1 //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveVariable analysis pass. For each machine 11 // instruction in the function, this pass calculates the set of registers that 12 // are immediately dead after the instruction (i.e., the instruction calculates 13 // the value, but it is never used) and the set of registers that are used by 14 // the instruction, but are never used after the instruction (i.e., they are 15 // killed). 16 // 17 // This class computes live variables using are sparse implementation based on 18 // the machine code SSA form. This class computes live variable information for 19 // each virtual and _register allocatable_ physical register in a function. It 20 // uses the dominance properties of SSA form to efficiently compute live 21 // variables for virtual registers, and assumes that physical registers are only 22 // live within a single basic block (allowing it to do a single local analysis 23 // to resolve physical register lifetimes in each basic block). If a physical 24 // register is not register allocatable, it is not tracked. This is useful for 25 // things like the stack pointer and condition codes. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/CodeGen/LiveVariables.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/Passes.h" 33 #include "llvm/Target/TargetRegisterInfo.h" 34 #include "llvm/Target/TargetInstrInfo.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include "llvm/ADT/DepthFirstIterator.h" 37 #include "llvm/ADT/SmallPtrSet.h" 38 #include "llvm/ADT/SmallSet.h" 39 #include "llvm/ADT/STLExtras.h" 40 #include <algorithm> 41 using namespace llvm; 42 43 char LiveVariables::ID = 0; 44 static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis"); 45 46 47 void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const { 48 AU.addRequiredID(UnreachableMachineBlockElimID); 49 AU.setPreservesAll(); 50 MachineFunctionPass::getAnalysisUsage(AU); 51 } 52 53 void LiveVariables::VarInfo::dump() const { 54 errs() << " Alive in blocks: "; 55 for (SparseBitVector<>::iterator I = AliveBlocks.begin(), 56 E = AliveBlocks.end(); I != E; ++I) 57 errs() << *I << ", "; 58 errs() << "\n Killed by:"; 59 if (Kills.empty()) 60 errs() << " No instructions.\n"; 61 else { 62 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 63 errs() << "\n #" << i << ": " << *Kills[i]; 64 errs() << "\n"; 65 } 66 } 67 68 /// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg. 69 LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { 70 assert(TargetRegisterInfo::isVirtualRegister(RegIdx) && 71 "getVarInfo: not a virtual register!"); 72 RegIdx -= TargetRegisterInfo::FirstVirtualRegister; 73 if (RegIdx >= VirtRegInfo.size()) { 74 if (RegIdx >= 2*VirtRegInfo.size()) 75 VirtRegInfo.resize(RegIdx*2); 76 else 77 VirtRegInfo.resize(2*VirtRegInfo.size()); 78 } 79 return VirtRegInfo[RegIdx]; 80 } 81 82 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo, 83 MachineBasicBlock *DefBlock, 84 MachineBasicBlock *MBB, 85 std::vector<MachineBasicBlock*> &WorkList) { 86 unsigned BBNum = MBB->getNumber(); 87 88 // Check to see if this basic block is one of the killing blocks. If so, 89 // remove it. 90 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 91 if (VRInfo.Kills[i]->getParent() == MBB) { 92 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry 93 break; 94 } 95 96 if (MBB == DefBlock) return; // Terminate recursion 97 98 if (VRInfo.AliveBlocks.test(BBNum)) 99 return; // We already know the block is live 100 101 // Mark the variable known alive in this bb 102 VRInfo.AliveBlocks.set(BBNum); 103 104 for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(), 105 E = MBB->pred_rend(); PI != E; ++PI) 106 WorkList.push_back(*PI); 107 } 108 109 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, 110 MachineBasicBlock *DefBlock, 111 MachineBasicBlock *MBB) { 112 std::vector<MachineBasicBlock*> WorkList; 113 MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList); 114 115 while (!WorkList.empty()) { 116 MachineBasicBlock *Pred = WorkList.back(); 117 WorkList.pop_back(); 118 MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList); 119 } 120 } 121 122 void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, 123 MachineInstr *MI) { 124 assert(MRI->getVRegDef(reg) && "Register use before def!"); 125 126 unsigned BBNum = MBB->getNumber(); 127 128 VarInfo& VRInfo = getVarInfo(reg); 129 VRInfo.NumUses++; 130 131 // Check to see if this basic block is already a kill block. 