xref: /llvm-project/llvm/lib/CodeGen/LiveVariables.cpp (revision 26407384ec7a386acf5e15c46d05c6b1ad8b5da7)
1 //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveVariable analysis pass.  For each machine
11 // instruction in the function, this pass calculates the set of registers that
12 // are immediately dead after the instruction (i.e., the instruction calculates
13 // the value, but it is never used) and the set of registers that are used by
14 // the instruction, but are never used after the instruction (i.e., they are
15 // killed).
16 //
17 // This class computes live variables using are sparse implementation based on
18 // the machine code SSA form.  This class computes live variable information for
19 // each virtual and _register allocatable_ physical register in a function.  It
20 // uses the dominance properties of SSA form to efficiently compute live
21 // variables for virtual registers, and assumes that physical registers are only
22 // live within a single basic block (allowing it to do a single local analysis
23 // to resolve physical register lifetimes in each basic block).  If a physical
24 // register is not register allocatable, it is not tracked.  This is useful for
25 // things like the stack pointer and condition codes.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #include "llvm/CodeGen/LiveVariables.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Support/CFG.h"
34 #include "Support/DepthFirstIterator.h"
35 using namespace llvm;
36 
37 static RegisterAnalysis<LiveVariables> X("livevars", "Live Variable Analysis");
38 
39 const std::pair<MachineBasicBlock*, unsigned> &
40 LiveVariables::getMachineBasicBlockInfo(MachineBasicBlock *MBB) const{
41   return BBMap.find(MBB->getBasicBlock())->second;
42 }
43 
44 /// getIndexMachineBasicBlock() - Given a block index, return the
45 /// MachineBasicBlock corresponding to it.
46 MachineBasicBlock *LiveVariables::getIndexMachineBasicBlock(unsigned Idx) {
47   if (BBIdxMap.empty()) {
48     BBIdxMap.resize(BBMap.size());
49     for (std::map<const BasicBlock*, std::pair<MachineBasicBlock*, unsigned> >
50            ::iterator I = BBMap.begin(), E = BBMap.end(); I != E; ++I) {
51       assert(BBIdxMap.size() > I->second.second &&"Indices are not sequential");
52       assert(BBIdxMap[I->second.second] == 0 && "Multiple idx collision!");
53       BBIdxMap[I->second.second] = I->second.first;
54     }
55   }
56   assert(Idx < BBIdxMap.size() && "BB Index out of range!");
57   return BBIdxMap[Idx];
58 }
59 
60 LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
61   assert(MRegisterInfo::isVirtualRegister(RegIdx) &&
62          "getVarInfo: not a virtual register!");
63   RegIdx -= MRegisterInfo::FirstVirtualRegister;
64   if (RegIdx >= VirtRegInfo.size()) {
65     if (RegIdx >= 2*VirtRegInfo.size())
66       VirtRegInfo.resize(RegIdx*2);
67     else
68       VirtRegInfo.resize(2*VirtRegInfo.size());
69   }
70   return VirtRegInfo[RegIdx];
71 }
72 
73 
74 
75 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
76 					    const BasicBlock *BB) {
77   const std::pair<MachineBasicBlock*,unsigned> &Info = BBMap.find(BB)->second;
78   MachineBasicBlock *MBB = Info.first;
79   unsigned BBNum = Info.second;
80 
81   // Check to see if this basic block is one of the killing blocks.  If so,
82   // remove it...
83   for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
84     if (VRInfo.Kills[i].first == MBB) {
85       VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
86       break;
87     }
88 
89   if (MBB == VRInfo.DefBlock) return;  // Terminate recursion
90 
91   if (VRInfo.AliveBlocks.size() <= BBNum)
92     VRInfo.AliveBlocks.resize(BBNum+1);  // Make space...
93 
94   if (VRInfo.AliveBlocks[BBNum])
95     return;  // We already know the block is live
96 
97   // Mark the variable known alive in this bb
98   VRInfo.AliveBlocks[BBNum] = true;
99 
100   for (pred_const_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
101     MarkVirtRegAliveInBlock(VRInfo, *PI);
102 }
103 
104 void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB,
105 				     MachineInstr *MI) {
106   // Check to see if this basic block is already a kill block...
107   if (!VRInfo.Kills.empty() && VRInfo.Kills.back().first == MBB) {
108     // Yes, this register is killed in this basic block already.  Increase the
109     // live range by updating the kill instruction.
