1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveDebugVariables analysis. 11 // 12 // Remove all DBG_VALUE instructions referencing virtual registers and replace 13 // them with a data structure tracking where live user variables are kept - in a 14 // virtual register or in a stack slot. 15 // 16 // Allow the data structure to be updated during register allocation when values 17 // are moved between registers and stack slots. Finally emit new DBG_VALUE 18 // instructions after register allocation is complete. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "LiveDebugVariables.h" 23 #include "llvm/ADT/ArrayRef.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/IntervalMap.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/CodeGen/LexicalScopes.h" 32 #include "llvm/CodeGen/LiveInterval.h" 33 #include "llvm/CodeGen/LiveIntervals.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineDominators.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/SlotIndexes.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetOpcodes.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/VirtRegMap.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/MC/MCRegisterInfo.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <iterator> 61 #include <memory> 62 #include <utility> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "livedebugvars" 67 68 static cl::opt<bool> 69 EnableLDV("live-debug-variables", cl::init(true), 70 cl::desc("Enable the live debug variables pass"), cl::Hidden); 71 72 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); 73 74 char LiveDebugVariables::ID = 0; 75 76 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE, 77 "Debug Variable Analysis", false, false) 78 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 79 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 80 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE, 81 "Debug Variable Analysis", false, false) 82 83 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { 84 AU.addRequired<MachineDominatorTree>(); 85 AU.addRequiredTransitive<LiveIntervals>(); 86 AU.setPreservesAll(); 87 MachineFunctionPass::getAnalysisUsage(AU); 88 } 89 90 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) { 91 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 92 } 93 94 enum : unsigned { UndefLocNo = ~0U }; 95 96 /// Describes a location by number along with some flags about the original 97 /// usage of the location. 98 class DbgValueLocation { 99 public: 100 DbgValueLocation(unsigned LocNo, bool WasIndirect) 101 : LocNo(LocNo), WasIndirect(WasIndirect) { 102 static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing"); 103 assert(locNo() == LocNo && "location truncation"); 104 } 105 106 DbgValueLocation() : LocNo(0), WasIndirect(0) {} 107 108 unsigned locNo() const { 109 // Fix up the undef location number, which gets truncated. 110 return LocNo == INT_MAX ? UndefLocNo : LocNo; 111 } 112 bool wasIndirect() const { return WasIndirect; } 113 bool isUndef() const { return locNo() == UndefLocNo; } 114 115 DbgValueLocation changeLocNo(unsigned NewLocNo) const { 116 return DbgValueLocation(NewLocNo, WasIndirect); 117 } 118 119 friend inline bool operator==(const DbgValueLocation &LHS, 120 const DbgValueLocation &RHS) { 121 return LHS.LocNo == RHS.LocNo && LHS.WasIndirect == RHS.WasIndirect; 122 } 123 124 friend inline bool operator!=(const DbgValueLocation &LHS, 125 const DbgValueLocation &RHS) { 126 return !(LHS == RHS); 127 } 128 129 private: 130 unsigned LocNo : 31; 131 unsigned WasIndirect : 1; 132 }; 133 134 /// LocMap - Map of where a user value is live, and its location. 135 using LocMap = IntervalMap<SlotIndex, DbgValueLocation, 4>; 136 137 namespace { 138 139 class LDVImpl; 140 141 /// UserValue - A user value is a part of a debug info user variable. 142 /// 143 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 144 /// holds part of a user variable. The part is identified by a byte offset. 145 /// 146 /// UserValues are grouped into equivalence classes for easier searching. Two 147 /// user values are related if they refer to the same variable, or if they are 148 /// held by the same virtual register. The equivalence class is the transitive 149 /// closure of that relation. 150 class UserValue { 151 const DILocalVariable *Variable; ///< The debug info variable we are part of. 152 const DIExpression *Expression; ///< Any complex address expression. 153 DebugLoc dl; ///< The debug location for the variable. This is 154 ///< used by dwarf writer to find lexical scope. 155 UserValue *leader; ///< Equivalence class leader. 156 UserValue *next = nullptr; ///< Next value in equivalence class, or null. 157 158 /// Numbered locations referenced by locmap. 159 SmallVector<MachineOperand, 4> locations; 160 161 /// Map of slot indices where this value is live. 162 LocMap locInts; 163 164 /// Set of interval start indexes that have been trimmed to the 165 /// lexical scope. 166 SmallSet<SlotIndex, 2> trimmedDefs; 167 168 /// insertDebugValue - Insert a DBG_VALUE into MBB at Idx for LocNo. 