xref: /llvm-project/llvm/lib/CodeGen/LiveInterval.cpp (revision e733b80f3cba26bf2df9bd691120f37fc1af21ce)
1 //===- LiveInterval.cpp - Live Interval Representation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the LiveRange and LiveInterval classes.  Given some
10 // numbering of each the machine instructions an interval [i, j) is said to be a
11 // live range for register v if there is no instruction with number j' >= j
12 // such that v is live at j' and there is no instruction with number i' < i such
13 // that v is live at i'. In this implementation ranges can have holes,
14 // i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
15 // individual segment is represented as an instance of LiveRange::Segment,
16 // and the whole range is represented as an instance of LiveRange.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/CodeGen/LiveInterval.h"
21 #include "LiveRangeUtils.h"
22 #include "RegisterCoalescer.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/CodeGen/LiveIntervals.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/SlotIndexes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/Config/llvm-config.h"
36 #include "llvm/MC/LaneBitmask.h"
37 #include "llvm/Support/Compiler.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <algorithm>
41 #include <cassert>
42 #include <cstddef>
43 #include <iterator>
44 #include <utility>
45 
46 using namespace llvm;
47 
48 namespace {
49 
50 //===----------------------------------------------------------------------===//
51 // Implementation of various methods necessary for calculation of live ranges.
52 // The implementation of the methods abstracts from the concrete type of the
53 // segment collection.
54 //
55 // Implementation of the class follows the Template design pattern. The base
56 // class contains generic algorithms that call collection-specific methods,
57 // which are provided in concrete subclasses. In order to avoid virtual calls
58 // these methods are provided by means of C++ template instantiation.
59 // The base class calls the methods of the subclass through method impl(),
60 // which casts 'this' pointer to the type of the subclass.
61 //
62 //===----------------------------------------------------------------------===//
63 
64 template <typename ImplT, typename IteratorT, typename CollectionT>
65 class CalcLiveRangeUtilBase {
66 protected:
67   LiveRange *LR;
68 
69 protected:
70   CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {}
71 
72 public:
73   using Segment = LiveRange::Segment;
74   using iterator = IteratorT;
75 
76   /// A counterpart of LiveRange::createDeadDef: Make sure the range has a
77   /// value defined at @p Def.
78   /// If @p ForVNI is null, and there is no value defined at @p Def, a new
79   /// value will be allocated using @p VNInfoAllocator.
80   /// If @p ForVNI is null, the return value is the value defined at @p Def,
81   /// either a pre-existing one, or the one newly created.
82   /// If @p ForVNI is not null, then @p Def should be the location where
83   /// @p ForVNI is defined. If the range does not have a value defined at
84   /// @p Def, the value @p ForVNI will be used instead of allocating a new
85   /// one. If the range already has a value defined at @p Def, it must be
86   /// same as @p ForVNI. In either case, @p ForVNI will be the return value.
87   VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator *VNInfoAllocator,
88                         VNInfo *ForVNI) {
89     assert(!Def.isDead() && "Cannot define a value at the dead slot");
90     assert((!ForVNI || ForVNI->def == Def) &&
91            "If ForVNI is specified, it must match Def");
92     iterator I = impl().find(Def);
93     if (I == segments().end()) {
94       VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator);
95       impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI));
96       return VNI;
97     }
98 
99     Segment *S = segmentAt(I);
100     if (SlotIndex::isSameInstr(Def, S->start)) {
101       assert((!ForVNI || ForVNI == S->valno) && "Value number mismatch");
102       assert(S->valno->def == S->start && "Inconsistent existing value def");
103 
104       // It is possible to have both normal and early-clobber defs of the same
105       // register on an instruction. It doesn't make a lot of sense, but it is
106       // possible to specify in inline assembly.
107       //
108       // Just convert everything to early-clobber.
109       Def = std::min(Def, S->start);
110       if (Def != S->start)
111         S->start = S->valno->def = Def;
112       return S->valno;
113     }
114     assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def");
115     VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator);
116     segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI));
117     return VNI;
118   }
119 
120   VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) {
121     if (segments().empty())
122       return nullptr;
123     iterator I =
124       impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr));
125     if (I == segments().begin())
126       return nullptr;
127     --I;
128     if (I->end <= StartIdx)
129       return nullptr;
130     if (I->end < Use)
131       extendSegmentEndTo(I, Use);
132     return I->valno;
133   }
134 
135   std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs,
136       SlotIndex StartIdx, SlotIndex Use) {
137     if (segments().empty())
138       return std::make_pair(nullptr, false);
139     SlotIndex BeforeUse = Use.getPrevSlot();
140     iterator I = impl().findInsertPos(Segment(BeforeUse, Use, nullptr));
141     if (I == segments().begin())
142       return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse));
143     --I;
144     if (I->end <= StartIdx)
145       return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse));
146     if (I->end < Use) {
147       if (LR->isUndefIn(Undefs, I->end, BeforeUse))
148         return std::make_pair(nullptr, true);
149       extendSegmentEndTo(I, Use);
150     }
151     return std::make_pair(I->valno, false);
152   }
153 
154   /// This method is used when we want to extend the segment specified
155   /// by I to end at the specified endpoint. To do this, we should
156   /// merge and eliminate all segments that this will overlap
157   /// with. The iterator is not invalidated.
158   void extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
159     assert(I != segments().end() && "Not a valid segment!");
160     Segment *S = segmentAt(I);
161     VNInfo *ValNo = I->valno;
162 
163     // Search for the first segment that we can't merge with.
164     iterator MergeTo = std::next(I);
165     for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo)
166       assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
167 
168     // If NewEnd was in the middle of a segment, make sure to get its endpoint.
169     S->end = std::max(NewEnd, std::prev(MergeTo)->end);
170 
171     // If the newly formed segment now touches the segment after it and if they
172     // have the same value number, merge the two segments into one segment.
173     if (MergeTo != segments().end() && MergeTo->start <= I->end &&
174         MergeTo->valno == ValNo) {
175       S->end = MergeTo->end;
176       ++MergeTo;
177     }
178 
179     // Erase any dead segments.
180     segments().erase(std::next(I), MergeTo);
181   }
182 
183   /// This method is used when we want to extend the segment specified
184   /// by I to start at the specified endpoint.  To do this, we should
185   /// merge and eliminate all segments that this will overlap with.
