1 //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveVariable analysis pass. For each machine 11 // instruction in the function, this pass calculates the set of registers that 12 // are immediately dead after the instruction (i.e., the instruction calculates 13 // the value, but it is never used) and the set of registers that are used by 14 // the instruction, but are never used after the instruction (i.e., they are 15 // killed). 16 // 17 // This class computes live variables using are sparse implementation based on 18 // the machine code SSA form. This class computes live variable information for 19 // each virtual and _register allocatable_ physical register in a function. It 20 // uses the dominance properties of SSA form to efficiently compute live 21 // variables for virtual registers, and assumes that physical registers are only 22 // live within a single basic block (allowing it to do a single local analysis 23 // to resolve physical register lifetimes in each basic block). If a physical 24 // register is not register allocatable, it is not tracked. This is useful for 25 // things like the stack pointer and condition codes. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/CodeGen/LiveVariables.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/Target/TargetInstrInfo.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Support/CFG.h" 34 #include "Support/DepthFirstIterator.h" 35 using namespace llvm; 36 37 static RegisterAnalysis<LiveVariables> X("livevars", "Live Variable Analysis"); 38 39 const std::pair<MachineBasicBlock*, unsigned> & 40 LiveVariables::getMachineBasicBlockInfo(MachineBasicBlock *MBB) const{ 41 return BBMap.find(MBB->getBasicBlock())->second; 42 } 43 44 /// getIndexMachineBasicBlock() - Given a block index, return the 45 /// MachineBasicBlock corresponding to it. 46 MachineBasicBlock *LiveVariables::getIndexMachineBasicBlock(unsigned Idx) { 47 if (BBIdxMap.empty()) { 48 BBIdxMap.resize(BBMap.size()); 49 for (std::map<const BasicBlock*, std::pair<MachineBasicBlock*, unsigned> > 50 ::iterator I = BBMap.begin(), E = BBMap.end(); I != E; ++I) { 51 assert(BBIdxMap.size() > I->second.second &&"Indices are not sequential"); 52 assert(BBIdxMap[I->second.second] == 0 && "Multiple idx collision!"); 53 BBIdxMap[I->second.second] = I->second.first; 54 } 55 } 56 assert(Idx < BBIdxMap.size() && "BB Index out of range!"); 57 return BBIdxMap[Idx]; 58 } 59 60 LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { 61 assert(MRegisterInfo::isVirtualRegister(RegIdx) && 62 "getVarInfo: not a virtual register!"); 63 RegIdx -= MRegisterInfo::FirstVirtualRegister; 64 if (RegIdx >= VirtRegInfo.size()) { 65 if (RegIdx >= 2*VirtRegInfo.size()) 66 VirtRegInfo.resize(RegIdx*2); 67 else 68 VirtRegInfo.resize(2*VirtRegInfo.size()); 69 } 70 return VirtRegInfo[RegIdx]; 71 } 72 73 74 75 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, 76 const BasicBlock *BB) { 77 const std::pair<MachineBasicBlock*,unsigned> &Info = BBMap.find(BB)->second; 78 MachineBasicBlock *MBB = Info.first; 79 unsigned BBNum = Info.second; 80 81 // Check to see if this basic block is one of the killing blocks. If so, 82 // remove it... 83 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 84 if (VRInfo.Kills[i].first == MBB) { 85 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry 86 break; 87 } 88 89 if (MBB == VRInfo.DefBlock) return; // Terminate recursion 90 91 if (VRInfo.AliveBlocks.size() <= BBNum) 92 VRInfo.AliveBlocks.resize(BBNum+1); // Make space... 93 94 if (VRInfo.AliveBlocks[BBNum]) 95 return; // We already know the block is live 96 97 // Mark the variable known alive in this bb 98 VRInfo.AliveBlocks[BBNum] = true; 99 100 for (pred_const_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 101 MarkVirtRegAliveInBlock(VRInfo, *PI); 102 } 103 104 void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB, 105 MachineInstr *MI) { 106 // Check to see if this basic block is already a kill block... 