169 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 170 SlotIndex StopIdx, 171 DbgValueLocation Loc, bool Spilled, LiveIntervals &LIS, 172 const TargetInstrInfo &TII, 173 const TargetRegisterInfo &TRI); 174 175 /// splitLocation - Replace OldLocNo ranges with NewRegs ranges where NewRegs 176 /// is live. Returns true if any changes were made. 177 bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 178 LiveIntervals &LIS); 179 180 public: 181 /// UserValue - Create a new UserValue. 182 UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L, 183 LocMap::Allocator &alloc) 184 : Variable(var), Expression(expr), dl(std::move(L)), leader(this), 185 locInts(alloc) {} 186 187 /// getLeader - Get the leader of this value's equivalence class. 188 UserValue *getLeader() { 189 UserValue *l = leader; 190 while (l != l->leader) 191 l = l->leader; 192 return leader = l; 193 } 194 195 /// getNext - Return the next UserValue in the equivalence class. 196 UserValue *getNext() const { return next; } 197 198 /// match - Does this UserValue match the parameters? 199 bool match(const DILocalVariable *Var, const DIExpression *Expr, 200 const DILocation *IA) const { 201 // FIXME: The fragment should be part of the equivalence class, but not 202 // other things in the expression like stack values. 203 return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA; 204 } 205 206 /// merge - Merge equivalence classes. 207 static UserValue *merge(UserValue *L1, UserValue *L2) { 208 L2 = L2->getLeader(); 209 if (!L1) 210 return L2; 211 L1 = L1->getLeader(); 212 if (L1 == L2) 213 return L1; 214 // Splice L2 before L1's members. 215 UserValue *End = L2; 216 while (End->next) { 217 End->leader = L1; 218 End = End->next; 219 } 220 End->leader = L1; 221 End->next = L1->next; 222 L1->next = L2; 223 return L1; 224 } 225 226 /// getLocationNo - Return the location number that matches Loc. 227 unsigned getLocationNo(const MachineOperand &LocMO) { 228 if (LocMO.isReg()) { 229 if (LocMO.getReg() == 0) 230 return UndefLocNo; 231 // For register locations we dont care about use/def and other flags. 232 for (unsigned i = 0, e = locations.size(); i != e; ++i) 233 if (locations[i].isReg() && 234 locations[i].getReg() == LocMO.getReg() && 235 locations[i].getSubReg() == LocMO.getSubReg()) 236 return i; 237 } else 238 for (unsigned i = 0, e = locations.size(); i != e; ++i) 239 if (LocMO.isIdenticalTo(locations[i])) 240 return i; 241 locations.push_back(LocMO); 242 // We are storing a MachineOperand outside a MachineInstr. 243 locations.back().clearParent(); 244 // Don't store def operands. 245 if (locations.back().isReg()) 246 locations.back().setIsUse(); 247 return locations.size() - 1; 248 } 249 250 /// mapVirtRegs - Ensure that all virtual register locations are mapped. 251 void mapVirtRegs(LDVImpl *LDV); 252 253 /// addDef - Add a definition point to this value. 254 void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect) { 255 DbgValueLocation Loc(getLocationNo(LocMO), IsIndirect); 256 // Add a singular (Idx,Idx) -> Loc mapping. 257 LocMap::iterator I = locInts.find(Idx); 258 if (!I.valid() || I.start() != Idx) 259 I.insert(Idx, Idx.getNextSlot(), Loc); 260 else 261 // A later DBG_VALUE at the same SlotIndex overrides the old location. 262 I.setValue(Loc); 263 } 264 265 /// extendDef - Extend the current definition as far as possible down. 266 /// Stop when meeting an existing def or when leaving the live 267 /// range of VNI. 268 /// End points where VNI is no longer live are added to Kills. 269 /// @param Idx Starting point for the definition. 270 /// @param Loc Location number to propagate. 271 /// @param LR Restrict liveness to where LR has the value VNI. May be null. 272 /// @param VNI When LR is not null, this is the value to restrict to. 273 /// @param Kills Append end points of VNI's live range to Kills. 274 /// @param LIS Live intervals analysis. 275 void extendDef(SlotIndex Idx, DbgValueLocation Loc, 276 LiveRange *LR, const VNInfo *VNI, 277 SmallVectorImpl<SlotIndex> *Kills, 278 LiveIntervals &LIS); 279 280 /// addDefsFromCopies - The value in LI/LocNo may be copies to other 281 /// registers. Determine if any of the copies are available at the kill 282 /// points, and add defs if possible. 283 /// @param LI Scan for copies of the value in LI->reg. 284 /// @param LocNo Location number of LI->reg. 285 /// @param WasIndirect Indicates if the original use of LI->reg was indirect 286 /// @param Kills Points where the range of LocNo could be extended. 287 /// @param NewDefs Append (Idx, LocNo) of inserted defs here. 288 void addDefsFromCopies( 289 LiveInterval *LI, unsigned LocNo, bool WasIndirect, 290 const SmallVectorImpl<SlotIndex> &Kills, 291 SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs, 292 MachineRegisterInfo &MRI, LiveIntervals &LIS); 293 294 /// computeIntervals - Compute the live intervals of all locations after 295 /// collecting all their def points. 296 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, 297 LiveIntervals &LIS, LexicalScopes &LS); 298 299 /// splitRegister - Replace OldReg ranges with NewRegs ranges where NewRegs is 300 /// live. Returns true if any changes were made. 301 bool splitRegister(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 302 LiveIntervals &LIS); 303 304 /// rewriteLocations - Rewrite virtual register locations according to the 305 /// provided virtual register map. Record which locations were spilled. 