186   iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) {
187     assert(I != segments().end() && "Not a valid segment!");
188     Segment *S = segmentAt(I);
189     VNInfo *ValNo = I->valno;
190 
191     // Search for the first segment that we can't merge with.
192     iterator MergeTo = I;
193     do {
194       if (MergeTo == segments().begin()) {
195         S->start = NewStart;
196         segments().erase(MergeTo, I);
197         return I;
198       }
199       assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
200       --MergeTo;
201     } while (NewStart <= MergeTo->start);
202 
203     // If we start in the middle of another segment, just delete a range and
204     // extend that segment.
205     if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
206       segmentAt(MergeTo)->end = S->end;
207     } else {
208       // Otherwise, extend the segment right after.
209       ++MergeTo;
210       Segment *MergeToSeg = segmentAt(MergeTo);
211       MergeToSeg->start = NewStart;
212       MergeToSeg->end = S->end;
213     }
214 
215     segments().erase(std::next(MergeTo), std::next(I));
216     return MergeTo;
217   }
218 
219   iterator addSegment(Segment S) {
220     SlotIndex Start = S.start, End = S.end;
221     iterator I = impl().findInsertPos(S);
222 
223     // If the inserted segment starts in the middle or right at the end of
224     // another segment, just extend that segment to contain the segment of S.
225     if (I != segments().begin()) {
226       iterator B = std::prev(I);
227       if (S.valno == B->valno) {
228         if (B->start <= Start && B->end >= Start) {
229           extendSegmentEndTo(B, End);
230           return B;
231         }
232       } else {
233         // Check to make sure that we are not overlapping two live segments with
234         // different valno's.
235         assert(B->end <= Start &&
236                "Cannot overlap two segments with differing ValID's"
237                " (did you def the same reg twice in a MachineInstr?)");
238       }
239     }
240 
241     // Otherwise, if this segment ends in the middle of, or right next
242     // to, another segment, merge it into that segment.
243     if (I != segments().end()) {
244       if (S.valno == I->valno) {
245         if (I->start <= End) {
246           I = extendSegmentStartTo(I, Start);
247 
248           // If S is a complete superset of a segment, we may need to grow its
249           // endpoint as well.
250           if (End > I->end)
251             extendSegmentEndTo(I, End);
252           return I;
253         }
254       } else {
255         // Check to make sure that we are not overlapping two live segments with
256         // different valno's.
257         assert(I->start >= End &&
258                "Cannot overlap two segments with differing ValID's");
259       }
260     }
261 
262     // Otherwise, this is just a new segment that doesn't interact with
263     // anything.
264     // Insert it.
265     return segments().insert(I, S);
266   }
267 
268 private:
269   ImplT &impl() { return *static_cast<ImplT *>(this); }
270 
271   CollectionT &segments() { return impl().segmentsColl(); }
272 
273   Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); }
274 };
275 
276 //===----------------------------------------------------------------------===//
277 //   Instantiation of the methods for calculation of live ranges
278 //   based on a segment vector.
279 //===----------------------------------------------------------------------===//
280 
281 class CalcLiveRangeUtilVector;
282 using CalcLiveRangeUtilVectorBase =
283     CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator,
284                           LiveRange::Segments>;
285 
286 class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase {
287 public:
288   CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {}
289 
290 private:
291   friend CalcLiveRangeUtilVectorBase;
292 
293   LiveRange::Segments &segmentsColl() { return LR->segments; }
294 
295   void insertAtEnd(const Segment &S) { LR->segments.push_back(S); }
296 
297   iterator find(SlotIndex Pos) { return LR->find(Pos); }
298 
299   iterator findInsertPos(Segment S) { return llvm::upper_bound(*LR, S.start); }
300 };
301 
302 //===----------------------------------------------------------------------===//
303 //   Instantiation of the methods for calculation of live ranges
304 //   based on a segment set.
305 //===----------------------------------------------------------------------===//
306 
307 class CalcLiveRangeUtilSet;
308 using CalcLiveRangeUtilSetBase =
309     CalcLiveRangeUtilBase<CalcLiveRangeUtilSet, LiveRange::SegmentSet::iterator,
310                           LiveRange::SegmentSet>;
311 
312 class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase {
313 public:
314   CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {}
315 
316 private:
317   friend CalcLiveRangeUtilSetBase;
318 
319   LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; }
320 
321   void insertAtEnd(const Segment &S) {
322     LR->segmentSet->insert(LR->segmentSet->end(), S);
323   }
324 
325   iterator find(SlotIndex Pos) {
326     iterator I =
327         LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr));
328     if (I == LR->segmentSet->begin())
329       return I;
330     iterator PrevI = std::prev(I);
331     if (Pos < (*PrevI).end)
332       return PrevI;
333     return I;
334   }
335 
336   iterator findInsertPos(Segment S) {
337     iterator I = LR->segmentSet->upper_bound(S);
338     if (I != LR->segmentSet->end() && !(S.start < *I))
339       ++I;
340     return I;
341   }
342 };
343 
344 } // end anonymous namespace
345 
346 //===----------------------------------------------------------------------===//
347 //   LiveRange methods
348 //===----------------------------------------------------------------------===//
349 
350 LiveRange::iterator LiveRange::find(SlotIndex Pos) {
351   return llvm::partition(*this, [&](const Segment &X) { return X.end <= Pos; });
352 }
353 
354 VNInfo *LiveRange::createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc) {
355   // Use the segment set, if it is available.
356   if (segmentSet != nullptr)
357     return CalcLiveRangeUtilSet(this).createDeadDef(Def, &VNIAlloc, nullptr);
358   // Otherwise use the segment vector.
359   return CalcLiveRangeUtilVector(this).createDeadDef(Def, &VNIAlloc, nullptr);
360 }
361 
362 VNInfo *LiveRange::createDeadDef(VNInfo *VNI) {
363   // Use the segment set, if it is available.
364   if (segmentSet != nullptr)
365     return CalcLiveRangeUtilSet(this).createDeadDef(VNI->def, nullptr, VNI);
366   // Otherwise use the segment vector.
367   return CalcLiveRangeUtilVector(this).createDeadDef(VNI->def, nullptr, VNI);
368 }
369 
370 // overlaps - Return true if the intersection of the two live ranges is
371 // not empty.
372 //
373 // An example for overlaps():
374 //
375 // 0: A = ...
376 // 4: B = ...
