1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveDebugVariables analysis. 11 // 12 // Remove all DBG_VALUE instructions referencing virtual registers and replace 13 // them with a data structure tracking where live user variables are kept - in a 14 // virtual register or in a stack slot. 15 // 16 // Allow the data structure to be updated during register allocation when values 17 // are moved between registers and stack slots. Finally emit new DBG_VALUE 18 // instructions after register allocation is complete. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "LiveDebugVariables.h" 23 #include "llvm/ADT/ArrayRef.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/IntervalMap.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/CodeGen/LexicalScopes.h" 32 #include "llvm/CodeGen/LiveInterval.h" 33 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineDominators.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/SlotIndexes.h" 42 #include "llvm/CodeGen/VirtRegMap.h" 43 #include "llvm/IR/DebugInfoMetadata.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/Metadata.h" 47 #include "llvm/MC/MCRegisterInfo.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetInstrInfo.h" 55 #include "llvm/Target/TargetOpcodes.h" 56 #include "llvm/Target/TargetRegisterInfo.h" 57 #include "llvm/Target/TargetSubtargetInfo.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <iterator> 61 #include <memory> 62 #include <utility> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "livedebugvars" 67 68 static cl::opt<bool> 69 EnableLDV("live-debug-variables", cl::init(true), 70 cl::desc("Enable the live debug variables pass"), cl::Hidden); 71 72 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); 73 74 char LiveDebugVariables::ID = 0; 75 76 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE, 77 "Debug Variable Analysis", false, false) 78 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 79 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 80 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE, 81 "Debug Variable Analysis", false, false) 82 83 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { 84 AU.addRequired<MachineDominatorTree>(); 85 AU.addRequiredTransitive<LiveIntervals>(); 86 AU.setPreservesAll(); 87 MachineFunctionPass::getAnalysisUsage(AU); 88 } 89 90 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) { 91 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 92 } 93 94 /// LocMap - Map of where a user value is live, and its location. 95 using LocMap = IntervalMap<SlotIndex, unsigned, 4>; 96 97 namespace { 98 99 class LDVImpl; 100 101 /// UserValue - A user value is a part of a debug info user variable. 102 /// 103 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 104 /// holds part of a user variable. The part is identified by a byte offset. 105 /// 106 /// UserValues are grouped into equivalence classes for easier searching. Two 107 /// user values are related if they refer to the same variable, or if they are 108 /// held by the same virtual register. The equivalence class is the transitive 109 /// closure of that relation. 110 class UserValue { 111 const DILocalVariable *Variable; ///< The debug info variable we are part of. 112 const DIExpression *Expression; ///< Any complex address expression. 113 bool IsIndirect; ///< true if this is a register-indirect+offset value. 114 DebugLoc dl; ///< The debug location for the variable. This is 115 ///< used by dwarf writer to find lexical scope. 116 UserValue *leader; ///< Equivalence class leader. 117 UserValue *next = nullptr; ///< Next value in equivalence class, or null. 118 119 /// Numbered locations referenced by locmap. 120 SmallVector<MachineOperand, 4> locations; 121 122 /// Map of slot indices where this value is live. 123 LocMap locInts; 124 125 /// Set of interval start indexes that have been trimmed to the 126 /// lexical scope. 127 SmallSet<SlotIndex, 2> trimmedDefs; 128 129 /// coalesceLocation - After LocNo was changed, check if it has become 130 /// identical to another location, and coalesce them. This may cause LocNo or 131 /// a later location to be erased, but no earlier location will be erased. 