306 void rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI, 307 BitVector &SpilledLocations); 308 309 /// emitDebugValues - Recreate DBG_VALUE instruction from data structures. 310 void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 311 const TargetInstrInfo &TII, 312 const TargetRegisterInfo &TRI, 313 const BitVector &SpilledLocations); 314 315 /// getDebugLoc - Return DebugLoc of this UserValue. 316 DebugLoc getDebugLoc() { return dl;} 317 318 void print(raw_ostream &, const TargetRegisterInfo *); 319 }; 320 321 /// LDVImpl - Implementation of the LiveDebugVariables pass. 322 class LDVImpl { 323 LiveDebugVariables &pass; 324 LocMap::Allocator allocator; 325 MachineFunction *MF = nullptr; 326 LiveIntervals *LIS; 327 const TargetRegisterInfo *TRI; 328 329 /// Whether emitDebugValues is called. 330 bool EmitDone = false; 331 332 /// Whether the machine function is modified during the pass. 333 bool ModifiedMF = false; 334 335 /// userValues - All allocated UserValue instances. 336 SmallVector<std::unique_ptr<UserValue>, 8> userValues; 337 338 /// Map virtual register to eq class leader. 339 using VRMap = DenseMap<unsigned, UserValue *>; 340 VRMap virtRegToEqClass; 341 342 /// Map user variable to eq class leader. 343 using UVMap = DenseMap<const DILocalVariable *, UserValue *>; 344 UVMap userVarMap; 345 346 /// getUserValue - Find or create a UserValue. 347 UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr, 348 const DebugLoc &DL); 349 350 /// lookupVirtReg - Find the EC leader for VirtReg or null. 351 UserValue *lookupVirtReg(unsigned VirtReg); 352 353 /// handleDebugValue - Add DBG_VALUE instruction to our maps. 354 /// @param MI DBG_VALUE instruction 355 /// @param Idx Last valid SLotIndex before instruction. 356 /// @return True if the DBG_VALUE instruction should be deleted. 357 bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); 358 359 /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding 360 /// a UserValue def for each instruction. 361 /// @param mf MachineFunction to be scanned. 362 /// @return True if any debug values were found. 363 bool collectDebugValues(MachineFunction &mf); 364 365 /// computeIntervals - Compute the live intervals of all user values after 366 /// collecting all their def points. 367 void computeIntervals(); 368 369 public: 370 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} 371 372 bool runOnMachineFunction(MachineFunction &mf); 373 374 /// clear - Release all memory. 375 void clear() { 376 MF = nullptr; 377 userValues.clear(); 378 virtRegToEqClass.clear(); 379 userVarMap.clear(); 380 // Make sure we call emitDebugValues if the machine function was modified. 381 assert((!ModifiedMF || EmitDone) && 382 "Dbg values are not emitted in LDV"); 383 EmitDone = false; 384 ModifiedMF = false; 385 } 386 387 /// mapVirtReg - Map virtual register to an equivalence class. 388 void mapVirtReg(unsigned VirtReg, UserValue *EC); 389 390 /// splitRegister - Replace all references to OldReg with NewRegs. 391 void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs); 392 393 /// emitDebugValues - Recreate DBG_VALUE instruction from data structures. 394 void emitDebugValues(VirtRegMap *VRM); 395 396 void print(raw_ostream&); 397 }; 398 399 } // end anonymous namespace 400 401 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 402 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, 403 const LLVMContext &Ctx) { 404 if (!DL) 405 return; 406 407 auto *Scope = cast<DIScope>(DL.getScope()); 408 // Omit the directory, because it's likely to be long and uninteresting. 409 CommentOS << Scope->getFilename(); 410 CommentOS << ':' << DL.getLine(); 411 if (DL.getCol() != 0) 412 CommentOS << ':' << DL.getCol(); 413 414 DebugLoc InlinedAtDL = DL.getInlinedAt(); 415 if (!InlinedAtDL) 416 return; 417 418 CommentOS << " @[ "; 419 printDebugLoc(InlinedAtDL, CommentOS, Ctx); 420 CommentOS << " ]"; 421 } 422 423 static void printExtendedName(raw_ostream &OS, const DILocalVariable *V, 424 const DILocation *DL) { 425 const LLVMContext &Ctx = V->getContext(); 426 StringRef Res = V->getName(); 427 if (!Res.empty()) 428 OS << Res << "," << V->getLine(); 429 if (auto *InlinedAt = DL->getInlinedAt()) { 430 if (DebugLoc InlinedAtDL = InlinedAt) { 431 OS << " @["; 432 printDebugLoc(InlinedAtDL, OS, Ctx); 433 OS << "]"; 434 } 435 } 436 } 437 438 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 439 auto *DV = cast<DILocalVariable>(Variable); 440 OS << "!