1 //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveVariable analysis pass. For each machine 11 // instruction in the function, this pass calculates the set of registers that 12 // are immediately dead after the instruction (i.e., the instruction calculates 13 // the value, but it is never used) and the set of registers that are used by 14 // the instruction, but are never used after the instruction (i.e., they are 15 // killed). 16 // 17 // This class computes live variables using are sparse implementation based on 18 // the machine code SSA form. This class computes live variable information for 19 // each virtual and _register allocatable_ physical register in a function. It 20 // uses the dominance properties of SSA form to efficiently compute live 21 // variables for virtual registers, and assumes that physical registers are only 22 // live within a single basic block (allowing it to do a single local analysis 23 // to resolve physical register lifetimes in each basic block). If a physical 24 // register is not register allocatable, it is not tracked. This is useful for 25 // things like the stack pointer and condition codes. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/CodeGen/LiveVariables.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/Target/MRegisterInfo.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/ADT/DepthFirstIterator.h" 35 #include "llvm/ADT/STLExtras.h" 36 #include "llvm/Config/alloca.h" 37 #include <algorithm> 38 using namespace llvm; 39 40 static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis"); 41 42 void LiveVariables::VarInfo::dump() const { 43 cerr << "Register Defined by: "; 44 if (DefInst) 45 cerr << *DefInst; 46 else 47 cerr << "<null>\n"; 48 cerr << " Alive in blocks: "; 49 for (unsigned i = 0, e = AliveBlocks.size(); i != e; ++i) 50 if (AliveBlocks[i]) cerr << i << ", "; 51 cerr << "\n Killed by:"; 52 if (Kills.empty()) 53 cerr << " No instructions.\n"; 54 else { 55 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 56 cerr << "\n #" << i << ": " << *Kills[i]; 57 cerr << "\n"; 58 } 59 } 60 61 LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { 62 assert(MRegisterInfo::isVirtualRegister(RegIdx) && 63 "getVarInfo: not a virtual register!"); 64 RegIdx -= MRegisterInfo::FirstVirtualRegister; 65 if (RegIdx >= VirtRegInfo.size()) { 66 if (RegIdx >= 2*VirtRegInfo.size()) 67 VirtRegInfo.resize(RegIdx*2); 68 else 69 VirtRegInfo.resize(2*VirtRegInfo.size()); 70 } 71 VarInfo &VI = VirtRegInfo[RegIdx]; 72 VI.AliveBlocks.resize(MF->getNumBlockIDs()); 73 return VI; 74 } 75 76 bool LiveVariables::KillsRegister(MachineInstr *MI, unsigned Reg) const { 77 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 78 MachineOperand &MO = MI->getOperand(i); 79 if (MO.isReg() && MO.isKill()) { 80 if (RegInfo->regsOverlap(Reg, MO.getReg())) 81 return true; 82 } 83 } 84 return false; 85 } 86 87 bool LiveVariables::RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const { 88 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 89 MachineOperand &MO = MI->getOperand(i); 90 if (MO.isReg() && MO.isDead()) 91 if (RegInfo->regsOverlap(Reg, MO.getReg())) 92 return true; 93 } 94 return false; 95 } 96 97 bool LiveVariables::ModifiesRegister(MachineInstr *MI, unsigned Reg) const { 98 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 99 MachineOperand &MO = MI->getOperand(i); 100 if (MO.isReg() && MO.isDef()) { 101 if (RegInfo->regsOverlap(Reg, MO.getReg())) 102 return true; 103 } 104 } 105 return false; 106 } 107 108 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, 109 MachineBasicBlock *MBB) { 110 unsigned BBNum = MBB->getNumber(); 111 112 // Check to see if this basic block is one of the killing blocks. If so, 113 // remove it... 114 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 115 if (VRInfo.Kills[i]->getParent() == MBB) { 116 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry 117 break; 118 } 119 120 if (MBB == VRInfo.DefInst->getParent()) return; // Terminate recursion 121 122 if (VRInfo.AliveBlocks[BBNum]) 123 return; // We already know the block is live 124 125 // Mark the variable known alive in this bb 126 VRInfo.AliveBlocks[BBNum] = true; 127 128 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 129 E = MBB->pred_end(); PI != E; ++PI) 130 MarkVirtRegAliveInBlock(VRInfo, *PI); 131 } 132 133 void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB, 134 MachineInstr *MI) { 135 assert(VRInfo.DefInst && "Register use before def!"); 136 137 VRInfo.NumUses++; 138 139 // Check to see if this basic block is already a kill block... 