132 void coalesceLocation(unsigned LocNo); 133 134 /// insertDebugValue - Insert a DBG_VALUE into MBB at Idx for LocNo. 135 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx, 136 unsigned LocNo, bool Spilled, LiveIntervals &LIS, 137 const TargetInstrInfo &TII); 138 139 /// splitLocation - Replace OldLocNo ranges with NewRegs ranges where NewRegs 140 /// is live. Returns true if any changes were made. 141 bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 142 LiveIntervals &LIS); 143 144 public: 145 /// UserValue - Create a new UserValue. 146 UserValue(const DILocalVariable *var, const DIExpression *expr, bool i, 147 DebugLoc L, LocMap::Allocator &alloc) 148 : Variable(var), Expression(expr), IsIndirect(i), dl(std::move(L)), 149 leader(this), locInts(alloc) {} 150 151 /// getLeader - Get the leader of this value's equivalence class. 152 UserValue *getLeader() { 153 UserValue *l = leader; 154 while (l != l->leader) 155 l = l->leader; 156 return leader = l; 157 } 158 159 /// getNext - Return the next UserValue in the equivalence class. 160 UserValue *getNext() const { return next; } 161 162 /// match - Does this UserValue match the parameters? 163 bool match(const DILocalVariable *Var, const DIExpression *Expr, 164 const DILocation *IA, bool indirect) const { 165 return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA && 166 indirect == IsIndirect; 167 } 168 169 enum : unsigned { UndefLocNo = ~0U }; 170 171 /// merge - Merge equivalence classes. 172 static UserValue *merge(UserValue *L1, UserValue *L2) { 173 L2 = L2->getLeader(); 174 if (!L1) 175 return L2; 176 L1 = L1->getLeader(); 177 if (L1 == L2) 178 return L1; 179 // Splice L2 before L1's members. 180 UserValue *End = L2; 181 while (End->next) { 182 End->leader = L1; 183 End = End->next; 184 } 185 End->leader = L1; 186 End->next = L1->next; 187 L1->next = L2; 188 return L1; 189 } 190 191 /// getLocationNo - Return the location number that matches Loc. 192 unsigned getLocationNo(const MachineOperand &LocMO) { 193 if (LocMO.isReg()) { 194 if (LocMO.getReg() == 0) 195 return UndefLocNo; 196 // For register locations we dont care about use/def and other flags. 197 for (unsigned i = 0, e = locations.size(); i != e; ++i) 198 if (locations[i].isReg() && 199 locations[i].getReg() == LocMO.getReg() && 200 locations[i].getSubReg() == LocMO.getSubReg()) 201 return i; 202 } else 203 for (unsigned i = 0, e = locations.size(); i != e; ++i) 204 if (LocMO.isIdenticalTo(locations[i])) 205 return i; 206 locations.push_back(LocMO); 207 // We are storing a MachineOperand outside a MachineInstr. 208 locations.back().clearParent(); 209 // Don't store def operands. 210 if (locations.back().isReg()) 211 locations.back().setIsUse(); 212 return locations.size() - 1; 213 } 214 215 /// mapVirtRegs - Ensure that all virtual register locations are mapped. 216 void mapVirtRegs(LDVImpl *LDV); 217 218 /// addDef - Add a definition point to this value. 219 void addDef(SlotIndex Idx, const MachineOperand &LocMO) { 220 // Add a singular (Idx,Idx) -> Loc mapping. 221 LocMap::iterator I = locInts.find(Idx); 222 if (!I.valid() || I.start() != Idx) 223 I.insert(Idx, Idx.getNextSlot(), getLocationNo(LocMO)); 224 else 225 // A later DBG_VALUE at the same SlotIndex overrides the old location. 226 I.setValue(getLocationNo(LocMO)); 227 } 228 229 /// extendDef - Extend the current definition as far as possible down. 230 /// Stop when meeting an existing def or when leaving the live 231 /// range of VNI. 232 /// End points where VNI is no longer live are added to Kills. 233 /// @param Idx Starting point for the definition. 234 /// @param LocNo Location number to propagate. 235 /// @param LR Restrict liveness to where LR has the value VNI. May be null. 236 /// @param VNI When LR is not null, this is the value to restrict to. 237 /// @param Kills Append end points of VNI's live range to Kills. 238 /// @param LIS Live intervals analysis. 239 void extendDef(SlotIndex Idx, unsigned LocNo, 240 LiveRange *LR, const VNInfo *VNI, 241 SmallVectorImpl<SlotIndex> *Kills, 242 LiveIntervals &LIS); 243 244 /// addDefsFromCopies - The value in LI/LocNo may be copies to other 245 /// registers. Determine if any of the copies are available at the kill 246 /// points, and add defs if possible. 