for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg), 280 RE = MRI->reg_end(); RI != RE; ++RI) { 281 MachineOperand &UDO = RI.getOperand(); 282 MachineInstr *UDMI = &*RI; 283 if (UDMI->getParent() != MBB) 284 continue; 285 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI); 286 bool isBelow = false; 287 if (DI == DistanceMap.end()) { 288 // Must be below if it hasn't been assigned a distance yet. 289 isBelow = true; 290 hasDistInfo = false; 291 } else if (DI->second > CurDist) 292 isBelow = true; 293 if (isBelow) { 294 if (UDO.isUse()) 295 Uses.push_back(UDMI); 296 if (UDO.isDef()) 297 Defs.push_back(UDMI); 298 } 299 } 300 301 if (Uses.empty()) 302 // No uses below. 303 return false; 304 else if (!Uses.empty() && Defs.empty()) 305 // There are uses below but no defs below. 306 return true; 307 // There are both uses and defs below. We need to know which comes first. 308 if (!hasDistInfo) { 309 // Complete DistanceMap for this MBB. This information is computed only 310 // once per MBB. 311 ++I; 312 ++CurDist; 313 for (MachineBasicBlock::iterator E = MBB->end(); I != E; ++I, ++CurDist) 314 DistanceMap.insert(std::make_pair(I, CurDist)); 315 } 316 317 unsigned EarliestUse = DistanceMap[Uses[0]]; 318 for (unsigned i = 1, e = Uses.size(); i != e; ++i) { 319 unsigned Dist = DistanceMap[Uses[i]]; 320 if (Dist < EarliestUse) 321 EarliestUse = Dist; 322 } 323 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 324 unsigned Dist = DistanceMap[Defs[i]]; 325 if (Dist < EarliestUse) 326 // The register is defined before its first use below. 327 return false; 328 } 329 return true; 330 } 331 332 bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) { 333 if (!PhysRegUse[Reg] && !PhysRegDef[Reg]) 334 return false; 335 336 MachineInstr *LastRefOrPartRef = PhysRegUse[Reg] 337 ? PhysRegUse[Reg] : PhysRegDef[Reg]; 338 unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; 339 // The whole register is used. 340 // AL = 341 // AH = 342 // 343 // = AX 344 // = AL, AX<imp-use, kill> 345 // AX = 346 // 347 // Or whole register is defined, but not used at all. 348 // AX<dead> = 349 // ... 350 // AX = 351 // 352 // Or whole register is defined, but only partly used. 353 // AX<dead> = AL<imp-def> 354 // = AL<kill> 355 // AX = 356 SmallSet<unsigned, 8> PartUses; 357 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 358 unsigned SubReg = *SubRegs; ++SubRegs) { 359 if (MachineInstr *Use = PhysRegUse[SubReg]) { 360 PartUses.insert(SubReg); 361 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 362 PartUses.insert(*SS); 363 unsigned Dist = DistanceMap[Use]; 364 if (Dist > LastRefOrPartRefDist) { 365 LastRefOrPartRefDist = Dist; 366 LastRefOrPartRef = Use; 367 } 368 } 369 } 370 371 if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) 372 // If the last reference is the last def, then it's not used at all. 373 // That is, unless we are currently processing the last reference itself. 374 LastRefOrPartRef->addRegisterDead(Reg, TRI, true); 375 376 /* Partial uses. Mark register def dead and add implicit def of 377 sub-registers which are used. 378 FIXME: LiveIntervalAnalysis can't handle this yet! 379 EAX<dead> = op AL<imp-def> 380 That is, EAX def is dead but AL def extends pass it. 381 Enable this after live interval analysis is fixed to improve codegen! 382 else if (!PhysRegUse[Reg]) { 383 PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true); 384 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 385 unsigned SubReg = *SubRegs; ++SubRegs) { 386 if (PartUses.count(SubReg)) { 387 PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg, 388 true, true)); 389 LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true); 390 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 391 PartUses.erase(*SS); 392 } 393 } 394 } */ 395 else 396 LastRefOrPartRef->addRegisterKilled(Reg, TRI, true); 397 return true; 398 } 399 400 void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) { 401 // What parts of the register are previously defined? 402 SmallSet<unsigned, 32> Live; 403 if (PhysRegDef[Reg] || PhysRegUse[Reg]) { 404 Live.insert(Reg); 405 for (const unsigned *SS = TRI->getSubRegisters(Reg); *SS; ++SS) 406 Live.insert(*SS); 407 } else { 408 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 409 unsigned SubReg = *SubRegs; ++SubRegs) { 410 // If a register isn't itself defined, but all parts that make up of it 411 // are defined, then consider it also defined. 412 // e.g. 413 // AL = 414 // AH = 415 // = AX 416 if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) { 417 Live.insert(SubReg); 418 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 419 Live.insert(*SS); 420 } 421 } 422 } 423 424 // Start from the largest piece, find the last time any part of the register 425 // is referenced. 