140 if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { 141 // Yes, this register is killed in this basic block already. Increase the 142 // live range by updating the kill instruction. 143 VRInfo.Kills.back() = MI; 144 return; 145 } 146 147 #ifndef NDEBUG 148 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 149 assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); 150 #endif 151 152 assert(MBB != VRInfo.DefInst->getParent() && 153 "Should have kill for defblock!"); 154 155 // Add a new kill entry for this basic block. 156 // If this virtual register is already marked as alive in this basic block, 157 // that means it is alive in at least one of the successor block, it's not 158 // a kill. 159 if (!VRInfo.AliveBlocks[MBB->getNumber()]) 160 VRInfo.Kills.push_back(MI); 161 162 // Update all dominating blocks to mark them known live. 163 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 164 E = MBB->pred_end(); PI != E; ++PI) 165 MarkVirtRegAliveInBlock(VRInfo, *PI); 166 } 167 168 void LiveVariables::addRegisterKilled(unsigned IncomingReg, MachineInstr *MI) { 169 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 170 MachineOperand &MO = MI->getOperand(i); 171 if (MO.isReg() && MO.isUse() && MO.getReg() == IncomingReg) { 172 MO.setIsKill(); 173 break; 174 } 175 } 176 } 177 178 void LiveVariables::addRegisterDead(unsigned IncomingReg, MachineInstr *MI) { 179 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 180 MachineOperand &MO = MI->getOperand(i); 181 if (MO.isReg() && MO.isDef() && MO.getReg() == IncomingReg) { 182 MO.setIsDead(); 183 break; 184 } 185 } 186 } 187 188 void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { 189 PhysRegInfo[Reg] = MI; 190 PhysRegUsed[Reg] = true; 191 192 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); 193 unsigned Alias = *AliasSet; ++AliasSet) { 194 PhysRegInfo[Alias] = MI; 195 PhysRegUsed[Alias] = true; 196 } 197 } 198 199 void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) { 200 // Does this kill a previous version of this register? 201 if (MachineInstr *LastUse = PhysRegInfo[Reg]) { 202 if (PhysRegUsed[Reg]) 203 addRegisterKilled(Reg, LastUse); 204 else 205 addRegisterDead(Reg, LastUse); 206 } 207 PhysRegInfo[Reg] = MI; 208 PhysRegUsed[Reg] = false; 209 210 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); 211 unsigned Alias = *AliasSet; ++AliasSet) { 212 if (MachineInstr *LastUse = PhysRegInfo[Alias]) { 213 if (PhysRegUsed[Alias]) 214 addRegisterKilled(Alias, LastUse); 215 else 216 addRegisterDead(Alias, LastUse); 217 } 218 PhysRegInfo[Alias] = MI; 219 PhysRegUsed[Alias] = false; 220 } 221 } 222 223 bool LiveVariables::runOnMachineFunction(MachineFunction &mf) { 224 MF = &mf; 225 const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo(); 226 RegInfo = MF->getTarget().getRegisterInfo(); 227 assert(RegInfo && "Target doesn't have register information?"); 228 229 ReservedRegisters = RegInfo->getReservedRegs(mf); 230 231 // PhysRegInfo - Keep track of which instruction was the last use of a 232 // physical register. This is a purely local property, because all physical 233 // register references as presumed dead across basic blocks. 234 // 235 PhysRegInfo = (MachineInstr**)alloca(sizeof(MachineInstr*) * 236 RegInfo->getNumRegs()); 237 PhysRegUsed = (bool*)alloca(sizeof(bool)*RegInfo->getNumRegs()); 238 std::fill(PhysRegInfo, PhysRegInfo+RegInfo->getNumRegs(), (MachineInstr*)0); 239 240 /// Get some space for a respectable number of registers... 