247 /// @param LI Scan for copies of the value in LI->reg. 248 /// @param LocNo Location number of LI->reg. 249 /// @param Kills Points where the range of LocNo could be extended. 250 /// @param NewDefs Append (Idx, LocNo) of inserted defs here. 251 void addDefsFromCopies(LiveInterval *LI, unsigned LocNo, 252 const SmallVectorImpl<SlotIndex> &Kills, 253 SmallVectorImpl<std::pair<SlotIndex, unsigned>> &NewDefs, 254 MachineRegisterInfo &MRI, 255 LiveIntervals &LIS); 256 257 /// computeIntervals - Compute the live intervals of all locations after 258 /// collecting all their def points. 259 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, 260 LiveIntervals &LIS, LexicalScopes &LS); 261 262 /// splitRegister - Replace OldReg ranges with NewRegs ranges where NewRegs is 263 /// live. Returns true if any changes were made. 264 bool splitRegister(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 265 LiveIntervals &LIS); 266 267 /// rewriteLocations - Rewrite virtual register locations according to the 268 /// provided virtual register map. Record which locations were spilled. 269 void rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI, 270 BitVector &SpilledLocations); 271 272 /// emitDebugValues - Recreate DBG_VALUE instruction from data structures. 273 void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 274 const TargetInstrInfo &TRI, 275 const BitVector &SpilledLocations); 276 277 /// getDebugLoc - Return DebugLoc of this UserValue. 278 DebugLoc getDebugLoc() { return dl;} 279 280 void print(raw_ostream &, const TargetRegisterInfo *); 281 }; 282 283 /// LDVImpl - Implementation of the LiveDebugVariables pass. 284 class LDVImpl { 285 LiveDebugVariables &pass; 286 LocMap::Allocator allocator; 287 MachineFunction *MF = nullptr; 288 LiveIntervals *LIS; 289 const TargetRegisterInfo *TRI; 290 291 /// Whether emitDebugValues is called. 292 bool EmitDone = false; 293 294 /// Whether the machine function is modified during the pass. 295 bool ModifiedMF = false; 296 297 /// userValues - All allocated UserValue instances. 298 SmallVector<std::unique_ptr<UserValue>, 8> userValues; 299 300 /// Map virtual register to eq class leader. 301 using VRMap = DenseMap<unsigned, UserValue *>; 302 VRMap virtRegToEqClass; 303 304 /// Map user variable to eq class leader. 305 using UVMap = DenseMap<const DILocalVariable *, UserValue *>; 306 UVMap userVarMap; 307 308 /// getUserValue - Find or create a UserValue. 309 UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr, 310 bool IsIndirect, const DebugLoc &DL); 311 312 /// lookupVirtReg - Find the EC leader for VirtReg or null. 313 UserValue *lookupVirtReg(unsigned VirtReg); 314 315 /// handleDebugValue - Add DBG_VALUE instruction to our maps. 316 /// @param MI DBG_VALUE instruction 317 /// @param Idx Last valid SLotIndex before instruction. 318 /// @return True if the DBG_VALUE instruction should be deleted. 319 bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); 320 321 /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding 322 /// a UserValue def for each instruction. 323 /// @param mf MachineFunction to be scanned. 324 /// @return True if any debug values were found. 325 bool collectDebugValues(MachineFunction &mf); 326 327 /// computeIntervals - Compute the live intervals of all user values after 328 /// collecting all their def points. 329 void computeIntervals(); 330 331 public: 332 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} 333 334 bool runOnMachineFunction(MachineFunction &mf); 335 336 /// clear - Release all memory. 337 void clear() { 338 MF = nullptr; 339 userValues.clear(); 340 virtRegToEqClass.clear(); 341 userVarMap.clear(); 342 // Make sure we call emitDebugValues if the machine function was modified. 343 assert((!ModifiedMF || EmitDone) && 344 "Dbg values are not emitted in LDV"); 345 EmitDone = false; 346 ModifiedMF = false; 347 } 348 349 /// mapVirtReg - Map virtual register to an equivalence class. 350 void mapVirtReg(unsigned VirtReg, UserValue *EC); 351 352 /// splitRegister - Replace all references to OldReg with NewRegs. 