426 if (!HandlePhysRegKill(Reg, MI)) { 427 // Only some of the sub-registers are used. 428 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 429 unsigned SubReg = *SubRegs; ++SubRegs) { 430 if (!Live.count(SubReg)) 431 // Skip if this sub-register isn't defined. 432 continue; 433 if (HandlePhysRegKill(SubReg, MI)) { 434 Live.erase(SubReg); 435 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 436 Live.erase(*SS); 437 } 438 } 439 assert(Live.empty() && "Not all defined registers are killed / dead?"); 440 } 441 442 if (MI) { 443 // Does this extend the live range of a super-register? 444 SmallSet<unsigned, 8> Processed; 445 for (const unsigned *SuperRegs = TRI->getSuperRegisters(Reg); 446 unsigned SuperReg = *SuperRegs; ++SuperRegs) { 447 if (Processed.count(SuperReg)) 448 continue; 449 MachineInstr *LastRef = PhysRegUse[SuperReg] 450 ? PhysRegUse[SuperReg] : PhysRegDef[SuperReg]; 451 if (LastRef && LastRef != MI) { 452 // The larger register is previously defined. Now a smaller part is 453 // being re-defined. Treat it as read/mod/write if there are uses 454 // below. 455 // EAX = 456 // AX = EAX<imp-use,kill>, EAX<imp-def> 457 // ... 458 /// = EAX 459 if (hasRegisterUseBelow(SuperReg, MI, MI->getParent())) { 460 MI->addOperand(MachineOperand::CreateReg(SuperReg, false/*IsDef*/, 461 true/*IsImp*/,true/*IsKill*/)); 462 MI->addOperand(MachineOperand::CreateReg(SuperReg, true/*IsDef*/, 463 true/*IsImp*/)); 464 PhysRegDef[SuperReg] = MI; 465 PhysRegUse[SuperReg] = NULL; 466 Processed.insert(SuperReg); 467 for (const unsigned *SS = TRI->getSubRegisters(SuperReg); *SS; ++SS) { 468 PhysRegDef[*SS] = MI; 469 PhysRegUse[*SS] = NULL; 470 Processed.insert(*SS); 471 } 472 } else { 473 // Otherwise, the super register is killed. 474 if (HandlePhysRegKill(SuperReg, MI)) { 475 PhysRegDef[SuperReg] = NULL; 476 PhysRegUse[SuperReg] = NULL; 477 for (const unsigned *SS = TRI->getSubRegisters(SuperReg); *SS; ++SS) { 478 PhysRegDef[*SS] = NULL; 479 PhysRegUse[*SS] = NULL; 480 Processed.insert(*SS); 481 } 482 } 483 } 484 } 485 } 486 487 // Remember this def. 488 PhysRegDef[Reg] = MI; 489 PhysRegUse[Reg] = NULL; 490 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 491 unsigned SubReg = *SubRegs; ++SubRegs) { 492 PhysRegDef[SubReg] = MI; 493 PhysRegUse[SubReg] = NULL; 494 } 495 } 496 } 497 498 bool LiveVariables::runOnMachineFunction(MachineFunction &mf) { 499 MF = &mf; 500 MRI = &mf.getRegInfo(); 501 TRI = MF->getTarget().getRegisterInfo(); 502 503 ReservedRegisters = TRI->getReservedRegs(mf); 504 505 unsigned NumRegs = TRI->getNumRegs(); 506 PhysRegDef = new MachineInstr*[NumRegs]; 507 PhysRegUse = new MachineInstr*[NumRegs]; 508 PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()]; 509 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); 510 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); 511 512 /// Get some space for a respectable number of registers. 513 VirtRegInfo.resize(64); 514 515 analyzePHINodes(mf); 516 517 // Calculate live variable information in depth first order on the CFG of the 518 // function. This guarantees that we will see the definition of a virtual 519 // register before its uses due to dominance properties of SSA (except for PHI 520 // nodes, which are treated as a special case). 521 MachineBasicBlock *Entry = MF->begin(); 522 SmallPtrSet<MachineBasicBlock*,16> Visited; 523 524 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> > 525 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); 526 DFI != E; ++DFI) { 527 MachineBasicBlock *MBB = *DFI; 528 529 // Mark live-in registers as live-in. 530 for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(), 531 EE = MBB->livein_end(); II != EE; ++II) { 532 assert(TargetRegisterInfo::isPhysicalRegister(*II) && 533 "Cannot have a live-in virtual register!"); 534 HandlePhysRegDef(*II, 0); 535 } 536 537 // Loop over all of the instructions, processing them. 538 DistanceMap.clear(); 539 unsigned Dist = 0; 540 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 541 I != E; ++I) { 542 MachineInstr *MI = I; 543 DistanceMap.insert(std::make_pair(MI, Dist++)); 544 545 // Process all of the operands of the instruction... 546 unsigned NumOperandsToProcess = MI->getNumOperands(); 547 548 // Unless it is a PHI node. In this case, ONLY process the DEF, not any 549 // of the uses. They will be handled in other basic blocks. 