\""; 441 printExtendedName(OS, DV, dl); 442 443 OS << "\"\t"; 444 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 445 OS << " [" << I.start() << ';' << I.stop() << "):"; 446 if (I.value().isUndef()) 447 OS << "undef"; 448 else { 449 OS << I.value().locNo(); 450 if (I.value().wasIndirect()) 451 OS << " ind"; 452 } 453 } 454 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 455 OS << " Loc" << i << '='; 456 locations[i].print(OS, TRI); 457 } 458 OS << '\n'; 459 } 460 461 void LDVImpl::print(raw_ostream &OS) { 462 OS << "********** DEBUG VARIABLES **********\n"; 463 for (unsigned i = 0, e = userValues.size(); i != e; ++i) 464 userValues[i]->print(OS, TRI); 465 } 466 #endif 467 468 void UserValue::mapVirtRegs(LDVImpl *LDV) { 469 for (unsigned i = 0, e = locations.size(); i != e; ++i) 470 if (locations[i].isReg() && 471 TargetRegisterInfo::isVirtualRegister(locations[i].getReg())) 472 LDV->mapVirtReg(locations[i].getReg(), this); 473 } 474 475 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var, 476 const DIExpression *Expr, const DebugLoc &DL) { 477 UserValue *&Leader = userVarMap[Var]; 478 if (Leader) { 479 UserValue *UV = Leader->getLeader(); 480 Leader = UV; 481 for (; UV; UV = UV->getNext()) 482 if (UV->match(Var, Expr, DL->getInlinedAt())) 483 return UV; 484 } 485 486 userValues.push_back( 487 llvm::make_unique<UserValue>(Var, Expr, DL, allocator)); 488 UserValue *UV = userValues.back().get(); 489 Leader = UserValue::merge(Leader, UV); 490 return UV; 491 } 492 493 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) { 494 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs"); 495 UserValue *&Leader = virtRegToEqClass[VirtReg]; 496 Leader = UserValue::merge(Leader, EC); 497 } 498 499 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) { 500 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) 501 return UV->getLeader(); 502 return nullptr; 503 } 504 505 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) { 506 // DBG_VALUE loc, offset, variable 507 if (MI.getNumOperands() != 4 || 508 !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) || 509 !MI.getOperand(2).isMetadata()) { 510 DEBUG(dbgs() << "Can't handle " << MI); 511 return false; 512 } 513 514 // Get or create the UserValue for (variable,offset) here. 515 bool IsIndirect = MI.getOperand(1).isImm(); 516 if (IsIndirect) 517 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); 518 const DILocalVariable *Var = MI.getDebugVariable(); 519 const DIExpression *Expr = MI.getDebugExpression(); 520 UserValue *UV = 521 getUserValue(Var, Expr, MI.getDebugLoc()); 522 UV->addDef(Idx, MI.getOperand(0), IsIndirect); 523 return true; 524 } 525 526 bool LDVImpl::collectDebugValues(MachineFunction &mf) { 527 bool Changed = false; 528 for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE; 529 ++MFI) { 530 MachineBasicBlock *MBB = &*MFI; 531 for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end(); 532 MBBI != MBBE;) { 533 if (!MBBI->isDebugValue()) { 534 ++MBBI; 535 continue; 536 } 537 // DBG_VALUE has no slot index, use the previous instruction instead. 538 SlotIndex Idx = 539 MBBI == MBB->begin() 540 ? LIS->getMBBStartIdx(MBB) 541 : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); 542 // Handle consecutive DBG_VALUE instructions with the same slot index. 543 do { 544 if (handleDebugValue(*MBBI, Idx)) { 545 MBBI = MBB->erase(MBBI); 546 Changed = true; 547 } else 548 ++MBBI; 549 } while (MBBI != MBBE && MBBI->isDebugValue()); 550 } 551 } 552 return Changed; 553 } 554 555 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a 556 /// data-flow analysis to propagate them beyond basic block boundaries. 557 void UserValue::extendDef(SlotIndex Idx, DbgValueLocation Loc, LiveRange *LR, 558 const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills, 559 LiveIntervals &LIS) { 560 SlotIndex Start = Idx; 561 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 562 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 563 LocMap::iterator I = locInts.find(Start); 564 565 // Limit to VNI's live range. 566 bool ToEnd = true; 567 if (LR && VNI) { 568 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); 569 if (!Segment || Segment->valno != VNI) { 570 if (Kills) 571 Kills->push_back(Start); 572 return; 573 } 574 if (Segment->end < Stop) { 575 Stop = Segment->end; 576 ToEnd = false; 577 } 578 } 579 580 // There could already be a short def at Start. 581 if (I.valid() && I.start() <= Start) { 582 // Stop when meeting a different location or an already extended interval. 583 Start = Start.getNextSlot(); 584 if (I.value() != Loc || I.stop() != Start) 585 return; 586 // This is a one-slot placeholder. Just skip it. 587 ++I; 588 } 589 590 // Limited by the next def. 591 if (I.valid() && I.start() < Stop) { 592 Stop = I.start(); 593 ToEnd = false; 594 } 595 // Limited by VNI's live range. 596 else if (!ToEnd && Kills) 597 Kills->push_back(Stop); 598 599 if (Start < Stop) 600 I.insert(Start, Stop, Loc); 601 } 602 603 void UserValue::addDefsFromCopies( 604 LiveInterval *LI, unsigned LocNo, bool WasIndirect, 605 const SmallVectorImpl<SlotIndex> &Kills, 606 SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs, 607 MachineRegisterInfo &MRI, LiveIntervals &LIS) { 608 if (Kills.empty()) 609 return; 610 // Don't track copies from physregs, there are too many uses. 611 if (!TargetRegisterInfo::isVirtualRegister(LI->reg)) 612 return; 613 614 // Collect all the (vreg, valno) pairs that are copies of LI. 615 SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues; 616 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) { 617 MachineInstr *MI = MO.getParent(); 618 // Copies of the full value. 619 if (MO.getSubReg() || !MI->isCopy()) 620 continue; 621 unsigned DstReg = MI->getOperand(0).getReg(); 622 623 // Don't follow copies to physregs. These are usually setting up call 624 // arguments, and the argument registers are always call clobbered. We are 625 // better off in the source register which could be a callee-saved register, 626 // or it could be spilled. 