107 if (!VRInfo.Kills.empty() && VRInfo.Kills.back().first == MBB) { 108 // Yes, this register is killed in this basic block already. Increase the 109 // live range by updating the kill instruction. 110 VRInfo.Kills.back().second = MI; 111 return; 112 } 113 114 #ifndef NDEBUG 115 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 116 assert(VRInfo.Kills[i].first != MBB && "entry should be at end!"); 117 #endif 118 119 assert(MBB != VRInfo.DefBlock && "Should have kill for defblock!"); 120 121 // Add a new kill entry for this basic block. 122 VRInfo.Kills.push_back(std::make_pair(MBB, MI)); 123 124 // Update all dominating blocks to mark them known live. 125 const BasicBlock *BB = MBB->getBasicBlock(); 126 for (pred_const_iterator PI = pred_begin(BB), E = pred_end(BB); 127 PI != E; ++PI) 128 MarkVirtRegAliveInBlock(VRInfo, *PI); 129 } 130 131 void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { 132 PhysRegInfo[Reg] = MI; 133 PhysRegUsed[Reg] = true; 134 } 135 136 void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) { 137 // Does this kill a previous version of this register? 138 if (MachineInstr *LastUse = PhysRegInfo[Reg]) { 139 if (PhysRegUsed[Reg]) 140 RegistersKilled.insert(std::make_pair(LastUse, Reg)); 141 else 142 RegistersDead.insert(std::make_pair(LastUse, Reg)); 143 } 144 PhysRegInfo[Reg] = MI; 145 PhysRegUsed[Reg] = false; 146 147 for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); 148 *AliasSet; ++AliasSet) { 149 if (MachineInstr *LastUse = PhysRegInfo[*AliasSet]) { 150 if (PhysRegUsed[*AliasSet]) 151 RegistersKilled.insert(std::make_pair(LastUse, *AliasSet)); 152 else 153 RegistersDead.insert(std::make_pair(LastUse, *AliasSet)); 154 } 155 PhysRegInfo[*AliasSet] = MI; 156 PhysRegUsed[*AliasSet] = false; 157 } 158 } 159 160 bool LiveVariables::runOnMachineFunction(MachineFunction &MF) { 161 const TargetInstrInfo &TII = MF.getTarget().getInstrInfo(); 162 RegInfo = MF.getTarget().getRegisterInfo(); 163 assert(RegInfo && "Target doesn't have register information?"); 164 165 // First time though, initialize AllocatablePhysicalRegisters for the target 166 if (AllocatablePhysicalRegisters.empty()) { 167 // Make space, initializing to false... 168 AllocatablePhysicalRegisters.resize(RegInfo->getNumRegs()); 169 170 // Loop over all of the register classes... 171 for (MRegisterInfo::regclass_iterator RCI = RegInfo->regclass_begin(), 172 E = RegInfo->regclass_end(); RCI != E; ++RCI) 173 // Loop over all of the allocatable registers in the function... 174 for (TargetRegisterClass::iterator I = (*RCI)->allocation_order_begin(MF), 175 E = (*RCI)->allocation_order_end(MF); I != E; ++I) 176 AllocatablePhysicalRegisters[*I] = true; // The reg is allocatable! 177 } 178 179 // Build BBMap... 180 unsigned BBNum = 0; 181 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) 182 BBMap[I->getBasicBlock()] = std::make_pair(I, BBNum++); 183 184 // PhysRegInfo - Keep track of which instruction was the last use of a 185 // physical register. This is a purely local property, because all physical 186 // register references as presumed dead across basic blocks. 187 // 188 MachineInstr *PhysRegInfoA[MRegisterInfo::FirstVirtualRegister]; 189 bool PhysRegUsedA[MRegisterInfo::FirstVirtualRegister]; 190 std::fill(PhysRegInfoA, PhysRegInfoA+MRegisterInfo::FirstVirtualRegister, 191 (MachineInstr*)0); 192 PhysRegInfo = PhysRegInfoA; 193 PhysRegUsed = PhysRegUsedA; 194 195 /// Get some space for a respectable number of registers... 196 VirtRegInfo.resize(64); 197 198 // Calculate live variable information in depth first order on the CFG of the 199 // function. This guarantees that we will see the definition of a virtual 200 // register before its uses due to dominance properties of SSA (except for PHI 201 // nodes, which are treated as a special case). 