377 // 8: C = A + B ;; last use of A
378 //
379 // The live ranges should look like:
380 //
381 // A = [3, 11)
382 // B = [7, x)
383 // C = [11, y)
384 //
385 // A->overlaps(C) should return false since we want to be able to join
386 // A and C.
387 //
388 bool LiveRange::overlapsFrom(const LiveRange& other,
389                              const_iterator StartPos) const {
390   assert(!empty() && "empty range");
391   const_iterator i = begin();
392   const_iterator ie = end();
393   const_iterator j = StartPos;
394   const_iterator je = other.end();
395 
396   assert((StartPos->start <= i->start || StartPos == other.begin()) &&
397          StartPos != other.end() && "Bogus start position hint!");
398 
399   if (i->start < j->start) {
400     i = std::upper_bound(i, ie, j->start);
401     if (i != begin()) --i;
402   } else if (j->start < i->start) {
403     ++StartPos;
404     if (StartPos != other.end() && StartPos->start <= i->start) {
405       assert(StartPos < other.end() && i < end());
406       j = std::upper_bound(j, je, i->start);
407       if (j != other.begin()) --j;
408     }
409   } else {
410     return true;
411   }
412 
413   if (j == je) return false;
414 
415   while (i != ie) {
416     if (i->start > j->start) {
417       std::swap(i, j);
418       std::swap(ie, je);
419     }
420 
421     if (i->end > j->start)
422       return true;
423     ++i;
424   }
425 
426   return false;
427 }
428 
429 bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
430                          const SlotIndexes &Indexes) const {
431   assert(!empty() && "empty range");
432   if (Other.empty())
433     return false;
434 
435   // Use binary searches to find initial positions.
436   const_iterator I = find(Other.beginIndex());
437   const_iterator IE = end();
438   if (I == IE)
439     return false;
440   const_iterator J = Other.find(I->start);
441   const_iterator JE = Other.end();
442   if (J == JE)
443     return false;
444 
445   while (true) {
446     // J has just been advanced to satisfy:
447     assert(J->end >= I->start);
448     // Check for an overlap.
449     if (J->start < I->end) {
450       // I and J are overlapping. Find the later start.
451       SlotIndex Def = std::max(I->start, J->start);
452       // Allow the overlap if Def is a coalescable copy.
453       if (Def.isBlock() ||
454           !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
455         return true;
456     }
457     // Advance the iterator that ends first to check for more overlaps.
458     if (J->end > I->end) {
459       std::swap(I, J);
460       std::swap(IE, JE);
461     }
462     // Advance J until J->end >= I->start.
463     do
464       if (++J == JE)
465         return false;
466     while (J->end < I->start);
467   }
468 }
469 
470 /// overlaps - Return true if the live range overlaps an interval specified
471 /// by [Start, End).
472 bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
473   assert(Start < End && "Invalid range");
474   const_iterator I = lower_bound(*this, End);
475   return I != begin() && (--I)->end > Start;
476 }
477 
478 bool LiveRange::covers(const LiveRange &Other) const {
479   if (empty())
480     return Other.empty();
481 
482   const_iterator I = begin();
483   for (const Segment &O : Other.segments) {
484     I = advanceTo(I, O.start);
485     if (I == end() || I->start > O.start)
486       return false;
487 
488     // Check adjacent live segments and see if we can get behind O.end.
489     while (I->end < O.end) {
490       const_iterator Last = I;
491       // Get next segment and abort if it was not adjacent.
492       ++I;
493       if (I == end() || Last->end != I->start)
494         return false;
495     }
496   }
497   return true;
498 }
499 
500 /// ValNo is dead, remove it.  If it is the largest value number, just nuke it
501 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so
502 /// it can be nuked later.
503 void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
504   if (ValNo->id == getNumValNums()-1) {
505     do {
506       valnos.pop_back();
507     } while (!valnos.empty() && valnos.back()->isUnused());
508   } else {
509     ValNo->markUnused();
510   }
511 }
512 
513 /// RenumberValues - Renumber all values in order of appearance and delete the
514 /// remaining unused values.
515 void LiveRange::RenumberValues() {
516   SmallPtrSet<VNInfo*, 8> Seen;
517   valnos.clear();
518   for (const Segment &S : segments) {
519     VNInfo *VNI = S.valno;
520     if (!Seen.insert(VNI).second)
521       continue;
522     assert(!VNI->isUnused() && "Unused valno used by live segment");
523     VNI->id = (unsigned)valnos.size();
524     valnos.push_back(VNI);
525   }
526 }
527 
528 void LiveRange::addSegmentToSet(Segment S) {
529   CalcLiveRangeUtilSet(this).addSegment(S);
530 }
531 
532 LiveRange::iterator LiveRange::addSegment(Segment S) {
533   // Use the segment set, if it is available.
534   if (segmentSet != nullptr) {
535     addSegmentToSet(S);
536     return end();
537   }
538   // Otherwise use the segment vector.
539   return CalcLiveRangeUtilVector(this).addSegment(S);
540 }
541 
542 void LiveRange::append(const Segment S) {
543   // Check that the segment belongs to the back of the list.
544   assert(segments.empty() || segments.back().end <= S.start);
545   segments.push_back(S);
546 }
547 
548 std::pair<VNInfo*,bool> LiveRange::extendInBlock(ArrayRef<SlotIndex> Undefs,
549     SlotIndex StartIdx, SlotIndex Kill) {
550   // Use the segment set, if it is available.
551   if (segmentSet != nullptr)
552     return CalcLiveRangeUtilSet(this).extendInBlock(Undefs, StartIdx, Kill);
553   // Otherwise use the segment vector.
554   return CalcLiveRangeUtilVector(this).extendInBlock(Undefs, StartIdx, Kill);
555 }
556 
557 VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
558   // Use the segment set, if it is available.
559   if (segmentSet != nullptr)
560     return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill);
561   // Otherwise use the segment vector.
562   return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill);
563 }
564 
565 /// Remove the specified segment from this range.  Note that the segment must
566 /// be in a single Segment in its entirety.
567 void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
568                               bool RemoveDeadValNo) {
569   // Find the Segment containing this span.
570   iterator I = find(Start);
571   assert(I != end() && "Segment is not in range!");
572   assert(I->containsInterval(Start, End)
573          && "Segment is not entirely in range!");
574 
575   // If the span we are removing is at the start of the Segment, adjust it.