110     VRInfo.Kills.back().second = MI;
111     return;
112   }
113 
114 #ifndef NDEBUG
115   for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
116     assert(VRInfo.Kills[i].first != MBB && "entry should be at end!");
117 #endif
118 
119   assert(MBB != VRInfo.DefBlock && "Should have kill for defblock!");
120 
121   // Add a new kill entry for this basic block.
122   VRInfo.Kills.push_back(std::make_pair(MBB, MI));
123 
124   // Update all dominating blocks to mark them known live.
125   const BasicBlock *BB = MBB->getBasicBlock();
126   for (pred_const_iterator PI = pred_begin(BB), E = pred_end(BB);
127        PI != E; ++PI)
128     MarkVirtRegAliveInBlock(VRInfo, *PI);
129 }
130 
131 void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
132   PhysRegInfo[Reg] = MI;
133   PhysRegUsed[Reg] = true;
134 }
135 
136 void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
137   // Does this kill a previous version of this register?
138   if (MachineInstr *LastUse = PhysRegInfo[Reg]) {
139     if (PhysRegUsed[Reg])
140       RegistersKilled.insert(std::make_pair(LastUse, Reg));
141     else
142       RegistersDead.insert(std::make_pair(LastUse, Reg));
143   }
144   PhysRegInfo[Reg] = MI;
145   PhysRegUsed[Reg] = false;
146 
147   for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
148        *AliasSet; ++AliasSet) {
149     if (MachineInstr *LastUse = PhysRegInfo[*AliasSet]) {
150       if (PhysRegUsed[*AliasSet])
151 	RegistersKilled.insert(std::make_pair(LastUse, *AliasSet));
152       else
153 	RegistersDead.insert(std::make_pair(LastUse, *AliasSet));
154     }
155     PhysRegInfo[*AliasSet] = MI;
156     PhysRegUsed[*AliasSet] = false;
157   }
158 }
159 
160 bool LiveVariables::runOnMachineFunction(MachineFunction &MF) {
161   const TargetInstrInfo &TII = MF.getTarget().getInstrInfo();
162   RegInfo = MF.getTarget().getRegisterInfo();
163   assert(RegInfo && "Target doesn't have register information?");
164 
165   // First time though, initialize AllocatablePhysicalRegisters for the target
166   if (AllocatablePhysicalRegisters.empty()) {
167     // Make space, initializing to false...
168     AllocatablePhysicalRegisters.resize(RegInfo->getNumRegs());
169 
170     // Loop over all of the register classes...
171     for (MRegisterInfo::regclass_iterator RCI = RegInfo->regclass_begin(),
172            E = RegInfo->regclass_end(); RCI != E; ++RCI)
173       // Loop over all of the allocatable registers in the function...
174       for (TargetRegisterClass::iterator I = (*RCI)->allocation_order_begin(MF),
175              E = (*RCI)->allocation_order_end(MF); I != E; ++I)
176         AllocatablePhysicalRegisters[*I] = true;  // The reg is allocatable!
177   }
178 
179   // Build BBMap...
180   unsigned BBNum = 0;
181   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
182     BBMap[I->getBasicBlock()] = std::make_pair(I, BBNum++);
183 
184   // PhysRegInfo - Keep track of which instruction was the last use of a
185   // physical register.  This is a purely local property, because all physical
186   // register references as presumed dead across basic blocks.
187   //
188   MachineInstr *PhysRegInfoA[MRegisterInfo::FirstVirtualRegister];
189   bool          PhysRegUsedA[MRegisterInfo::FirstVirtualRegister];
190   std::fill(PhysRegInfoA, PhysRegInfoA+MRegisterInfo::FirstVirtualRegister,
191 	    (MachineInstr*)0);
192   PhysRegInfo = PhysRegInfoA;
193   PhysRegUsed = PhysRegUsedA;
194 
195   /// Get some space for a respectable number of registers...
196   VirtRegInfo.resize(64);
197 
198   // Calculate live variable information in depth first order on the CFG of the
199   // function.  This guarantees that we will see the definition of a virtual
200   // register before its uses due to dominance properties of SSA (except for PHI
201   // nodes, which are treated as a special case).
202   //
203   const BasicBlock *Entry = MF.getFunction()->begin();
204   for (df_iterator<const BasicBlock*> DFI = df_begin(Entry), E = df_end(Entry);
205        DFI != E; ++DFI) {
206     const BasicBlock *BB = *DFI;
207     std::pair<MachineBasicBlock*, unsigned> &BBRec = BBMap.find(BB)->second;
208     MachineBasicBlock *MBB = BBRec.first;
209     unsigned BBNum = BBRec.second;
210 
211     // Loop over all of the instructions, processing them.
