xref: /llvm-project/llvm/lib/CodeGen/LiveVariables.cpp (revision 5ab42e5739ea181a32d0a1aee1b3cfc287b5baff)
1 //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2 //
3 // This file implements the LiveVariable analysis pass.  For each machine
4 // instruction in the function, this pass calculates the set of registers that
5 // are immediately dead after the instruction (i.e., the instruction calculates
6 // the value, but it is never used) and the set of registers that are used by
7 // the instruction, but are never used after the instruction (i.e., they are
8 // killed).
9 //
10 // This class computes live variables using are sparse implementation based on
11 // the machine code SSA form.  This class computes live variable information for
12 // each virtual and _register allocatable_ physical register in a function.  It
13 // uses the dominance properties of SSA form to efficiently compute live
14 // variables for virtual registers, and assumes that physical registers are only
15 // live within a single basic block (allowing it to do a single local analysis
16 // to resolve physical register lifetimes in each basic block).  If a physical
17 // register is not register allocatable, it is not tracked.  This is useful for
18 // things like the stack pointer and condition codes.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/Target/TargetInstrInfo.h"
25 #include "llvm/Target/TargetMachine.h"
26 #include "llvm/Support/CFG.h"
27 #include "Support/DepthFirstIterator.h"
28 
29 static RegisterAnalysis<LiveVariables> X("livevars", "Live Variable Analysis");
30 
31 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
32 					    const BasicBlock *BB) {
33   const std::pair<MachineBasicBlock*,unsigned> &Info = BBMap.find(BB)->second;
34   MachineBasicBlock *MBB = Info.first;
35   unsigned BBNum = Info.second;
36 
37   // Check to see if this basic block is one of the killing blocks.  If so,
38   // remove it...
39   for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
40     if (VRInfo.Kills[i].first == MBB) {
41       VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
42       break;
43     }
44 
45   if (MBB == VRInfo.DefBlock) return;  // Terminate recursion
46 
47   if (VRInfo.AliveBlocks.size() <= BBNum)
48     VRInfo.AliveBlocks.resize(BBNum+1);  // Make space...
49 
50   if (VRInfo.AliveBlocks[BBNum])
51     return;  // We already know the block is live
52 
53   // Mark the variable known alive in this bb
54   VRInfo.AliveBlocks[BBNum] = true;
55 
56   for (pred_const_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
57     MarkVirtRegAliveInBlock(VRInfo, *PI);
58 }
59 
60 void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB,
61 				     MachineInstr *MI) {
62   // Check to see if this basic block is already a kill block...
63   if (!VRInfo.Kills.empty() && VRInfo.Kills.back().first == MBB) {
64     // Yes, this register is killed in this basic block already.  Increase the
65     // live range by updating the kill instruction.
66     VRInfo.Kills.back().second = MI;
67     return;
68   }
69 
70 #ifndef NDEBUG
71   for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
72     assert(VRInfo.Kills[i].first != MBB && "entry should be at end!");
73 #endif
74 
75   assert(MBB != VRInfo.DefBlock && "Should have kill for defblock!");
76 
77   // Add a new kill entry for this basic block.
78   VRInfo.Kills.push_back(std::make_pair(MBB, MI));
79 
80   // Update all dominating blocks to mark them known live.
81   const BasicBlock *BB = MBB->getBasicBlock();
82   for (pred_const_iterator PI = pred_begin(BB), E = pred_end(BB);
83        PI != E; ++PI)
84     MarkVirtRegAliveInBlock(VRInfo, *PI);
85 }
86 
87 void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
88   if (PhysRegInfo[Reg]) {
89     PhysRegInfo[Reg] = MI;
90     PhysRegUsed[Reg] = true;
91   } else if (const unsigned *AliasSet = RegInfo->getAliasSet(Reg)) {
92     for (; unsigned NReg = AliasSet[0]; ++AliasSet)
93       if (MachineInstr *LastUse = PhysRegInfo[NReg]) {
94 	PhysRegInfo[NReg] = MI;
95 	PhysRegUsed[NReg] = true;
96       }
97   }
98 }
99 
100 void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
101   // Does this kill a previous version of this register?