576   VNInfo *ValNo = I->valno;
577   if (I->start == Start) {
578     if (I->end == End) {
579       segments.erase(I);  // Removed the whole Segment.
580 
581       if (RemoveDeadValNo)
582         removeValNoIfDead(ValNo);
583     } else
584       I->start = End;
585     return;
586   }
587 
588   // Otherwise if the span we are removing is at the end of the Segment,
589   // adjust the other way.
590   if (I->end == End) {
591     I->end = Start;
592     return;
593   }
594 
595   // Otherwise, we are splitting the Segment into two pieces.
596   SlotIndex OldEnd = I->end;
597   I->end = Start;   // Trim the old segment.
598 
599   // Insert the new one.
600   segments.insert(std::next(I), Segment(End, OldEnd, ValNo));
601 }
602 
603 LiveRange::iterator LiveRange::removeSegment(iterator I, bool RemoveDeadValNo) {
604   VNInfo *ValNo = I->valno;
605   I = segments.erase(I);
606   if (RemoveDeadValNo)
607     removeValNoIfDead(ValNo);
608   return I;
609 }
610 
611 void LiveRange::removeValNoIfDead(VNInfo *ValNo) {
612   if (none_of(*this, [=](const Segment &S) { return S.valno == ValNo; }))
613     markValNoForDeletion(ValNo);
614 }
615 
616 /// removeValNo - Remove all the segments defined by the specified value#.
617 /// Also remove the value# from value# list.
618 void LiveRange::removeValNo(VNInfo *ValNo) {
619   if (empty()) return;
620   llvm::erase_if(segments,
621                  [ValNo](const Segment &S) { return S.valno == ValNo; });
622   // Now that ValNo is dead, remove it.
623   markValNoForDeletion(ValNo);
624 }
625 
626 void LiveRange::join(LiveRange &Other,
627                      const int *LHSValNoAssignments,
628                      const int *RHSValNoAssignments,
629                      SmallVectorImpl<VNInfo *> &NewVNInfo) {
630   verify();
631 
632   // Determine if any of our values are mapped.  This is uncommon, so we want
633   // to avoid the range scan if not.
634   bool MustMapCurValNos = false;
635   unsigned NumVals = getNumValNums();
636   unsigned NumNewVals = NewVNInfo.size();
637   for (unsigned i = 0; i != NumVals; ++i) {
638     unsigned LHSValID = LHSValNoAssignments[i];
639     if (i != LHSValID ||
640         (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
641       MustMapCurValNos = true;
642       break;
643     }
644   }
645 
646   // If we have to apply a mapping to our base range assignment, rewrite it now.
647   if (MustMapCurValNos && !empty()) {
648     // Map the first live range.
649 
650     iterator OutIt = begin();
651     OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
652     for (iterator I = std::next(OutIt), E = end(); I != E; ++I) {
653       VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
654       assert(nextValNo && "Huh?");
655 
656       // If this live range has the same value # as its immediate predecessor,
657       // and if they are neighbors, remove one Segment.  This happens when we
658       // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
659       if (OutIt->valno == nextValNo && OutIt->end == I->start) {
660         OutIt->end = I->end;
661       } else {
662         // Didn't merge. Move OutIt to the next segment,
663         ++OutIt;
664         OutIt->valno = nextValNo;
665         if (OutIt != I) {
666           OutIt->start = I->start;
667           OutIt->end = I->end;
668         }
669       }
670     }
671     // If we merge some segments, chop off the end.
672     ++OutIt;
673     segments.erase(OutIt, end());
674   }
675 
676   // Rewrite Other values before changing the VNInfo ids.
677   // This can leave Other in an invalid state because we're not coalescing
678   // touching segments that now have identical values. That's OK since Other is
679   // not supposed to be valid after calling join();
680   for (Segment &S : Other.segments)
681     S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]];
682 
683   // Update val# info. Renumber them and make sure they all belong to this
684   // LiveRange now. Also remove dead val#'s.
685   unsigned NumValNos = 0;
686   for (unsigned i = 0; i < NumNewVals; ++i) {
687     VNInfo *VNI = NewVNInfo[i];
688     if (VNI) {
689       if (NumValNos >= NumVals)
690         valnos.push_back(VNI);
691       else
692         valnos[NumValNos] = VNI;
693       VNI->id = NumValNos++;  // Renumber val#.
694     }
695   }
696   if (NumNewVals < NumVals)
697     valnos.resize(NumNewVals);  // shrinkify
698 
699   // Okay, now insert the RHS live segments into the LHS.
700   LiveRangeUpdater Updater(this);
701   for (Segment &S : Other.segments)
702     Updater.add(S);
703 }
704 
705 /// Merge all of the segments in RHS into this live range as the specified
706 /// value number.  The segments in RHS are allowed to overlap with segments in
707 /// the current range, but only if the overlapping segments have the
708 /// specified value number.
709 void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
710                                        VNInfo *LHSValNo) {
711   LiveRangeUpdater Updater(this);
712   for (const Segment &S : RHS.segments)
713     Updater.add(S.start, S.end, LHSValNo);
714 }
715 
716 /// MergeValueInAsValue - Merge all of the live segments of a specific val#
717 /// in RHS into this live range as the specified value number.
718 /// The segments in RHS are allowed to overlap with segments in the
719 /// current range, it will replace the value numbers of the overlaped
720 /// segments with the specified value number.
721 void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
722                                     const VNInfo *RHSValNo,
723                                     VNInfo *LHSValNo) {
724   LiveRangeUpdater Updater(this);
725   for (const Segment &S : RHS.segments)
726     if (S.valno == RHSValNo)
727       Updater.add(S.start, S.end, LHSValNo);
728 }
729 
730 /// MergeValueNumberInto - This method is called when two value nubmers
731 /// are found to be equivalent.  This eliminates V1, replacing all
732 /// segments with the V1 value number with the V2 value number.  This can
733 /// cause merging of V1/V2 values numbers and compaction of the value space.
734 VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
735   assert(V1 != V2 && "Identical value#'s are always equivalent!");
736 
737   // This code actually merges the (numerically) larger value number into the
738   // smaller value number, which is likely to allow us to compactify the value
739   // space.  The only thing we have to be careful of is to preserve the
740   // instruction that defines the result value.
741 
742   // Make sure V2 is smaller than V1.
743   if (V1->id < V2->id) {
744     V1->copyFrom(*V2);
745     std::swap(V1, V2);
746   }
747 
748   // Merge V1 segments into V2.