132 if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { 133 // Yes, this register is killed in this basic block already. Increase the 134 // live range by updating the kill instruction. 135 VRInfo.Kills.back() = MI; 136 return; 137 } 138 139 #ifndef NDEBUG 140 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 141 assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); 142 #endif 143 144 // This situation can occur: 145 // 146 // ,------. 147 // | | 148 // | v 149 // | t2 = phi ... t1 ... 150 // | | 151 // | v 152 // | t1 = ... 153 // | ... = ... t1 ... 154 // | | 155 // `------' 156 // 157 // where there is a use in a PHI node that's a predecessor to the defining 158 // block. We don't want to mark all predecessors as having the value "alive" 159 // in this case. 160 if (MBB == MRI->getVRegDef(reg)->getParent()) return; 161 162 // Add a new kill entry for this basic block. If this virtual register is 163 // already marked as alive in this basic block, that means it is alive in at 164 // least one of the successor blocks, it's not a kill. 165 if (!VRInfo.AliveBlocks.test(BBNum)) 166 VRInfo.Kills.push_back(MI); 167 168 // Update all dominating blocks to mark them as "known live". 169 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 170 E = MBB->pred_end(); PI != E; ++PI) 171 MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI); 172 } 173 174 void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) { 175 VarInfo &VRInfo = getVarInfo(Reg); 176 177 if (VRInfo.AliveBlocks.empty()) 178 // If vr is not alive in any block, then defaults to dead. 179 VRInfo.Kills.push_back(MI); 180 } 181 182 /// FindLastPartialDef - Return the last partial def of the specified register. 183 /// Also returns the sub-registers that're defined by the instruction. 184 MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg, 185 SmallSet<unsigned,4> &PartDefRegs) { 186 unsigned LastDefReg = 0; 187 unsigned LastDefDist = 0; 188 MachineInstr *LastDef = NULL; 189 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 190 unsigned SubReg = *SubRegs; ++SubRegs) { 191 MachineInstr *Def = PhysRegDef[SubReg]; 192 if (!Def) 193 continue; 194 unsigned Dist = DistanceMap[Def]; 195 if (Dist > LastDefDist) { 196 LastDefReg = SubReg; 197 LastDef = Def; 198 LastDefDist = Dist; 199 } 200 } 201 202 if (!LastDef) 203 return 0; 204 205 PartDefRegs.insert(LastDefReg); 206 for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) { 207 MachineOperand &MO = LastDef->getOperand(i); 208 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) 209 continue; 210 unsigned DefReg = MO.getReg(); 211 if (TRI->isSubRegister(Reg, DefReg)) { 212 PartDefRegs.insert(DefReg); 213 for (const unsigned *SubRegs = TRI->getSubRegisters(DefReg); 214 unsigned SubReg = *SubRegs; ++SubRegs) 215 PartDefRegs.insert(SubReg); 216 } 217 } 218 return LastDef; 219 } 220 221 /// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add 222 /// implicit defs to a machine instruction if there was an earlier def of its 223 /// super-register. 224 void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { 225 // If there was a previous use or a "full" def all is well. 226 if (!PhysRegDef[Reg] && !PhysRegUse[Reg]) { 227 // Otherwise, the last sub-register def implicitly defines this register. 228 // e.g. 229 // AH = 230 // AL = ... <imp-def EAX>, <imp-kill AH> 231 // = AH 232 // ... 233 // = EAX 234 // All of the sub-registers must have been defined before the use of Reg! 235 SmallSet<unsigned, 4> PartDefRegs; 236 MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs); 237 // If LastPartialDef is NULL, it must be using a livein register. 238 if (LastPartialDef) { 239 LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/, 240 true/*IsImp*/)); 241 PhysRegDef[Reg] = LastPartialDef; 242 SmallSet<unsigned, 8> Processed; 243 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 244 unsigned SubReg = *SubRegs; ++SubRegs) { 245 if (Processed.count(SubReg)) 246 continue; 247 if (PartDefRegs.count(SubReg)) 248 continue; 249 // This part of Reg was defined before the last partial def. It's killed 250 // here. 251 LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg, 252 false/*IsDef*/, 253 true/*IsImp*/)); 254 PhysRegDef[SubReg] = LastPartialDef; 255 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 256 Processed.insert(*SS); 257 } 258 } 259 } 260 261 // Remember