627 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 628 continue; 629 630 // Is LocNo extended to reach this copy? If not, another def may be blocking 631 // it, or we are looking at a wrong value of LI. 632 SlotIndex Idx = LIS.getInstructionIndex(*MI); 633 LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); 634 if (!I.valid() || I.value().locNo() != LocNo) 635 continue; 636 637 if (!LIS.hasInterval(DstReg)) 638 continue; 639 LiveInterval *DstLI = &LIS.getInterval(DstReg); 640 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); 641 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); 642 CopyValues.push_back(std::make_pair(DstLI, DstVNI)); 643 } 644 645 if (CopyValues.empty()) 646 return; 647 648 DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI << '\n'); 649 650 // Try to add defs of the copied values for each kill point. 651 for (unsigned i = 0, e = Kills.size(); i != e; ++i) { 652 SlotIndex Idx = Kills[i]; 653 for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) { 654 LiveInterval *DstLI = CopyValues[j].first; 655 const VNInfo *DstVNI = CopyValues[j].second; 656 if (DstLI->getVNInfoAt(Idx) != DstVNI) 657 continue; 658 // Check that there isn't already a def at Idx 659 LocMap::iterator I = locInts.find(Idx); 660 if (I.valid() && I.start() <= Idx) 661 continue; 662 DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #" 663 << DstVNI->id << " in " << *DstLI << '\n'); 664 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); 665 assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); 666 unsigned LocNo = getLocationNo(CopyMI->getOperand(0)); 667 DbgValueLocation NewLoc(LocNo, WasIndirect); 668 I.insert(Idx, Idx.getNextSlot(), NewLoc); 669 NewDefs.push_back(std::make_pair(Idx, NewLoc)); 670 break; 671 } 672 } 673 } 674 675 void UserValue::computeIntervals(MachineRegisterInfo &MRI, 676 const TargetRegisterInfo &TRI, 677 LiveIntervals &LIS, LexicalScopes &LS) { 678 SmallVector<std::pair<SlotIndex, DbgValueLocation>, 16> Defs; 679 680 // Collect all defs to be extended (Skipping undefs). 681 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 682 if (!I.value().isUndef()) 683 Defs.push_back(std::make_pair(I.start(), I.value())); 684 685 // Extend all defs, and possibly add new ones along the way. 686 for (unsigned i = 0; i != Defs.size(); ++i) { 687 SlotIndex Idx = Defs[i].first; 688 DbgValueLocation Loc = Defs[i].second; 689 const MachineOperand &LocMO = locations[Loc.locNo()]; 690 691 if (!LocMO.isReg()) { 692 extendDef(Idx, Loc, nullptr, nullptr, nullptr, LIS); 693 continue; 694 } 695 696 // Register locations are constrained to where the register value is live. 697 if (TargetRegisterInfo::isVirtualRegister(LocMO.getReg())) { 698 LiveInterval *LI = nullptr; 699 const VNInfo *VNI = nullptr; 700 if (LIS.hasInterval(LocMO.getReg())) { 701 LI = &LIS.getInterval(LocMO.getReg()); 702 VNI = LI->getVNInfoAt(Idx); 703 } 704 SmallVector<SlotIndex, 16> Kills; 705 extendDef(Idx, Loc, LI, VNI, &Kills, LIS); 706 if (LI) 707 addDefsFromCopies(LI, Loc.locNo(), Loc.wasIndirect(), Kills, Defs, MRI, 708 LIS); 709 continue; 710 } 711 712 // For physregs, we only mark the start slot idx. DwarfDebug will see it 713 // as if the DBG_VALUE is valid up until the end of the basic block, or 714 // the next def of the physical register. So we do not need to extend the 715 // range. It might actually happen that the DBG_VALUE is the last use of 716 // the physical register (e.g. if this is an unused input argument to a 717 // function). 718 } 719 720 // Erase all the undefs. 721 for (LocMap::iterator I = locInts.begin(); I.valid();) 722 if (I.value().isUndef()) 723 I.erase(); 724 else 725 ++I; 726 727 // The computed intervals may extend beyond the range of the debug 728 // location's lexical scope. In this case, splitting of an interval 729 // can result in an interval outside of the scope being created, 730 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent 731 // this, trim the intervals to the lexical scope. 732 733 LexicalScope *Scope = LS.findLexicalScope(dl); 734 if (!Scope) 735 return; 736 737 SlotIndex PrevEnd; 738 LocMap::iterator I = locInts.begin(); 739 740 // Iterate over the lexical scope ranges. Each time round the loop 741 // we check the intervals for overlap with the end of the previous 742 // range and the start of the next. The first range is handled as 743 // a special case where there is no PrevEnd. 744 for (const InsnRange &Range : Scope->getRanges()) { 745 SlotIndex RStart = LIS.getInstructionIndex(*Range.first); 746 SlotIndex REnd = LIS.getInstructionIndex(*Range.second); 747 748 // At the start of each iteration I has been advanced so that 749 // I.stop() >= PrevEnd. Check for overlap. 750 if (PrevEnd && I.start() < PrevEnd) { 751 SlotIndex IStop = I.stop(); 752 DbgValueLocation Loc = I.value(); 753 754 // Stop overlaps previous end - trim the end of the interval to 755 // the scope range. 756 I.setStopUnchecked(PrevEnd); 757 ++I; 758 759 // If the interval also overlaps the start of the "next" (i.e. 760 // current) range create a new interval for the remainder (which 761 // may be further trimmed). 