749   for (iterator I = begin(); I != end(); ) {
750     iterator S = I++;
751     if (S->valno != V1) continue;  // Not a V1 Segment.
752 
753     // Okay, we found a V1 live range.  If it had a previous, touching, V2 live
754     // range, extend it.
755     if (S != begin()) {
756       iterator Prev = S-1;
757       if (Prev->valno == V2 && Prev->end == S->start) {
758         Prev->end = S->end;
759 
760         // Erase this live-range.
761         segments.erase(S);
762         I = Prev+1;
763         S = Prev;
764       }
765     }
766 
767     // Okay, now we have a V1 or V2 live range that is maximally merged forward.
768     // Ensure that it is a V2 live-range.
769     S->valno = V2;
770 
771     // If we can merge it into later V2 segments, do so now.  We ignore any
772     // following V1 segments, as they will be merged in subsequent iterations
773     // of the loop.
774     if (I != end()) {
775       if (I->start == S->end && I->valno == V2) {
776         S->end = I->end;
777         segments.erase(I);
778         I = S+1;
779       }
780     }
781   }
782 
783   // Now that V1 is dead, remove it.
784   markValNoForDeletion(V1);
785 
786   return V2;
787 }
788 
789 void LiveRange::flushSegmentSet() {
790   assert(segmentSet != nullptr && "segment set must have been created");
791   assert(
792       segments.empty() &&
793       "segment set can be used only initially before switching to the array");
794   segments.append(segmentSet->begin(), segmentSet->end());
795   segmentSet = nullptr;
796   verify();
797 }
798 
799 bool LiveRange::isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const {
800   ArrayRef<SlotIndex>::iterator SlotI = Slots.begin();
801   ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
802 
803   // If there are no regmask slots, we have nothing to search.
804   if (SlotI == SlotE)
805     return false;
806 
807   // Start our search at the first segment that ends after the first slot.
808   const_iterator SegmentI = find(*SlotI);
809   const_iterator SegmentE = end();
810 
811   // If there are no segments that end after the first slot, we're done.
812   if (SegmentI == SegmentE)
813     return false;
814 
815   // Look for each slot in the live range.
816   for ( ; SlotI != SlotE; ++SlotI) {
817     // Go to the next segment that ends after the current slot.
818     // The slot may be within a hole in the range.
819     SegmentI = advanceTo(SegmentI, *SlotI);
820     if (SegmentI == SegmentE)
821       return false;
822 
823     // If this segment contains the slot, we're done.
824     if (SegmentI->contains(*SlotI))
825       return true;
826     // Otherwise, look for the next slot.
827   }
828 
829   // We didn't find a segment containing any of the slots.
830   return false;
831 }
832 
833 void LiveInterval::freeSubRange(SubRange *S) {
834   S->~SubRange();
835   // Memory was allocated with BumpPtr allocator and is not freed here.
836 }
837 
838 void LiveInterval::removeEmptySubRanges() {
839   SubRange **NextPtr = &SubRanges;
840   SubRange *I = *NextPtr;
841   while (I != nullptr) {
842     if (!I->empty()) {
843       NextPtr = &I->Next;
844       I = *NextPtr;
845       continue;
846     }
847     // Skip empty subranges until we find the first nonempty one.
848     do {
849       SubRange *Next = I->Next;
850       freeSubRange(I);
851       I = Next;
852     } while (I != nullptr && I->empty());
853     *NextPtr = I;
854   }
855 }
856 
857 void LiveInterval::clearSubRanges() {
858   for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) {
859     Next = I->Next;
860     freeSubRange(I);
861   }
862   SubRanges = nullptr;
863 }
864 
865 /// For each VNI in \p SR, check whether or not that value defines part
866 /// of the mask describe by \p LaneMask and if not, remove that value
867 /// from \p SR.
868 static void stripValuesNotDefiningMask(unsigned Reg, LiveInterval::SubRange &SR,
869                                        LaneBitmask LaneMask,
870                                        const SlotIndexes &Indexes,
871                                        const TargetRegisterInfo &TRI,
872                                        unsigned ComposeSubRegIdx) {
873   // Phys reg should not be tracked at subreg level.
874   // Same for noreg (Reg == 0).
875   if (!Register::isVirtualRegister(Reg) || !Reg)
876     return;
877   // Remove the values that don't define those lanes.
878   SmallVector<VNInfo *, 8> ToBeRemoved;
879   for (VNInfo *VNI : SR.valnos) {
880     if (VNI->isUnused())
881       continue;
882     // PHI definitions don't have MI attached, so there is nothing
883     // we can use to strip the VNI.
884     if (VNI->isPHIDef())
885       continue;
886     const MachineInstr *MI = Indexes.getInstructionFromIndex(VNI->def);
887     assert(MI && "Cannot find the definition of a value");
888     bool hasDef = false;
889     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
890       if (!MOI->isReg() || !MOI->isDef())
891         continue;
892       if (MOI->getReg() != Reg)
893         continue;
894       LaneBitmask OrigMask = TRI.getSubRegIndexLaneMask(MOI->getSubReg());
895       LaneBitmask ExpectedDefMask =
896           ComposeSubRegIdx
897               ? TRI.composeSubRegIndexLaneMask(ComposeSubRegIdx, OrigMask)
898               : OrigMask;
899       if ((ExpectedDefMask & LaneMask).none())
900         continue;
901       hasDef = true;
902       break;
903     }
904 
905     if (!hasDef)
906       ToBeRemoved.push_back(VNI);
907   }
908   for (VNInfo *VNI : ToBeRemoved)
909     SR.removeValNo(VNI);
910 
911   // If the subrange is empty at this point, the MIR is invalid. Do not assert
912   // and let the verifier catch this case.
913 }
914 
915 void LiveInterval::refineSubRanges(
916     BumpPtrAllocator &Allocator, LaneBitmask LaneMask,
917     std::function<void(LiveInterval::SubRange &)> Apply,
918     const SlotIndexes &Indexes, const TargetRegisterInfo &TRI,
919     unsigned ComposeSubRegIdx) {
920   LaneBitmask ToApply = LaneMask;
921   for (SubRange &SR : subranges()) {
922     LaneBitmask SRMask = SR.LaneMask;
923     LaneBitmask Matching = SRMask & LaneMask;
924     if (Matching.none())
925       continue;
926 
927     SubRange *MatchingRange;
928     if (SRMask == Matching) {
929       // The subrange fits (it does not cover bits outside \p LaneMask).