550 if (MI->getOpcode() == TargetInstrInfo::PHI) 551 NumOperandsToProcess = 1; 552 553 SmallVector<unsigned, 4> UseRegs; 554 SmallVector<unsigned, 4> DefRegs; 555 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 556 const MachineOperand &MO = MI->getOperand(i); 557 if (!MO.isReg() || MO.getReg() == 0) 558 continue; 559 unsigned MOReg = MO.getReg(); 560 if (MO.isUse()) 561 UseRegs.push_back(MOReg); 562 if (MO.isDef()) 563 DefRegs.push_back(MOReg); 564 } 565 566 // Process all uses. 567 for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) { 568 unsigned MOReg = UseRegs[i]; 569 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 570 HandleVirtRegUse(MOReg, MBB, MI); 571 else if (!ReservedRegisters[MOReg]) 572 HandlePhysRegUse(MOReg, MI); 573 } 574 575 // Process all defs. 576 for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) { 577 unsigned MOReg = DefRegs[i]; 578 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 579 HandleVirtRegDef(MOReg, MI); 580 else if (!ReservedRegisters[MOReg]) 581 HandlePhysRegDef(MOReg, MI); 582 } 583 } 584 585 // Handle any virtual assignments from PHI nodes which might be at the 586 // bottom of this basic block. We check all of our successor blocks to see 587 // if they have PHI nodes, and if so, we simulate an assignment at the end 588 // of the current block. 589 if (!PHIVarInfo[MBB->getNumber()].empty()) { 590 SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()]; 591 592 for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(), 593 E = VarInfoVec.end(); I != E; ++I) 594 // Mark it alive only in the block we are representing. 595 MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(), 596 MBB); 597 } 598 599 // Finally, if the last instruction in the block is a return, make sure to 600 // mark it as using all of the live-out values in the function. 601 if (!MBB->empty() && MBB->back().getDesc().isReturn()) { 602 MachineInstr *Ret = &MBB->back(); 603 604 for (MachineRegisterInfo::liveout_iterator 605 I = MF->getRegInfo().liveout_begin(), 606 E = MF->getRegInfo().liveout_end(); I != E; ++I) { 607 assert(TargetRegisterInfo::isPhysicalRegister(*I) && 608 "Cannot have a live-out virtual register!"); 609 HandlePhysRegUse(*I, Ret); 610 611 // Add live-out registers as implicit uses. 612 if (!Ret->readsRegister(*I)) 613 Ret->addOperand(MachineOperand::CreateReg(*I, false, true)); 614 } 615 } 616 617 // Loop over PhysRegDef / PhysRegUse, killing any registers that are 618 // available at the end of the basic block. 619 for (unsigned i = 0; i != NumRegs; ++i) 620 if (PhysRegDef[i] || PhysRegUse[i]) 621 HandlePhysRegDef(i, 0); 622 623 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); 624 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); 625 } 626 627 // Convert and transfer the dead / killed information we have gathered into 628 // VirtRegInfo onto MI's. 629 for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) 630 for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j) 631 if (VirtRegInfo[i].Kills[j] == 632 MRI->getVRegDef(i + TargetRegisterInfo::FirstVirtualRegister)) 633 VirtRegInfo[i] 634 .Kills[j]->addRegisterDead(i + 635 TargetRegisterInfo::FirstVirtualRegister, 636 TRI); 637 else 638 VirtRegInfo[i] 639 .Kills[j]->addRegisterKilled(i + 640 TargetRegisterInfo::FirstVirtualRegister, 641 TRI); 642 643 // Check to make sure there are no unreachable blocks in the MC CFG for the 644 // function. If so, it is due to a bug in the instruction selector or some 645 // other part of the code generator if this happens. 646 #ifndef NDEBUG 647 for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i) 648 assert(Visited.count(&*i) != 0 && "unreachable basic block found"); 649 #endif 650 651 delete[] PhysRegDef; 652 delete[] PhysRegUse; 653 delete[] PHIVarInfo; 654 655 return false; 656 } 657 658 /// replaceKillInstruction - Update register kill info by replacing a kill 659 /// instruction with a new one. 660 void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI, 661 MachineInstr *NewMI) { 662 VarInfo &VI = getVarInfo(Reg); 663 std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI); 664 } 665 666 /// removeVirtualRegistersKilled - Remove all killed info for the specified 667 /// instruction. 668 void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) { 669 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 670 MachineOperand &MO = MI->getOperand(i); 671 if (MO.isReg() && MO.isKill()) { 672 MO.setIsKill(false); 673 unsigned Reg = MO.getReg(); 674 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 675 bool removed = getVarInfo(Reg).removeKill(MI); 676 assert(removed && "kill not in register's VarInfo?"); 677 removed = true; 678 } 679 } 680 } 681 } 682 683 /// analyzePHINodes - Gather information about the PHI nodes in here. In 684 /// particular, we want to map the variable information of a virtual register 685 /// which is used in a PHI node. We map that to the BB the vreg is coming from. 686 /// 687 void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { 688 for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); 689 I != E; ++I) 690 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); 691 BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) 692 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) 693 PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()] 694 .push_back(BBI->getOperand(i).getReg()); 695 } 696