this use. 262 PhysRegUse[Reg] = MI; 263 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 264 unsigned SubReg = *SubRegs; ++SubRegs) 265 PhysRegUse[SubReg] = MI; 266 } 267 268 bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) { 269 MachineInstr *LastDef = PhysRegDef[Reg]; 270 MachineInstr *LastUse = PhysRegUse[Reg]; 271 if (!LastDef && !LastUse) 272 return false; 273 274 MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef; 275 unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; 276 // The whole register is used. 277 // AL = 278 // AH = 279 // 280 // = AX 281 // = AL, AX<imp-use, kill> 282 // AX = 283 // 284 // Or whole register is defined, but not used at all. 285 // AX<dead> = 286 // ... 287 // AX = 288 // 289 // Or whole register is defined, but only partly used. 290 // AX<dead> = AL<imp-def> 291 // = AL<kill> 292 // AX = 293 MachineInstr *LastPartDef = 0; 294 unsigned LastPartDefDist = 0; 295 SmallSet<unsigned, 8> PartUses; 296 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 297 unsigned SubReg = *SubRegs; ++SubRegs) { 298 MachineInstr *Def = PhysRegDef[SubReg]; 299 if (Def && Def != LastDef) { 300 // There was a def of this sub-register in between. This is a partial 301 // def, keep track of the last one. 302 unsigned Dist = DistanceMap[Def]; 303 if (Dist > LastPartDefDist) { 304 LastPartDefDist = Dist; 305 LastPartDef = Def; 306 } 307 continue; 308 } 309 if (MachineInstr *Use = PhysRegUse[SubReg]) { 310 PartUses.insert(SubReg); 311 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 312 PartUses.insert(*SS); 313 unsigned Dist = DistanceMap[Use]; 314 if (Dist > LastRefOrPartRefDist) { 315 LastRefOrPartRefDist = Dist; 316 LastRefOrPartRef = Use; 317 } 318 } 319 } 320 321 if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) { 322 if (LastPartDef) 323 // The last partial def kills the register. 324 LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/, 325 true/*IsImp*/, true/*IsKill*/)); 326 else { 327 MachineOperand *MO = 328 LastRefOrPartRef->findRegisterDefOperand(Reg, false, TRI); 329 bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg; 330 // If the last reference is the last def, then it's not used at all. 331 // That is, unless we are currently processing the last reference itself. 332 LastRefOrPartRef->addRegisterDead(Reg, TRI, true); 333 if (NeedEC) { 334 // If we are adding a subreg def and the superreg def is marked early 335 // clobber, add an early clobber marker to the subreg def. 336 MO = LastRefOrPartRef->findRegisterDefOperand(Reg); 337 if (MO) 338 MO->setIsEarlyClobber(); 339 } 340 } 341 } else if (!PhysRegUse[Reg]) { 342 // Partial uses. Mark register def dead and add implicit def of 343 // sub-registers which are used. 344 // EAX<dead> = op AL<imp-def> 345 // That is, EAX def is dead but AL def extends pass it. 346 PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true); 347 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 348 unsigned SubReg = *SubRegs; ++SubRegs) { 349 if (!PartUses.count(SubReg)) 350 continue; 351 bool NeedDef = true; 352 if (PhysRegDef[Reg] == PhysRegDef[SubReg]) { 353 MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg); 354 if (MO) { 355 NeedDef = false; 356 assert(!MO->isDead()); 357 } 358 } 359 if (NeedDef) 360 PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg, 361 true/*IsDef*/, true/*IsImp*/)); 362 LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true); 363 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 364 PartUses.erase(*SS); 365 } 366 } else 367 LastRefOrPartRef->addRegisterKilled(Reg, TRI, true); 368 return true; 369 } 370 371 void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI, 372 SmallVector<unsigned, 4> &Defs) { 373 // What parts of the register are previously defined? 374 SmallSet<unsigned, 32> Live; 375 if (PhysRegDef[Reg] || PhysRegUse[Reg]) { 376 Live.insert(Reg); 377 for (const unsigned *SS = TRI->getSubRegisters(Reg); *SS; ++SS) 378 Live.insert(*SS); 379 } else { 380 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 381 unsigned SubReg = *SubRegs; ++SubRegs) { 382 // If a register isn't itself defined, but all parts that make up of it 383 // are defined, then consider it also defined. 384 // e.g. 385 // AL = 386 // AH = 387 // = AX 388 if (Live.count(SubReg)) 389 continue; 390 if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) { 391 Live.insert(SubReg); 392 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 393 Live.insert(*SS); 394 } 395 } 396 } 397 398 // Start from the largest piece, find the last time any part of the register 399 // is referenced. 