930       MatchingRange = &SR;
931     } else {
932       // We have to split the subrange into a matching and non-matching part.
933       // Reduce lanemask of existing lane to non-matching part.
934       SR.LaneMask = SRMask & ~Matching;
935       // Create a new subrange for the matching part
936       MatchingRange = createSubRangeFrom(Allocator, Matching, SR);
937       // Now that the subrange is split in half, make sure we
938       // only keep in the subranges the VNIs that touch the related half.
939       stripValuesNotDefiningMask(reg(), *MatchingRange, Matching, Indexes, TRI,
940                                  ComposeSubRegIdx);
941       stripValuesNotDefiningMask(reg(), SR, SR.LaneMask, Indexes, TRI,
942                                  ComposeSubRegIdx);
943     }
944     Apply(*MatchingRange);
945     ToApply &= ~Matching;
946   }
947   // Create a new subrange if there are uncovered bits left.
948   if (ToApply.any()) {
949     SubRange *NewRange = createSubRange(Allocator, ToApply);
950     Apply(*NewRange);
951   }
952 }
953 
954 unsigned LiveInterval::getSize() const {
955   unsigned Sum = 0;
956   for (const Segment &S : segments)
957     Sum += S.start.distance(S.end);
958   return Sum;
959 }
960 
961 void LiveInterval::computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs,
962                                          LaneBitmask LaneMask,
963                                          const MachineRegisterInfo &MRI,
964                                          const SlotIndexes &Indexes) const {
965   assert(Register::isVirtualRegister(reg()));
966   LaneBitmask VRegMask = MRI.getMaxLaneMaskForVReg(reg());
967   assert((VRegMask & LaneMask).any());
968   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
969   for (const MachineOperand &MO : MRI.def_operands(reg())) {
970     if (!MO.isUndef())
971       continue;
972     unsigned SubReg = MO.getSubReg();
973     assert(SubReg != 0 && "Undef should only be set on subreg defs");
974     LaneBitmask DefMask = TRI.getSubRegIndexLaneMask(SubReg);
975     LaneBitmask UndefMask = VRegMask & ~DefMask;
976     if ((UndefMask & LaneMask).any()) {
977       const MachineInstr &MI = *MO.getParent();
978       bool EarlyClobber = MO.isEarlyClobber();
979       SlotIndex Pos = Indexes.getInstructionIndex(MI).getRegSlot(EarlyClobber);
980       Undefs.push_back(Pos);
981     }
982   }
983 }
984 
985 raw_ostream& llvm::operator<<(raw_ostream& OS, const LiveRange::Segment &S) {
986   return OS << '[' << S.start << ',' << S.end << ':' << S.valno->id << ')';
987 }
988 
989 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
990 LLVM_DUMP_METHOD void LiveRange::Segment::dump() const {
991   dbgs() << *this << '\n';
992 }
993 #endif
994 
995 void LiveRange::print(raw_ostream &OS) const {
996   if (empty())
997     OS << "EMPTY";
998   else {
999     for (const Segment &S : segments) {
1000       OS << S;
1001       assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo");
1002     }
1003   }
1004 
1005   // Print value number info.
1006   if (getNumValNums()) {
1007     OS << ' ';
1008     unsigned vnum = 0;
1009     for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
1010          ++i, ++vnum) {
1011       const VNInfo *vni = *i;
1012       if (vnum) OS << ' ';
1013       OS << vnum << '@';
1014       if (vni->isUnused()) {
1015         OS << 'x';
1016       } else {
1017         OS << vni->def;
1018         if (vni->isPHIDef())
1019           OS << "-phi";
1020       }
1021     }
1022   }
1023 }
1024 
1025 void LiveInterval::SubRange::print(raw_ostream &OS) const {
1026   OS << "  L" << PrintLaneMask(LaneMask) << ' '
1027      << static_cast<const LiveRange &>(*this);
1028 }
1029 
1030 void LiveInterval::print(raw_ostream &OS) const {
1031   OS << printReg(reg()) << ' ';
1032   super::print(OS);
1033   // Print subranges
1034   for (const SubRange &SR : subranges())
1035     OS << SR;
1036   OS << "  weight:" << Weight;
1037 }
1038 
1039 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1040 LLVM_DUMP_METHOD void LiveRange::dump() const {
1041   dbgs() << *this << '\n';
1042 }
1043 
1044 LLVM_DUMP_METHOD void LiveInterval::SubRange::dump() const {
1045   dbgs() << *this << '\n';
1046 }
1047 
1048 LLVM_DUMP_METHOD void LiveInterval::dump() const {
1049   dbgs() << *this << '\n';
1050 }
1051 #endif
1052 
1053 #ifndef NDEBUG
1054 void LiveRange::verify() const {
1055   for (const_iterator I = begin(), E = end(); I != E; ++I) {
1056     assert(I->start.isValid());
1057     assert(I->end.isValid());
1058     assert(I->start < I->end);
1059     assert(I->valno != nullptr);
1060     assert(I->valno->id < valnos.size());
1061     assert(I->valno == valnos[I->valno->id]);
1062     if (std::next(I) != E) {
1063       assert(I->end <= std::next(I)->start);
1064       if (I->end == std::next(I)->start)
1065         assert(I->valno != std::next(I)->valno);
1066     }
1067   }
1068 }
1069 
1070 void LiveInterval::verify(const MachineRegisterInfo *MRI) const {
1071   super::verify();
1072 
1073   // Make sure SubRanges are fine and LaneMasks are disjunct.
1074   LaneBitmask Mask;
1075   LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg())
1076                                        : LaneBitmask::getAll();
1077   for (const SubRange &SR : subranges()) {
1078     // Subrange lanemask should be disjunct to any previous subrange masks.
1079     assert((Mask & SR.LaneMask).none());
1080     Mask |= SR.LaneMask;
1081 
1082     // subrange mask should not contained in maximum lane mask for the vreg.
1083     assert((Mask & ~MaxMask).none());
1084     // empty subranges must be removed.
1085     assert(!SR.empty());
1086 
1087     SR.verify();
1088     // Main liverange should cover subrange.