762 if (RStart < IStop) 763 I.insert(RStart, IStop, Loc); 764 } 765 766 // Advance I so that I.stop() >= RStart, and check for overlap. 767 I.advanceTo(RStart); 768 if (!I.valid()) 769 return; 770 771 if (I.start() < RStart) { 772 // Interval start overlaps range - trim to the scope range. 773 I.setStartUnchecked(RStart); 774 // Remember that this interval was trimmed. 775 trimmedDefs.insert(RStart); 776 } 777 778 // The end of a lexical scope range is the last instruction in the 779 // range. To convert to an interval we need the index of the 780 // instruction after it. 781 REnd = REnd.getNextIndex(); 782 783 // Advance I to first interval outside current range. 784 I.advanceTo(REnd); 785 if (!I.valid()) 786 return; 787 788 PrevEnd = REnd; 789 } 790 791 // Check for overlap with end of final range. 792 if (PrevEnd && I.start() < PrevEnd) 793 I.setStopUnchecked(PrevEnd); 794 } 795 796 void LDVImpl::computeIntervals() { 797 LexicalScopes LS; 798 LS.initialize(*MF); 799 800 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 801 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS); 802 userValues[i]->mapVirtRegs(this); 803 } 804 } 805 806 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) { 807 clear(); 808 MF = &mf; 809 LIS = &pass.getAnalysis<LiveIntervals>(); 810 TRI = mf.getSubtarget().getRegisterInfo(); 811 DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 812 << mf.getName() << " **********\n"); 813 814 bool Changed = collectDebugValues(mf); 815 computeIntervals(); 816 DEBUG(print(dbgs())); 817 ModifiedMF = Changed; 818 return Changed; 819 } 820 821 static void removeDebugValues(MachineFunction &mf) { 822 for (MachineBasicBlock &MBB : mf) { 823 for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) { 824 if (!MBBI->isDebugValue()) { 825 ++MBBI; 826 continue; 827 } 828 MBBI = MBB.erase(MBBI); 829 } 830 } 831 } 832 833 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { 834 if (!EnableLDV) 835 return false; 836 if (!mf.getFunction()->getSubprogram()) { 837 removeDebugValues(mf); 838 return false; 839 } 840 if (!pImpl) 841 pImpl = new LDVImpl(this); 842 return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf); 843 } 844 845 void LiveDebugVariables::releaseMemory() { 846 if (pImpl) 847 static_cast<LDVImpl*>(pImpl)->clear(); 848 } 849 850 LiveDebugVariables::~LiveDebugVariables() { 851 if (pImpl) 852 delete static_cast<LDVImpl*>(pImpl); 853 } 854 855 //===----------------------------------------------------------------------===// 856 // Live Range Splitting 857 //===----------------------------------------------------------------------===// 858 859 bool 860 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 861 LiveIntervals& LIS) { 862 DEBUG({ 863 dbgs() << "Splitting Loc" << OldLocNo << '\t'; 864 print(dbgs(), nullptr); 865 }); 866 bool DidChange = false; 867 LocMap::iterator LocMapI; 868 LocMapI.setMap(locInts); 869 for (unsigned i = 0; i != NewRegs.size(); ++i) { 870 LiveInterval *LI = &LIS.getInterval(NewRegs[i]); 871 if (LI->empty()) 872 continue; 873 874 // Don't allocate the new LocNo until it is needed. 875 unsigned NewLocNo = UndefLocNo; 876 877 // Iterate over the overlaps between locInts and LI. 878 LocMapI.find(LI->beginIndex()); 879 if (!LocMapI.valid()) 880 continue; 881 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); 882 LiveInterval::iterator LIE = LI->end(); 883 while (LocMapI.valid() && LII != LIE) { 884 // At this point, we know that LocMapI.stop() > LII->start. 885 LII = LI->advanceTo(LII, LocMapI.start()); 886 if (LII == LIE) 887 break; 888 889 // Now LII->end > LocMapI.start(). Do we have an overlap? 890 if (LocMapI.value().locNo() == OldLocNo && LII->start < LocMapI.stop()) { 891 // Overlapping correct location. Allocate NewLocNo now. 892 if (NewLocNo == UndefLocNo) { 893 MachineOperand MO = MachineOperand::CreateReg(LI->reg, false); 894 MO.setSubReg(locations[OldLocNo].getSubReg()); 895 NewLocNo = getLocationNo(MO); 896 DidChange = true; 897 } 898 899 SlotIndex LStart = LocMapI.start(); 900 SlotIndex LStop = LocMapI.stop(); 901 DbgValueLocation OldLoc = LocMapI.value(); 902 903 // Trim LocMapI down to the LII overlap. 904 if (LStart < LII->start) 905 LocMapI.setStartUnchecked(LII->start); 906 if (LStop > LII->end) 907 LocMapI.setStopUnchecked(LII->end); 908 909 // Change the value in the overlap. This may trigger coalescing. 910 LocMapI.setValue(OldLoc.changeLocNo(NewLocNo)); 911 912 // Re-insert any removed OldLocNo ranges. 913 if (LStart < LocMapI.start()) { 914 LocMapI.insert(LStart, LocMapI.start(), OldLoc); 915 ++LocMapI; 916 assert(LocMapI.valid() && "Unexpected coalescing"); 917 } 918 if (LStop > LocMapI.stop()) { 919 ++LocMapI; 920 LocMapI.insert(LII->end, LStop, OldLoc); 921 --LocMapI; 922 } 923 } 924 925 // Advance to the next overlap. 926 if (LII->end < LocMapI.stop()) { 927 if (++LII == LIE) 928 break; 929 LocMapI.advanceTo(LII->start); 930 } else { 931 ++LocMapI; 932 if (!LocMapI.valid()) 933 break; 934 LII = LI->advanceTo(LII, LocMapI.start()); 935 } 936 } 937 } 938 939 // Finally, remove any remaining OldLocNo intervals and OldLocNo itself. 