400 HandlePhysRegKill(Reg, MI); 401 // Only some of the sub-registers are used. 402 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 403 unsigned SubReg = *SubRegs; ++SubRegs) { 404 if (!Live.count(SubReg)) 405 // Skip if this sub-register isn't defined. 406 continue; 407 HandlePhysRegKill(SubReg, MI); 408 } 409 410 if (MI) 411 Defs.push_back(Reg); // Remember this def. 412 } 413 414 void LiveVariables::UpdatePhysRegDefs(MachineInstr *MI, 415 SmallVector<unsigned, 4> &Defs) { 416 while (!Defs.empty()) { 417 unsigned Reg = Defs.back(); 418 Defs.pop_back(); 419 PhysRegDef[Reg] = MI; 420 PhysRegUse[Reg] = NULL; 421 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 422 unsigned SubReg = *SubRegs; ++SubRegs) { 423 PhysRegDef[SubReg] = MI; 424 PhysRegUse[SubReg] = NULL; 425 } 426 } 427 } 428 429 namespace { 430 struct RegSorter { 431 const TargetRegisterInfo *TRI; 432 433 RegSorter(const TargetRegisterInfo *tri) : TRI(tri) { } 434 bool operator()(unsigned A, unsigned B) { 435 if (TRI->isSubRegister(A, B)) 436 return true; 437 else if (TRI->isSubRegister(B, A)) 438 return false; 439 return A < B; 440 } 441 }; 442 } 443 444 bool LiveVariables::runOnMachineFunction(MachineFunction &mf) { 445 MF = &mf; 446 MRI = &mf.getRegInfo(); 447 TRI = MF->getTarget().getRegisterInfo(); 448 449 ReservedRegisters = TRI->getReservedRegs(mf); 450 451 unsigned NumRegs = TRI->getNumRegs(); 452 PhysRegDef = new MachineInstr*[NumRegs]; 453 PhysRegUse = new MachineInstr*[NumRegs]; 454 PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()]; 455 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); 456 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); 457 458 /// Get some space for a respectable number of registers. 459 VirtRegInfo.resize(64); 460 461 analyzePHINodes(mf); 462 463 // Calculate live variable information in depth first order on the CFG of the 464 // function. This guarantees that we will see the definition of a virtual 465 // register before its uses due to dominance properties of SSA (except for PHI 466 // nodes, which are treated as a special case). 467 MachineBasicBlock *Entry = MF->begin(); 468 SmallPtrSet<MachineBasicBlock*,16> Visited; 469 470 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> > 471 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); 472 DFI != E; ++DFI) { 473 MachineBasicBlock *MBB = *DFI; 474 475 // Mark live-in registers as live-in. 476 SmallVector<unsigned, 4> Defs; 477 for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(), 478 EE = MBB->livein_end(); II != EE; ++II) { 479 assert(TargetRegisterInfo::isPhysicalRegister(*II) && 480 "Cannot have a live-in virtual register!"); 481 HandlePhysRegDef(*II, 0, Defs); 482 } 483 484 // Loop over all of the instructions, processing them. 485 DistanceMap.clear(); 486 unsigned Dist = 0; 487 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 488 I != E; ++I) { 489 MachineInstr *MI = I; 490 DistanceMap.insert(std::make_pair(MI, Dist++)); 491 492 // Process all of the operands of the instruction... 493 unsigned NumOperandsToProcess = MI->getNumOperands(); 494 495 // Unless it is a PHI node. In this case, ONLY process the DEF, not any 496 // of the uses. They will be handled in other basic blocks. 497 if (MI->getOpcode() == TargetInstrInfo::PHI) 498 NumOperandsToProcess = 1; 499 500 SmallVector<unsigned, 4> UseRegs; 501 SmallVector<unsigned, 4> DefRegs; 502 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 503 const MachineOperand &MO = MI->getOperand(i); 504 if (!MO.isReg() || MO.getReg() == 0) 505 continue; 506 unsigned MOReg = MO.getReg(); 507 if (MO.isUse()) 508 UseRegs.push_back(MOReg); 509 if (MO.isDef()) 510 DefRegs.push_back(MOReg); 511 } 512 513 // Process all uses. 514 for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) { 515 unsigned MOReg = UseRegs[i]; 516 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 517 HandleVirtRegUse(MOReg, MBB, MI); 518 else if (!ReservedRegisters[MOReg]) 519 HandlePhysRegUse(MOReg, MI); 520 } 521 522 // Process all defs. 523 for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) { 524 unsigned MOReg = DefRegs[i]; 525 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 526 HandleVirtRegDef(MOReg, MI); 527 else if (!ReservedRegisters[MOReg]) 528 HandlePhysRegDef(MOReg, MI, Defs); 529 } 530 UpdatePhysRegDefs(MI, Defs); 531 } 532 533 // Handle any virtual assignments from PHI nodes which might be at the 534 // bottom of this basic block. We check all of our successor blocks to see 535 // if they have PHI nodes, and if so, we simulate an assignment at the end 536 // of the current block. 