1089     assert(covers(SR));
1090   }
1091 }
1092 #endif
1093 
1094 //===----------------------------------------------------------------------===//
1095 //                           LiveRangeUpdater class
1096 //===----------------------------------------------------------------------===//
1097 //
1098 // The LiveRangeUpdater class always maintains these invariants:
1099 //
1100 // - When LastStart is invalid, Spills is empty and the iterators are invalid.
1101 //   This is the initial state, and the state created by flush().
1102 //   In this state, isDirty() returns false.
1103 //
1104 // Otherwise, segments are kept in three separate areas:
1105 //
1106 // 1. [begin; WriteI) at the front of LR.
1107 // 2. [ReadI; end) at the back of LR.
1108 // 3. Spills.
1109 //
1110 // - LR.begin() <= WriteI <= ReadI <= LR.end().
1111 // - Segments in all three areas are fully ordered and coalesced.
1112 // - Segments in area 1 precede and can't coalesce with segments in area 2.
1113 // - Segments in Spills precede and can't coalesce with segments in area 2.
1114 // - No coalescing is possible between segments in Spills and segments in area
1115 //   1, and there are no overlapping segments.
1116 //
1117 // The segments in Spills are not ordered with respect to the segments in area
1118 // 1. They need to be merged.
1119 //
1120 // When they exist, Spills.back().start <= LastStart,
1121 //                 and WriteI[-1].start <= LastStart.
1122 
1123 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1124 void LiveRangeUpdater::print(raw_ostream &OS) const {
1125   if (!isDirty()) {
1126     if (LR)
1127       OS << "Clean updater: " << *LR << '\n';
1128     else
1129       OS << "Null updater.\n";
1130     return;
1131   }
1132   assert(LR && "Can't have null LR in dirty updater.");
1133   OS << " updater with gap = " << (ReadI - WriteI)
1134      << ", last start = " << LastStart
1135      << ":\n  Area 1:";
1136   for (const auto &S : make_range(LR->begin(), WriteI))
1137     OS << ' ' << S;
1138   OS << "\n  Spills:";
1139   for (unsigned I = 0, E = Spills.size(); I != E; ++I)
1140     OS << ' ' << Spills[I];
1141   OS << "\n  Area 2:";
1142   for (const auto &S : make_range(ReadI, LR->end()))
1143     OS << ' ' << S;
1144   OS << '\n';
1145 }
1146 
1147 LLVM_DUMP_METHOD void LiveRangeUpdater::dump() const {
1148   print(errs());
1149 }
1150 #endif
1151 
1152 // Determine if A and B should be coalesced.
1153 static inline bool coalescable(const LiveRange::Segment &A,
1154                                const LiveRange::Segment &B) {
1155   assert(A.start <= B.start && "Unordered live segments.");
1156   if (A.end == B.start)
1157     return A.valno == B.valno;
1158   if (A.end < B.start)
1159     return false;
1160   assert(A.valno == B.valno && "Cannot overlap different values");
1161   return true;
1162 }
1163 
1164 void LiveRangeUpdater::add(LiveRange::Segment Seg) {
1165   assert(LR && "Cannot add to a null destination");
1166 
1167   // Fall back to the regular add method if the live range
1168   // is using the segment set instead of the segment vector.
1169   if (LR->segmentSet != nullptr) {
1170     LR->addSegmentToSet(Seg);
1171     return;
1172   }
1173 
1174   // Flush the state if Start moves backwards.
1175   if (!LastStart.isValid() || LastStart > Seg.start) {
1176     if (isDirty())
1177       flush();
1178     // This brings us to an uninitialized state. Reinitialize.
1179     assert(Spills.empty() && "Leftover spilled segments");
1180     WriteI = ReadI = LR->begin();
1181   }
1182 
1183   // Remember start for next time.
1184   LastStart = Seg.start;
1185 
1186   // Advance ReadI until it ends after Seg.start.
1187   LiveRange::iterator E = LR->end();
1188   if (ReadI != E && ReadI->end <= Seg.start) {
1189     // First try to close the gap between WriteI and ReadI with spills.
1190     if (ReadI != WriteI)
1191       mergeSpills();
1192     // Then advance ReadI.
1193     if (ReadI == WriteI)
1194       ReadI = WriteI = LR->find(Seg.start);
1195     else
1196       while (ReadI != E && ReadI->end <= Seg.start)
1197         *WriteI++ = *ReadI++;
1198   }
1199 
1200   assert(ReadI == E || ReadI->end > Seg.start);
1201 
1202   // Check if the ReadI segment begins early.
1203   if (ReadI != E && ReadI->start <= Seg.start) {
1204     assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
1205     // Bail if Seg is completely contained in ReadI.
1206     if (ReadI->end >= Seg.end)
1207       return;
1208     // Coalesce into Seg.
1209     Seg.start = ReadI->start;
1210     ++ReadI;
1211   }
1212 
1213   // Coalesce as much as possible from ReadI into Seg.
1214   while (ReadI != E && coalescable(Seg, *ReadI)) {
1215     Seg.end = std::max(Seg.end, ReadI->end);
1216     ++ReadI;
1217   }
1218 
1219   // Try coalescing Spills.back() into Seg.
1220   if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
1221     Seg.start = Spills.back().start;
1222     Seg.end = std::max(Spills.back().end, Seg.end);
1223     Spills.pop_back();
1224   }
1225 
1226   // Try coalescing Seg into WriteI[-1].
1227   if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
1228     WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
1229     return;
1230   }
1231 
1232   // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
1233   if (WriteI != ReadI) {
1234     *WriteI++ = Seg;
1235     return;
1236   }
1237 
1238   // Finally, append to LR or Spills.
1239   if (WriteI == E) {
1240     LR->segments.push_back(Seg);
1241     WriteI = ReadI = LR->end();
1242   } else
1243     Spills.push_back(Seg);
1244 }
1245 
1246 // Merge as many spilled segments as possible into the gap between WriteI
1247 // and ReadI. Advance WriteI to reflect the inserted instructions.
1248 void LiveRangeUpdater::mergeSpills() {
1249   // Perform a backwards merge of Spills and [SpillI;WriteI).
1250   size_t GapSize = ReadI - WriteI;
1251   size_t NumMoved = std::min(Spills.size(), GapSize);
1252   LiveRange::iterator Src = WriteI;
1253   LiveRange::iterator Dst = Src + NumMoved;
1254   LiveRange::iterator SpillSrc = Spills.end();
1255   LiveRange::iterator B = LR->begin();
1256 
1257   // This is the new WriteI position after merging spills.