212     for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
213 	 I != E; ++I) {
214       MachineInstr *MI = *I;
215       const TargetInstrDescriptor &MID = TII.get(MI->getOpcode());
216 
217       // Process all of the operands of the instruction...
218       unsigned NumOperandsToProcess = MI->getNumOperands();
219 
220       // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
221       // of the uses.  They will be handled in other basic blocks.
222       if (MI->getOpcode() == TargetInstrInfo::PHI)
223 	NumOperandsToProcess = 1;
224 
225       // Loop over implicit uses, using them.
226       for (const unsigned *ImplicitUses = MID.ImplicitUses;
227            *ImplicitUses; ++ImplicitUses)
228 	HandlePhysRegUse(*ImplicitUses, MI);
229 
230       // Process all explicit uses...
231       for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
232 	MachineOperand &MO = MI->getOperand(i);
233 	if (MO.isUse()) {
234 	  if (MO.isVirtualRegister() && !MO.getVRegValueOrNull()) {
235 	    HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI);
236 	  } else if (MO.isPhysicalRegister() &&
237                      AllocatablePhysicalRegisters[MO.getReg()]) {
238 	    HandlePhysRegUse(MO.getReg(), MI);
239 	  }
240 	}
241       }
242 
243       // Loop over implicit defs, defining them.
244       for (const unsigned *ImplicitDefs = MID.ImplicitDefs;
245            *ImplicitDefs; ++ImplicitDefs)
246         HandlePhysRegDef(*ImplicitDefs, MI);
247 
248       // Process all explicit defs...
249       for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
250 	MachineOperand &MO = MI->getOperand(i);
251 	if (MO.isDef()) {
252 	  if (MO.isVirtualRegister()) {
253 	    VarInfo &VRInfo = getVarInfo(MO.getReg());
254 
255 	    assert(VRInfo.DefBlock == 0 && "Variable multiply defined!");
256 	    VRInfo.DefBlock = MBB;                           // Created here...
257 	    VRInfo.DefInst = MI;
258 	    VRInfo.Kills.push_back(std::make_pair(MBB, MI)); // Defaults to dead
259 	  } else if (MO.isPhysicalRegister() &&
260                      AllocatablePhysicalRegisters[MO.getReg()]) {
261 	    HandlePhysRegDef(MO.getReg(), MI);
262 	  }
263 	}
264       }
265     }
266 
267     // Handle any virtual assignments from PHI nodes which might be at the
268     // bottom of this basic block.  We check all of our successor blocks to see
269     // if they have PHI nodes, and if so, we simulate an assignment at the end
270     // of the current block.
271     for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB);
272          SI != E; ++SI) {
273       MachineBasicBlock *Succ = BBMap.find(*SI)->second.first;
274 
275       // PHI nodes are guaranteed to be at the top of the block...
276       for (MachineBasicBlock::iterator I = Succ->begin(), E = Succ->end();
277 	   I != E && (*I)->getOpcode() == TargetInstrInfo::PHI; ++I) {
278         MachineInstr *MI = *I;
279 	for (unsigned i = 1; ; i += 2)
280 	  if (MI->getOperand(i+1).getMachineBasicBlock() == MBB) {
281 	    MachineOperand &MO = MI->getOperand(i);
282 	    if (!MO.getVRegValueOrNull()) {
283 	      VarInfo &VRInfo = getVarInfo(MO.getReg());
284 
285 	      // Only mark it alive only in the block we are representing...
286 	      MarkVirtRegAliveInBlock(VRInfo, BB);
287 	      break;   // Found the PHI entry for this block...
288 	    }
289 	  }
290       }
291     }
292 
293     // Loop over PhysRegInfo, killing any registers that are available at the
294     // end of the basic block.  This also resets the PhysRegInfo map.
295     for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
296       if (PhysRegInfo[i])
297 	HandlePhysRegDef(i, 0);
298   }
299 
300   // Convert the information we have gathered into VirtRegInfo and transform it
301   // into a form usable by RegistersKilled.
302   //
303   for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i)
304     for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) {
305       if (VirtRegInfo[i].Kills[j].second == VirtRegInfo[i].DefInst)
306 	RegistersDead.insert(std::make_pair(VirtRegInfo[i].Kills[j].second,
307 		    i + MRegisterInfo::FirstVirtualRegister));
308 
309       else
310 	RegistersKilled.insert(std::make_pair(VirtRegInfo[i].Kills[j].second,
311 		    i + MRegisterInfo::FirstVirtualRegister));
312     }
313 
314   return false;
315 }
316