940 locations.erase(locations.begin() + OldLocNo); 941 LocMapI.goToBegin(); 942 while (LocMapI.valid()) { 943 DbgValueLocation v = LocMapI.value(); 944 if (v.locNo() == OldLocNo) { 945 DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';' 946 << LocMapI.stop() << ")\n"); 947 LocMapI.erase(); 948 } else { 949 if (v.locNo() > OldLocNo) 950 LocMapI.setValueUnchecked(v.changeLocNo(v.locNo() - 1)); 951 ++LocMapI; 952 } 953 } 954 955 DEBUG({dbgs() << "Split result: \t"; print(dbgs(), nullptr);}); 956 return DidChange; 957 } 958 959 bool 960 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, 961 LiveIntervals &LIS) { 962 bool DidChange = false; 963 // Split locations referring to OldReg. Iterate backwards so splitLocation can 964 // safely erase unused locations. 965 for (unsigned i = locations.size(); i ; --i) { 966 unsigned LocNo = i-1; 967 const MachineOperand *Loc = &locations[LocNo]; 968 if (!Loc->isReg() || Loc->getReg() != OldReg) 969 continue; 970 DidChange |= splitLocation(LocNo, NewRegs, LIS); 971 } 972 return DidChange; 973 } 974 975 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) { 976 bool DidChange = false; 977 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) 978 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); 979 980 if (!DidChange) 981 return; 982 983 // Map all of the new virtual registers. 984 UserValue *UV = lookupVirtReg(OldReg); 985 for (unsigned i = 0; i != NewRegs.size(); ++i) 986 mapVirtReg(NewRegs[i], UV); 987 } 988 989 void LiveDebugVariables:: 990 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) { 991 if (pImpl) 992 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); 993 } 994 995 void UserValue::rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI, 996 BitVector &SpilledLocations) { 997 // Build a set of new locations with new numbers so we can coalesce our 998 // IntervalMap if two vreg intervals collapse to the same physical location. 999 // Use MapVector instead of SetVector because MapVector::insert returns the 1000 // position of the previously or newly inserted element. The boolean value 1001 // tracks if the location was produced by a spill. 1002 // FIXME: This will be problematic if we ever support direct and indirect 1003 // frame index locations, i.e. expressing both variables in memory and 1004 // 'int x, *px = &x'. The "spilled" bit must become part of the location. 1005 MapVector<MachineOperand, bool> NewLocations; 1006 SmallVector<unsigned, 4> LocNoMap(locations.size()); 1007 for (unsigned I = 0, E = locations.size(); I != E; ++I) { 1008 bool Spilled = false; 1009 MachineOperand Loc = locations[I]; 1010 // Only virtual registers are rewritten. 1011 if (Loc.isReg() && Loc.getReg() && 1012 TargetRegisterInfo::isVirtualRegister(Loc.getReg())) { 1013 unsigned VirtReg = Loc.getReg(); 1014 if (VRM.isAssignedReg(VirtReg) && 1015 TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) { 1016 // This can create a %noreg operand in rare cases when the sub-register 1017 // index is no longer available. That means the user value is in a 1018 // non-existent sub-register, and %noreg is exactly what we want. 1019 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); 1020 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { 1021 // FIXME: Translate SubIdx to a stackslot offset. 1022 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); 1023 Spilled = true; 1024 } else { 1025 Loc.setReg(0); 1026 Loc.setSubReg(0); 1027 } 1028 } 1029 1030 // Insert this location if it doesn't already exist and record a mapping 1031 // from the old number to the new number. 1032 auto InsertResult = NewLocations.insert({Loc, Spilled}); 1033 unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first); 1034 LocNoMap[I] = NewLocNo; 1035 } 1036 1037 // Rewrite the locations and record which ones were spill slots. 1038 locations.clear(); 1039 SpilledLocations.clear(); 1040 SpilledLocations.resize(NewLocations.size()); 1041 for (auto &Pair : NewLocations) { 1042 locations.push_back(Pair.first); 1043 if (Pair.second) { 1044 unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair); 1045 SpilledLocations.set(NewLocNo); 1046 } 1047 } 1048 1049 // Update the interval map, but only coalesce left, since intervals to the 1050 // right use the old location numbers. This should merge two contiguous 1051 // DBG_VALUE intervals with different vregs that were allocated to the same 1052 // physical register. 1053 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 1054 DbgValueLocation Loc = I.value(); 1055 unsigned NewLocNo = LocNoMap[Loc.locNo()]; 1056 I.setValueUnchecked(Loc.changeLocNo(NewLocNo)); 1057 I.setStart(I.start()); 1058 } 1059 } 1060 1061 /// Find an iterator for inserting a DBG_VALUE instruction. 1062 static MachineBasicBlock::iterator 1063 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, 1064 LiveIntervals &LIS) { 1065 SlotIndex Start = LIS.getMBBStartIdx(MBB); 1066 Idx = Idx.getBaseIndex(); 1067 1068 // Try to find an insert location by going backwards from Idx. 1069 MachineInstr *MI; 1070 while (!(MI = LIS.getInstructionFromIndex(Idx))) { 1071 // We've reached the beginning of MBB. 1072 if (Idx == Start) { 1073 MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 1074 return I; 1075 } 1076 Idx = Idx.getPrevIndex(); 1077 } 1078 1079 // Don't insert anything after the first terminator, though. 