1258   WriteI = Dst;
1259 
1260   // Now merge Src and Spills backwards.
1261   while (Src != Dst) {
1262     if (Src != B && Src[-1].start > SpillSrc[-1].start)
1263       *--Dst = *--Src;
1264     else
1265       *--Dst = *--SpillSrc;
1266   }
1267   assert(NumMoved == size_t(Spills.end() - SpillSrc));
1268   Spills.erase(SpillSrc, Spills.end());
1269 }
1270 
1271 void LiveRangeUpdater::flush() {
1272   if (!isDirty())
1273     return;
1274   // Clear the dirty state.
1275   LastStart = SlotIndex();
1276 
1277   assert(LR && "Cannot add to a null destination");
1278 
1279   // Nothing to merge?
1280   if (Spills.empty()) {
1281     LR->segments.erase(WriteI, ReadI);
1282     LR->verify();
1283     return;
1284   }
1285 
1286   // Resize the WriteI - ReadI gap to match Spills.
1287   size_t GapSize = ReadI - WriteI;
1288   if (GapSize < Spills.size()) {
1289     // The gap is too small. Make some room.
1290     size_t WritePos = WriteI - LR->begin();
1291     LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
1292     // This also invalidated ReadI, but it is recomputed below.
1293     WriteI = LR->begin() + WritePos;
1294   } else {
1295     // Shrink the gap if necessary.
1296     LR->segments.erase(WriteI + Spills.size(), ReadI);
1297   }
1298   ReadI = WriteI + Spills.size();
1299   mergeSpills();
1300   LR->verify();
1301 }
1302 
1303 unsigned ConnectedVNInfoEqClasses::Classify(const LiveRange &LR) {
1304   // Create initial equivalence classes.
1305   EqClass.clear();
1306   EqClass.grow(LR.getNumValNums());
1307 
1308   const VNInfo *used = nullptr, *unused = nullptr;
1309 
1310   // Determine connections.
1311   for (const VNInfo *VNI : LR.valnos) {
1312     // Group all unused values into one class.
1313     if (VNI->isUnused()) {
1314       if (unused)
1315         EqClass.join(unused->id, VNI->id);
1316       unused = VNI;
1317       continue;
1318     }
1319     used = VNI;
1320     if (VNI->isPHIDef()) {
1321       const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
1322       assert(MBB && "Phi-def has no defining MBB");
1323       // Connect to values live out of predecessors.
1324       for (MachineBasicBlock *Pred : MBB->predecessors())
1325         if (const VNInfo *PVNI = LR.getVNInfoBefore(LIS.getMBBEndIdx(Pred)))
1326           EqClass.join(VNI->id, PVNI->id);
1327     } else {
1328       // Normal value defined by an instruction. Check for two-addr redef.
1329       // FIXME: This could be coincidental. Should we really check for a tied
1330       // operand constraint?
1331       // Note that VNI->def may be a use slot for an early clobber def.
1332       if (const VNInfo *UVNI = LR.getVNInfoBefore(VNI->def))
1333         EqClass.join(VNI->id, UVNI->id);
1334     }
1335   }
1336 
1337   // Lump all the unused values in with the last used value.
1338   if (used && unused)
1339     EqClass.join(used->id, unused->id);
1340 
1341   EqClass.compress();
1342   return EqClass.getNumClasses();
1343 }
1344 
1345 void ConnectedVNInfoEqClasses::Distribute(LiveInterval &LI, LiveInterval *LIV[],
1346                                           MachineRegisterInfo &MRI) {
1347   // Rewrite instructions.
1348   for (MachineOperand &MO :
1349        llvm::make_early_inc_range(MRI.reg_operands(LI.reg()))) {
1350     MachineInstr *MI = MO.getParent();
1351     const VNInfo *VNI;
1352     if (MI->isDebugValue()) {
1353       // DBG_VALUE instructions don't have slot indexes, so get the index of
1354       // the instruction before them. The value is defined there too.
1355       SlotIndex Idx = LIS.getSlotIndexes()->getIndexBefore(*MI);
1356       VNI = LI.Query(Idx).valueOut();
1357     } else {
1358       SlotIndex Idx = LIS.getInstructionIndex(*MI);
1359       LiveQueryResult LRQ = LI.Query(Idx);
1360       VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
1361     }
1362     // In the case of an <undef> use that isn't tied to any def, VNI will be
1363     // NULL. If the use is tied to a def, VNI will be the defined value.
1364     if (!VNI)
1365       continue;
1366     if (unsigned EqClass = getEqClass(VNI))
1367       MO.setReg(LIV[EqClass - 1]->reg());
1368   }
1369 
1370   // Distribute subregister liveranges.
1371   if (LI.hasSubRanges()) {
1372     unsigned NumComponents = EqClass.getNumClasses();
1373     SmallVector<unsigned, 8> VNIMapping;
1374     SmallVector<LiveInterval::SubRange*, 8> SubRanges;
1375     BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1376     for (LiveInterval::SubRange &SR : LI.subranges()) {
1377       // Create new subranges in the split intervals and construct a mapping
1378       // for the VNInfos in the subrange.
1379       unsigned NumValNos = SR.valnos.size();
1380       VNIMapping.clear();
1381       VNIMapping.reserve(NumValNos);
1382       SubRanges.clear();
1383       SubRanges.resize(NumComponents-1, nullptr);
1384       for (unsigned I = 0; I < NumValNos; ++I) {
1385         const VNInfo &VNI = *SR.valnos[I];
1386         unsigned ComponentNum;
1387         if (VNI.isUnused()) {
1388           ComponentNum = 0;
1389         } else {
1390           const VNInfo *MainRangeVNI = LI.getVNInfoAt(VNI.def);
1391           assert(MainRangeVNI != nullptr
1392                  && "SubRange def must have corresponding main range def");
1393           ComponentNum = getEqClass(MainRangeVNI);
1394           if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) {
1395             SubRanges[ComponentNum-1]
1396               = LIV[ComponentNum-1]->createSubRange(Allocator, SR.LaneMask);
1397           }
1398         }
1399         VNIMapping.push_back(ComponentNum);
1400       }
1401       DistributeRange(SR, SubRanges.data(), VNIMapping);
1402     }
1403     LI.removeEmptySubRanges();
1404   }
1405 
1406   // Distribute main liverange.
1407   DistributeRange(LI, LIV, EqClass);
1408 }
1409