353 void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs); 354 355 /// emitDebugValues - Recreate DBG_VALUE instruction from data structures. 356 void emitDebugValues(VirtRegMap *VRM); 357 358 void print(raw_ostream&); 359 }; 360 361 } // end anonymous namespace 362 363 #ifndef NDEBUG 364 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, 365 const LLVMContext &Ctx) { 366 if (!DL) 367 return; 368 369 auto *Scope = cast<DIScope>(DL.getScope()); 370 // Omit the directory, because it's likely to be long and uninteresting. 371 CommentOS << Scope->getFilename(); 372 CommentOS << ':' << DL.getLine(); 373 if (DL.getCol() != 0) 374 CommentOS << ':' << DL.getCol(); 375 376 DebugLoc InlinedAtDL = DL.getInlinedAt(); 377 if (!InlinedAtDL) 378 return; 379 380 CommentOS << " @[ "; 381 printDebugLoc(InlinedAtDL, CommentOS, Ctx); 382 CommentOS << " ]"; 383 } 384 385 static void printExtendedName(raw_ostream &OS, const DILocalVariable *V, 386 const DILocation *DL) { 387 const LLVMContext &Ctx = V->getContext(); 388 StringRef Res = V->getName(); 389 if (!Res.empty()) 390 OS << Res << "," << V->getLine(); 391 if (auto *InlinedAt = DL->getInlinedAt()) { 392 if (DebugLoc InlinedAtDL = InlinedAt) { 393 OS << " @["; 394 printDebugLoc(InlinedAtDL, OS, Ctx); 395 OS << "]"; 396 } 397 } 398 } 399 400 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 401 auto *DV = cast<DILocalVariable>(Variable); 402 OS << "!\""; 403 printExtendedName(OS, DV, dl); 404 405 OS << "\"\t"; 406 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 407 OS << " [" << I.start() << ';' << I.stop() << "):"; 408 if (I.value() == UndefLocNo) 409 OS << "undef"; 410 else 411 OS << I.value(); 412 } 413 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 414 OS << " Loc" << i << '='; 415 locations[i].print(OS, TRI); 416 } 417 OS << '\n'; 418 } 419 420 void LDVImpl::print(raw_ostream &OS) { 421 OS << "********** DEBUG VARIABLES **********\n"; 422 for (unsigned i = 0, e = userValues.size(); i != e; ++i) 423 userValues[i]->print(OS, TRI); 424 } 425 #endif 426 427 void UserValue::coalesceLocation(unsigned LocNo) { 428 unsigned KeepLoc = 0; 429 for (unsigned e = locations.size(); KeepLoc != e; ++KeepLoc) { 430 if (KeepLoc == LocNo) 431 continue; 432 if (locations[KeepLoc].isIdenticalTo(locations[LocNo])) 433 break; 434 } 435 // No matches. 436 if (KeepLoc == locations.size()) 437 return; 438 439 // Keep the smaller location, erase the larger one. 440 unsigned EraseLoc = LocNo; 441 if (KeepLoc > EraseLoc) 442 std::swap(KeepLoc, EraseLoc); 443 locations.erase(locations.begin() + EraseLoc); 444 445 // Rewrite values. 446 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 447 unsigned v = I.value(); 448 if (v == EraseLoc) 449 I.setValue(KeepLoc); // Coalesce when possible. 450 else if (v > EraseLoc) 451 I.setValueUnchecked(v-1); // Avoid coalescing with untransformed values. 452 } 453 } 454 455 void UserValue::mapVirtRegs(LDVImpl *LDV) { 456 for (unsigned i = 0, e = locations.size(); i != e; ++i) 457 if (locations[i].isReg() && 458 TargetRegisterInfo::isVirtualRegister(locations[i].getReg())) 459 LDV->mapVirtReg(locations[i].getReg(), this); 460 } 461 462 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var, 463 const DIExpression *Expr, bool IsIndirect, 464 const DebugLoc &DL) { 465 UserValue *&Leader = userVarMap[Var]; 466 if (Leader) { 467 UserValue *UV = Leader->getLeader(); 468 Leader = UV; 469 for (; UV; UV = UV->getNext()) 470 if (UV->match(Var, Expr, DL->getInlinedAt(), IsIndirect)) 471 return UV; 472 } 473 474 userValues.push_back( 475 llvm::make_unique<UserValue>(Var, Expr, IsIndirect, DL, allocator)); 476 UserValue *UV = userValues.back().get(); 477 Leader = UserValue::merge(Leader, UV); 478 return UV; 479 } 480 481 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) { 482 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs"); 483 UserValue *&Leader = virtRegToEqClass[VirtReg]; 484 Leader = UserValue::merge(Leader, EC); 485 } 486 487 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) { 488 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) 489 return UV->getLeader(); 490 return nullptr; 491 } 492 493 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) { 494 // DBG_VALUE loc, offset, variable 495 if (MI.getNumOperands() != 4 || 496 !