1080 return MI->isTerminator() ? MBB->getFirstTerminator() : 1081 std::next(MachineBasicBlock::iterator(MI)); 1082 } 1083 1084 /// Find an iterator for inserting the next DBG_VALUE instruction 1085 /// (or end if no more insert locations found). 1086 static MachineBasicBlock::iterator 1087 findNextInsertLocation(MachineBasicBlock *MBB, 1088 MachineBasicBlock::iterator I, 1089 SlotIndex StopIdx, MachineOperand &LocMO, 1090 LiveIntervals &LIS, 1091 const TargetRegisterInfo &TRI) { 1092 if (!LocMO.isReg()) 1093 return MBB->instr_end(); 1094 unsigned Reg = LocMO.getReg(); 1095 1096 // Find the next instruction in the MBB that define the register Reg. 1097 while (I != MBB->end()) { 1098 if (!LIS.isNotInMIMap(*I) && 1099 SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I))) 1100 break; 1101 if (I->definesRegister(Reg, &TRI)) 1102 // The insert location is directly after the instruction/bundle. 1103 return std::next(I); 1104 ++I; 1105 } 1106 return MBB->end(); 1107 } 1108 1109 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 1110 SlotIndex StopIdx, 1111 DbgValueLocation Loc, bool Spilled, 1112 LiveIntervals &LIS, 1113 const TargetInstrInfo &TII, 1114 const TargetRegisterInfo &TRI) { 1115 SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB); 1116 // Only search within the current MBB. 1117 StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx; 1118 MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS); 1119 MachineOperand &MO = locations[Loc.locNo()]; 1120 ++NumInsertedDebugValues; 1121 1122 assert(cast<DILocalVariable>(Variable) 1123 ->isValidLocationForIntrinsic(getDebugLoc()) && 1124 "Expected inlined-at fields to agree"); 1125 1126 // If the location was spilled, the new DBG_VALUE will be indirect. If the 1127 // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate 1128 // that the original virtual register was a pointer. 1129 const DIExpression *Expr = Expression; 1130 bool IsIndirect = Loc.wasIndirect(); 1131 if (Spilled) { 1132 if (IsIndirect) 1133 Expr = DIExpression::prepend(Expr, DIExpression::WithDeref); 1134 IsIndirect = true; 1135 } 1136 1137 assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index"); 1138 1139 do { 1140 MachineInstrBuilder MIB = 1141 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE)) 1142 .add(MO); 1143 if (IsIndirect) 1144 MIB.addImm(0U); 1145 else 1146 MIB.addReg(0U, RegState::Debug); 1147 MIB.addMetadata(Variable).addMetadata(Expr); 1148 1149 // Continue and insert DBG_VALUES after every redefinition of register 1150 // associated with the debug value within the range 1151 I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI); 1152 } while (I != MBB->end()); 1153 } 1154 1155 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 1156 const TargetInstrInfo &TII, 1157 const TargetRegisterInfo &TRI, 1158 const BitVector &SpilledLocations) { 1159 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); 1160 1161 for (LocMap::const_iterator I = locInts.begin(); I.valid();) { 1162 SlotIndex Start = I.start(); 1163 SlotIndex Stop = I.stop(); 1164 DbgValueLocation Loc = I.value(); 1165 bool Spilled = !Loc.isUndef() ? SpilledLocations.test(Loc.locNo()) : false; 1166 1167 // If the interval start was trimmed to the lexical scope insert the 1168 // DBG_VALUE at the previous index (otherwise it appears after the 1169 // first instruction in the range). 1170 if (trimmedDefs.count(Start)) 1171 Start = Start.getPrevIndex(); 1172 1173 DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << Loc.locNo()); 1174 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1175 SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); 1176 1177 DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1178 insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, LIS, TII, TRI); 1179 // This interval may span multiple basic blocks. 1180 // Insert a DBG_VALUE into each one. 1181 while (Stop > MBBEnd) { 1182 // Move to the next block. 1183 Start = MBBEnd; 1184 if (++MBB == MFEnd) 1185 break; 1186 MBBEnd = LIS.getMBBEndIdx(&*MBB); 1187 DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1188 insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, LIS, TII, TRI); 1189 } 1190 DEBUG(dbgs() << '\n'); 1191 if (MBB == MFEnd) 1192 break; 1193 1194 ++I; 1195 } 1196 } 1197 1198 void LDVImpl::emitDebugValues(VirtRegMap *VRM) { 1199 DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); 1200 if (!MF) 1201 return; 1202 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1203 BitVector SpilledLocations; 1204 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 1205 DEBUG(userValues[i]->print(dbgs(), TRI)); 1206 userValues[i]->rewriteLocations(*VRM, *TRI, SpilledLocations); 1207 userValues[i]->emitDebugValues(VRM, *LIS, *TII, *TRI, SpilledLocations); 1208 } 1209 EmitDone = true; 1210 } 1211 1212 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { 1213 if (pImpl) 1214 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); 1215 } 1216 1217 bool LiveDebugVariables::doInitialization(Module &M) { 1218 return Pass::doInitialization(M); 1219 } 1220 1221 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1222 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { 1223 if (pImpl) 1224 static_cast<LDVImpl*>(pImpl)->print(dbgs()); 1225 } 1226 #endif 1227