202 // 203 const BasicBlock *Entry = MF.getFunction()->begin(); 204 for (df_iterator<const BasicBlock*> DFI = df_begin(Entry), E = df_end(Entry); 205 DFI != E; ++DFI) { 206 const BasicBlock *BB = *DFI; 207 std::pair<MachineBasicBlock*, unsigned> &BBRec = BBMap.find(BB)->second; 208 MachineBasicBlock *MBB = BBRec.first; 209 unsigned BBNum = BBRec.second; 210 211 // Loop over all of the instructions, processing them. 212 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 213 I != E; ++I) { 214 MachineInstr *MI = *I; 215 const TargetInstrDescriptor &MID = TII.get(MI->getOpcode()); 216 217 // Process all of the operands of the instruction... 218 unsigned NumOperandsToProcess = MI->getNumOperands(); 219 220 // Unless it is a PHI node. In this case, ONLY process the DEF, not any 221 // of the uses. They will be handled in other basic blocks. 222 if (MI->getOpcode() == TargetInstrInfo::PHI) 223 NumOperandsToProcess = 1; 224 225 // Loop over implicit uses, using them. 226 for (const unsigned *ImplicitUses = MID.ImplicitUses; 227 *ImplicitUses; ++ImplicitUses) 228 HandlePhysRegUse(*ImplicitUses, MI); 229 230 // Process all explicit uses... 231 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 232 MachineOperand &MO = MI->getOperand(i); 233 if (MO.isUse()) { 234 if (MO.isVirtualRegister() && !MO.getVRegValueOrNull()) { 235 HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI); 236 } else if (MO.isPhysicalRegister() && 237 AllocatablePhysicalRegisters[MO.getReg()]) { 238 HandlePhysRegUse(MO.getReg(), MI); 239 } 240 } 241 } 242 243 // Loop over implicit defs, defining them. 244 for (const unsigned *ImplicitDefs = MID.ImplicitDefs; 245 *ImplicitDefs; ++ImplicitDefs) 246 HandlePhysRegDef(*ImplicitDefs, MI); 247 248 // Process all explicit defs... 249 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 250 MachineOperand &MO = MI->getOperand(i); 251 if (MO.isDef()) { 252 if (MO.isVirtualRegister()) { 253 VarInfo &VRInfo = getVarInfo(MO.getReg()); 254 255 assert(VRInfo.DefBlock == 0 && "Variable multiply defined!"); 256 VRInfo.DefBlock = MBB; // Created here... 257 VRInfo.DefInst = MI; 258 VRInfo.Kills.push_back(std::make_pair(MBB, MI)); // Defaults to dead 259 } else if (MO.isPhysicalRegister() && 260 AllocatablePhysicalRegisters[MO.getReg()]) { 261 HandlePhysRegDef(MO.getReg(), MI); 262 } 263 } 264 } 265 } 266 267 // Handle any virtual assignments from PHI nodes which might be at the 268 // bottom of this basic block. We check all of our successor blocks to see 269 // if they have PHI nodes, and if so, we simulate an assignment at the end 270 // of the current block. 271 for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); 272 SI != E; ++SI) { 273 MachineBasicBlock *Succ = BBMap.find(*SI)->second.first; 274 275 // PHI nodes are guaranteed to be at the top of the block... 276 for (MachineBasicBlock::iterator I = Succ->begin(), E = Succ->end(); 277 I != E && (*I)->getOpcode() == TargetInstrInfo::PHI; ++I) { 278 MachineInstr *MI = *I; 279 for (unsigned i = 1; ; i += 2) 280 if (MI->getOperand(i+1).getMachineBasicBlock() == MBB) { 281 MachineOperand &MO = MI->getOperand(i); 282 if (!MO.getVRegValueOrNull()) { 283 VarInfo &VRInfo = getVarInfo(MO.getReg()); 284 285 // Only mark it alive only in the block we are representing... 286 MarkVirtRegAliveInBlock(VRInfo, BB); 287 break; // Found the PHI entry for this block... 288 } 289 } 290 } 291 } 292 293 // Loop over PhysRegInfo, killing any registers that are available at the 294 // end of the basic block. This also resets the PhysRegInfo map. 295 for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i) 296 if (PhysRegInfo[i]) 297 HandlePhysRegDef(i, 0); 298 } 299 300 // Convert the information we have gathered into VirtRegInfo and transform it 301 // into a form usable by RegistersKilled. 302 // 303 for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i) 304 for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) { 305 if (VirtRegInfo[i].Kills[j].second == VirtRegInfo[i].DefInst) 306 RegistersDead.insert(std::make_pair(VirtRegInfo[i].Kills[j].second, 307 i + MRegisterInfo::FirstVirtualRegister)); 308 309 else 310 RegistersKilled.insert(std::make_pair(VirtRegInfo[i].Kills[j].second, 311 i + MRegisterInfo::FirstVirtualRegister)); 312 } 313 314 return false; 315 } 316