537 if (!PHIVarInfo[MBB->getNumber()].empty()) { 538 SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()]; 539 540 for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(), 541 E = VarInfoVec.end(); I != E; ++I) 542 // Mark it alive only in the block we are representing. 543 MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(), 544 MBB); 545 } 546 547 // Finally, if the last instruction in the block is a return, make sure to 548 // mark it as using all of the live-out values in the function. 549 if (!MBB->empty() && MBB->back().getDesc().isReturn()) { 550 MachineInstr *Ret = &MBB->back(); 551 552 for (MachineRegisterInfo::liveout_iterator 553 I = MF->getRegInfo().liveout_begin(), 554 E = MF->getRegInfo().liveout_end(); I != E; ++I) { 555 assert(TargetRegisterInfo::isPhysicalRegister(*I) && 556 "Cannot have a live-out virtual register!"); 557 HandlePhysRegUse(*I, Ret); 558 559 // Add live-out registers as implicit uses. 560 if (!Ret->readsRegister(*I)) 561 Ret->addOperand(MachineOperand::CreateReg(*I, false, true)); 562 } 563 } 564 565 // Loop over PhysRegDef / PhysRegUse, killing any registers that are 566 // available at the end of the basic block. 567 for (unsigned i = 0; i != NumRegs; ++i) 568 if (PhysRegDef[i] || PhysRegUse[i]) 569 HandlePhysRegDef(i, 0, Defs); 570 571 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); 572 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); 573 } 574 575 // Convert and transfer the dead / killed information we have gathered into 576 // VirtRegInfo onto MI's. 577 for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) 578 for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j) 579 if (VirtRegInfo[i].Kills[j] == 580 MRI->getVRegDef(i + TargetRegisterInfo::FirstVirtualRegister)) 581 VirtRegInfo[i] 582 .Kills[j]->addRegisterDead(i + 583 TargetRegisterInfo::FirstVirtualRegister, 584 TRI); 585 else 586 VirtRegInfo[i] 587 .Kills[j]->addRegisterKilled(i + 588 TargetRegisterInfo::FirstVirtualRegister, 589 TRI); 590 591 // Check to make sure there are no unreachable blocks in the MC CFG for the 592 // function. If so, it is due to a bug in the instruction selector or some 593 // other part of the code generator if this happens. 594 #ifndef NDEBUG 595 for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i) 596 assert(Visited.count(&*i) != 0 && "unreachable basic block found"); 597 #endif 598 599 delete[] PhysRegDef; 600 delete[] PhysRegUse; 601 delete[] PHIVarInfo; 602 603 return false; 604 } 605 606 /// replaceKillInstruction - Update register kill info by replacing a kill 607 /// instruction with a new one. 608 void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI, 609 MachineInstr *NewMI) { 610 VarInfo &VI = getVarInfo(Reg); 611 std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI); 612 } 613 614 /// removeVirtualRegistersKilled - Remove all killed info for the specified 615 /// instruction. 616 void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) { 617 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 618 MachineOperand &MO = MI->getOperand(i); 619 if (MO.isReg() && MO.isKill()) { 620 MO.setIsKill(false); 621 unsigned Reg = MO.getReg(); 622 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 623 bool removed = getVarInfo(Reg).removeKill(MI); 624 assert(removed && "kill not in register's VarInfo?"); 625 removed = true; 626 } 627 } 628 } 629 } 630 631 /// analyzePHINodes - Gather information about the PHI nodes in here. In 632 /// particular, we want to map the variable information of a virtual register 633 /// which is used in a PHI node. We map that to the BB the vreg is coming from. 634 /// 635 void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { 636 for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); 637 I != E; ++I) 638 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); 639 BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) 640 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) 641 PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()] 642 .push_back(BBI->getOperand(i).getReg()); 643 } 644