102   if (MachineInstr *LastUse = PhysRegInfo[Reg]) {
103     if (PhysRegUsed[Reg])
104       RegistersKilled.insert(std::make_pair(LastUse, Reg));
105     else
106       RegistersDead.insert(std::make_pair(LastUse, Reg));
107   } else if (const unsigned *AliasSet = RegInfo->getAliasSet(Reg)) {
108     for (; unsigned NReg = AliasSet[0]; ++AliasSet)
109       if (MachineInstr *LastUse = PhysRegInfo[NReg]) {
110 	if (PhysRegUsed[NReg])
111 	  RegistersKilled.insert(std::make_pair(LastUse, NReg));
112 	else
113 	  RegistersDead.insert(std::make_pair(LastUse, NReg));
114 	PhysRegInfo[NReg] = 0;  // Kill the aliased register
115       }
116   }
117   PhysRegInfo[Reg] = MI;
118   PhysRegUsed[Reg] = false;
119 }
120 
121 bool LiveVariables::runOnMachineFunction(MachineFunction &MF) {
122   // First time though, initialize AllocatablePhysicalRegisters for the target
123   if (AllocatablePhysicalRegisters.empty()) {
124     const MRegisterInfo &MRI = *MF.getTarget().getRegisterInfo();
125     assert(&MRI && "Target doesn't have register information?");
126 
127     // Make space, initializing to false...
128     AllocatablePhysicalRegisters.resize(MRegisterInfo::FirstVirtualRegister);
129 
130     // Loop over all of the register classes...
131     for (MRegisterInfo::regclass_iterator RCI = MRI.regclass_begin(),
132            E = MRI.regclass_end(); RCI != E; ++RCI)
133       // Loop over all of the allocatable registers in the function...
134       for (TargetRegisterClass::iterator I = (*RCI)->allocation_order_begin(MF),
135              E = (*RCI)->allocation_order_end(MF); I != E; ++I)
136         AllocatablePhysicalRegisters[*I] = true;  // The reg is allocatable!
137   }
138 
139   // Build BBMap...
140   unsigned BBNum = 0;
141   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
142     BBMap[I->getBasicBlock()] = std::make_pair(I, BBNum++);
143 
144   // PhysRegInfo - Keep track of which instruction was the last use of a
145   // physical register.  This is a purely local property, because all physical
146   // register references as presumed dead across basic blocks.
147   //
148   MachineInstr *PhysRegInfoA[MRegisterInfo::FirstVirtualRegister];
149   bool          PhysRegUsedA[MRegisterInfo::FirstVirtualRegister];
150   std::fill(PhysRegInfoA, PhysRegInfoA+MRegisterInfo::FirstVirtualRegister,
151 	    (MachineInstr*)0);
152   PhysRegInfo = PhysRegInfoA;
153   PhysRegUsed = PhysRegUsedA;
154 
155   const TargetInstrInfo &TII = MF.getTarget().getInstrInfo();
156   RegInfo = MF.getTarget().getRegisterInfo();
157 
158   /// Get some space for a respectable number of registers...
159   VirtRegInfo.resize(64);
160 
161   // Calculate live variable information in depth first order on the CFG of the
162   // function.  This guarantees that we will see the definition of a virtual
163   // register before its uses due to dominance properties of SSA (except for PHI
164   // nodes, which are treated as a special case).
165   //
166   const BasicBlock *Entry = MF.getFunction()->begin();
167   for (df_iterator<const BasicBlock*> DFI = df_begin(Entry), E = df_end(Entry);
168        DFI != E; ++DFI) {
169     const BasicBlock *BB = *DFI;
170     std::pair<MachineBasicBlock*, unsigned> &BBRec = BBMap.find(BB)->second;
171     MachineBasicBlock *MBB = BBRec.first;
172     unsigned BBNum = BBRec.second;
173 
174     // Loop over all of the instructions, processing them.
175     for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
176 	 I != E; ++I) {
177       MachineInstr *MI = *I;
178       const TargetInstrDescriptor &MID = TII.get(MI->getOpcode());
179 
180       // Process all of the operands of the instruction...
181       unsigned NumOperandsToProcess = MI->getNumOperands();
182 
183       // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
184       // of the uses.  They will be handled in other basic blocks.
185       if (MI->getOpcode() == TargetInstrInfo::PHI)
186 	NumOperandsToProcess = 1;
187 
188       // Loop over implicit uses, using them.
189       if (const unsigned *ImplicitUses = MID.ImplicitUses)
190 	for (unsigned i = 0; ImplicitUses[i]; ++i)
191 	  HandlePhysRegUse(ImplicitUses[i], MI);
192 
193       // Process all explicit uses...