241 VirtRegInfo.resize(64); 242 243 analyzePHINodes(mf); 244 245 // Calculate live variable information in depth first order on the CFG of the 246 // function. This guarantees that we will see the definition of a virtual 247 // register before its uses due to dominance properties of SSA (except for PHI 248 // nodes, which are treated as a special case). 249 // 250 MachineBasicBlock *Entry = MF->begin(); 251 std::set<MachineBasicBlock*> Visited; 252 for (df_ext_iterator<MachineBasicBlock*> DFI = df_ext_begin(Entry, Visited), 253 E = df_ext_end(Entry, Visited); DFI != E; ++DFI) { 254 MachineBasicBlock *MBB = *DFI; 255 256 // Mark live-in registers as live-in. 257 for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(), 258 EE = MBB->livein_end(); II != EE; ++II) { 259 assert(MRegisterInfo::isPhysicalRegister(*II) && 260 "Cannot have a live-in virtual register!"); 261 HandlePhysRegDef(*II, 0); 262 } 263 264 // Loop over all of the instructions, processing them. 265 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 266 I != E; ++I) { 267 MachineInstr *MI = I; 268 269 // Process all of the operands of the instruction... 270 unsigned NumOperandsToProcess = MI->getNumOperands(); 271 272 // Unless it is a PHI node. In this case, ONLY process the DEF, not any 273 // of the uses. They will be handled in other basic blocks. 274 if (MI->getOpcode() == TargetInstrInfo::PHI) 275 NumOperandsToProcess = 1; 276 277 // Process all uses... 278 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 279 MachineOperand &MO = MI->getOperand(i); 280 if (MO.isRegister() && MO.isUse() && MO.getReg()) { 281 if (MRegisterInfo::isVirtualRegister(MO.getReg())){ 282 HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI); 283 } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && 284 !ReservedRegisters[MO.getReg()]) { 285 HandlePhysRegUse(MO.getReg(), MI); 286 } 287 } 288 } 289 290 // Process all defs... 291 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 292 MachineOperand &MO = MI->getOperand(i); 293 if (MO.isRegister() && MO.isDef() && MO.getReg()) { 294 if (MRegisterInfo::isVirtualRegister(MO.getReg())) { 295 VarInfo &VRInfo = getVarInfo(MO.getReg()); 296 297 assert(VRInfo.DefInst == 0 && "Variable multiply defined!"); 298 VRInfo.DefInst = MI; 299 // Defaults to dead 300 VRInfo.Kills.push_back(MI); 301 } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && 302 !ReservedRegisters[MO.getReg()]) { 303 HandlePhysRegDef(MO.getReg(), MI); 304 } 305 } 306 } 307 } 308 309 // Handle any virtual assignments from PHI nodes which might be at the 310 // bottom of this basic block. We check all of our successor blocks to see 311 // if they have PHI nodes, and if so, we simulate an assignment at the end 312 // of the current block. 313 if (!PHIVarInfo[MBB].empty()) { 314 std::vector<unsigned>& VarInfoVec = PHIVarInfo[MBB]; 315 316 for (std::vector<unsigned>::iterator I = VarInfoVec.begin(), 317 E = VarInfoVec.end(); I != E; ++I) { 318 VarInfo& VRInfo = getVarInfo(*I); 319 assert(VRInfo.DefInst && "Register use before def (or no def)!"); 320 321 // Only mark it alive only in the block we are representing. 322 MarkVirtRegAliveInBlock(VRInfo, MBB); 323 } 324 } 325 326 // Finally, if the last instruction in the block is a return, make sure to mark 327 // it as using all of the live-out values in the function. 328 if (!MBB->empty() && TII.isReturn(MBB->back().getOpcode())) { 329 MachineInstr *Ret = &MBB->back(); 330 for (MachineFunction::liveout_iterator I = MF->liveout_begin(), 331 E = MF->liveout_end(); I != E; ++I) { 332 assert(MRegisterInfo::isPhysicalRegister(*I) && 333 "Cannot have a live-in virtual register!"); 334 HandlePhysRegUse(*I, Ret); 335 // Add live-out registers as implicit uses. 336 Ret->addRegOperand(*I, false, true); 337 } 338 } 339 340 // Loop over PhysRegInfo, killing any registers that are available at the 341 // end of the basic block. This also resets the PhysRegInfo map. 342 for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i) 343 if (PhysRegInfo[i]) 344 HandlePhysRegDef(i, 0); 345 } 346 347 // Convert and transfer the dead / killed information we have gathered into 348 // VirtRegInfo onto MI's. 349 // 350 for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) 351 for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j) { 352 if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst) 353 addRegisterDead(i + MRegisterInfo::FirstVirtualRegister, 354 VirtRegInfo[i].Kills[j]); 355 else 356 addRegisterKilled(i + MRegisterInfo::FirstVirtualRegister, 357 VirtRegInfo[i].Kills[j]); 358 } 359 360 // Check to make sure there are no unreachable blocks in the MC CFG for the 361 // function. If so, it is due to a bug in the instruction selector or some 362 // other part of the code generator if this happens. 363 #ifndef NDEBUG 364 for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i) 365 assert(Visited.count(&*i) != 0 && "unreachable basic block found"); 366 #endif 367 368 PHIVarInfo.clear(); 369 return false; 370 } 371 372 /// instructionChanged - When the address of an instruction changes, this 373 /// method should be called so that live variables can update its internal 374 /// data structures. This removes the records for OldMI, transfering them to 375 /// the records for NewMI. 376 void LiveVariables::instructionChanged(MachineInstr *OldMI, 377 MachineInstr *NewMI) { 378 // If the instruction defines any virtual registers, update the VarInfo, 379 // kill and dead information for the instruction. 380 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 381 MachineOperand &MO = OldMI->getOperand(i); 382 if (MO.isRegister() && MO.getReg() && 383 MRegisterInfo::isVirtualRegister(MO.getReg())) { 384 unsigned Reg = MO.getReg(); 385 VarInfo &VI = getVarInfo(Reg); 386 if (MO.isDef()) { 387 if (MO.isDead()) { 388 MO.unsetIsDead(); 389 addVirtualRegisterDead(Reg, NewMI); 390 } 391 // Update the defining instruction. 392 if (VI.DefInst == OldMI) 393 VI.DefInst = NewMI; 394 } 395 if (MO.isUse()) { 396 if (MO.isKill()) { 397 MO.unsetIsKill(); 398 addVirtualRegisterKilled(Reg, NewMI); 399 } 400 // If this is a kill of the value, update the VI kills list. 401 if (VI.removeKill(OldMI)) 402 VI.Kills.push_back(NewMI); // Yes, there was a kill of it 403 } 404 } 405 } 406 } 407 408 /// removeVirtualRegistersKilled - Remove all killed info for the specified 409 /// instruction. 410 void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) { 411 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 412 MachineOperand &MO = MI->getOperand(i); 413 if (MO.isReg() && MO.isKill()) { 414 MO.unsetIsKill(); 415 unsigned Reg = MO.getReg(); 416 if (MRegisterInfo::isVirtualRegister(Reg)) { 417 bool removed = getVarInfo(Reg).removeKill(MI); 418 assert(removed && "kill not in register's VarInfo?"); 419 } 420 } 421 } 422 } 423 424 /// removeVirtualRegistersDead - Remove all of the dead registers for the 425 /// specified instruction from the live variable information. 426 void LiveVariables::removeVirtualRegistersDead(MachineInstr *MI) { 427 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 428 MachineOperand &MO = MI->getOperand(i); 429 if (MO.isReg() && MO.isDead()) { 430 MO.unsetIsDead(); 431 unsigned Reg = MO.getReg(); 432 if (MRegisterInfo::isVirtualRegister(Reg)) { 433 bool removed = getVarInfo(Reg).removeKill(MI); 434 assert(removed && "kill not in register's VarInfo?"); 435 } 436 } 437 } 438 } 439 440 /// analyzePHINodes - Gather information about the PHI nodes in here. In 441 /// particular, we want to map the variable information of a virtual 442 /// register which is used in a PHI node. We map that to the BB the vreg is 443 /// coming from. 444 /// 445 void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { 446 for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); 447 I != E; ++I) 448 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); 449 BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) 450 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) 451 PHIVarInfo[BBI->getOperand(i + 1).getMachineBasicBlock()]. 452 push_back(BBI->getOperand(i).getReg()); 453 } 454