194       for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
195 	MachineOperand &MO = MI->getOperand(i);
196 	if (MO.opIsUse() || MO.opIsDefAndUse()) {
197 	  if (MO.isVirtualRegister() && !MO.getVRegValueOrNull()) {
198 	    unsigned RegIdx = MO.getReg()-MRegisterInfo::FirstVirtualRegister;
199 	    HandleVirtRegUse(getVarInfo(RegIdx), MBB, MI);
200 	  } else if (MO.isPhysicalRegister() &&
201                      AllocatablePhysicalRegisters[MO.getReg()]) {
202 	    HandlePhysRegUse(MO.getReg(), MI);
203 	  }
204 	}
205       }
206 
207       // Loop over implicit defs, defining them.
208       if (const unsigned *ImplicitDefs = MID.ImplicitDefs)
209 	for (unsigned i = 0; ImplicitDefs[i]; ++i)
210 	  HandlePhysRegDef(ImplicitDefs[i], MI);
211 
212       // Process all explicit defs...
213       for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
214 	MachineOperand &MO = MI->getOperand(i);
215 	if (MO.opIsDef() || MO.opIsDefAndUse()) {
216 	  if (MO.isVirtualRegister()) {
217 	    unsigned RegIdx = MO.getReg()-MRegisterInfo::FirstVirtualRegister;
218 	    VarInfo &VRInfo = getVarInfo(RegIdx);
219 
220 	    assert(VRInfo.DefBlock == 0 && "Variable multiply defined!");
221 	    VRInfo.DefBlock = MBB;                           // Created here...
222 	    VRInfo.DefInst = MI;
223 	    VRInfo.Kills.push_back(std::make_pair(MBB, MI)); // Defaults to dead
224 	  } else if (MO.isPhysicalRegister() &&
225                      AllocatablePhysicalRegisters[MO.getReg()]) {
226 	    HandlePhysRegDef(MO.getReg(), MI);
227 	  }
228 	}
229       }
230     }
231 
232     // Handle any virtual assignments from PHI nodes which might be at the
233     // bottom of this basic block.  We check all of our successor blocks to see
234     // if they have PHI nodes, and if so, we simulate an assignment at the end
235     // of the current block.
236     for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB);
237          SI != E; ++SI) {
238       MachineBasicBlock *Succ = BBMap.find(*SI)->second.first;
239 
240       // PHI nodes are guaranteed to be at the top of the block...
241       for (MachineBasicBlock::iterator I = Succ->begin(), E = Succ->end();
242 	   I != E && (*I)->getOpcode() == TargetInstrInfo::PHI; ++I) {
243         MachineInstr *MI = *I;
244 	for (unsigned i = 1; ; i += 2)
245 	  if (MI->getOperand(i+1).getMachineBasicBlock() == MBB) {
246 	    MachineOperand &MO = MI->getOperand(i);
247 	    if (!MO.getVRegValueOrNull()) {
248 	      unsigned RegIdx = MO.getReg()-MRegisterInfo::FirstVirtualRegister;
249 	      VarInfo &VRInfo = getVarInfo(RegIdx);
250 
251 	      // Only mark it alive only in the block we are representing...
252 	      MarkVirtRegAliveInBlock(VRInfo, BB);
253 	      break;   // Found the PHI entry for this block...
254 	    }
255 	  }
256       }
257     }
258 
259     // Loop over PhysRegInfo, killing any registers that are available at the
260     // end of the basic block.  This also resets the PhysRegInfo map.
261     for (unsigned i = 0, e = MRegisterInfo::FirstVirtualRegister; i != e; ++i)
262       if (PhysRegInfo[i])
263 	HandlePhysRegDef(i, 0);
264   }
265 
266   BBMap.clear();
267 
268   // Convert the information we have gathered into VirtRegInfo and transform it
269   // into a form usable by RegistersKilled.
270   //
271   for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i)
272     for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) {
273       if (VirtRegInfo[i].Kills[j].second == VirtRegInfo[i].DefInst)
274 	RegistersDead.insert(std::make_pair(VirtRegInfo[i].Kills[j].second,
275 		    i + MRegisterInfo::FirstVirtualRegister));
276 
277       else
278 	RegistersKilled.insert(std::make_pair(VirtRegInfo[i].Kills[j].second,
279 		    i + MRegisterInfo::FirstVirtualRegister));
280     }
281 
282   return false;
283 }
284