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) || 497 !MI.getOperand(2).isMetadata()) { 498 DEBUG(dbgs() << "Can't handle " << MI); 499 return false; 500 } 501 502 // Get or create the UserValue for (variable,offset). 503 bool IsIndirect = MI.getOperand(1).isImm(); 504 if (IsIndirect) 505 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); 506 const DILocalVariable *Var = MI.getDebugVariable(); 507 const DIExpression *Expr = MI.getDebugExpression(); 508 //here. 509 UserValue *UV = getUserValue(Var, Expr, IsIndirect, MI.getDebugLoc()); 510 UV->addDef(Idx, MI.getOperand(0)); 511 return true; 512 } 513 514 bool LDVImpl::collectDebugValues(MachineFunction &mf) { 515 bool Changed = false; 516 for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE; 517 ++MFI) { 518 MachineBasicBlock *MBB = &*MFI; 519 for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end(); 520 MBBI != MBBE;) { 521 if (!MBBI->isDebugValue()) { 522 ++MBBI; 523 continue; 524 } 525 // DBG_VALUE has no slot index, use the previous instruction instead. 526 SlotIndex Idx = 527 MBBI == MBB->begin() 528 ? LIS->getMBBStartIdx(MBB) 529 : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); 530 // Handle consecutive DBG_VALUE instructions with the same slot index. 531 do { 532 if (handleDebugValue(*MBBI, Idx)) { 533 MBBI = MBB->erase(MBBI); 534 Changed = true; 535 } else 536 ++MBBI; 537 } while (MBBI != MBBE && MBBI->isDebugValue()); 538 } 539 } 540 return Changed; 541 } 542 543 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a 544 /// data-flow analysis to propagate them beyond basic block boundaries. 545 void UserValue::extendDef(SlotIndex Idx, unsigned LocNo, LiveRange *LR, 546 const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills, 547 LiveIntervals &LIS) { 548 SlotIndex Start = Idx; 549 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 550 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 551 LocMap::iterator I = locInts.find(Start); 552 553 // Limit to VNI's live range. 554 bool ToEnd = true; 555 if (LR && VNI) { 556 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); 557 if (!Segment || Segment->valno != VNI) { 558 if (Kills) 559 Kills->push_back(Start); 560 return; 561 } 562 if (Segment->end < Stop) { 563 Stop = Segment->end; 564 ToEnd = false; 565 } 566 } 567 568 // There could already be a short def at Start. 569 if (I.valid() && I.start() <= Start) { 570 // Stop when meeting a different location or an already extended interval. 571 Start = Start.getNextSlot(); 572 if (I.value() != LocNo || I.stop() != Start) 573 return; 574 // This is a one-slot placeholder. Just skip it. 575 ++I; 576 } 577 578 // Limited by the next def. 579 if (I.valid() && I.start() < Stop) { 580 Stop = I.start(); 581 ToEnd = false; 582 } 583 // Limited by VNI's live range. 584 else if (!ToEnd && Kills) 585 Kills->push_back(Stop); 586 587 if (Start < Stop) 588 I.insert(Start, Stop, LocNo); 589 } 590 591 void 592 UserValue::addDefsFromCopies(LiveInterval *LI, unsigned LocNo, 593 const SmallVectorImpl<SlotIndex> &Kills, 594 SmallVectorImpl<std::pair<SlotIndex, unsigned>> &NewDefs, 595 MachineRegisterInfo &MRI, LiveIntervals &LIS) { 596 if (Kills.empty()) 597 return; 598 // Don't track copies from physregs, there are too many uses. 599 if (!TargetRegisterInfo::isVirtualRegister(LI->reg)) 600 return; 601 602 // Collect all the (vreg, valno) pairs that are copies of LI. 603 SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues; 604 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) { 605 MachineInstr *MI = MO.getParent(); 606 // Copies of the full value. 607 if (MO.getSubReg() || !MI->isCopy()) 608 continue; 609 unsigned DstReg = MI->getOperand(0).getReg(); 610 611 // Don't follow copies to physregs. These are usually setting up call 612 // arguments, and the argument registers are always call clobbered. We are 613 // better off in the source register which could be a callee-saved register, 614 // or it could be spilled. 615 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 616 continue; 617 618 // Is LocNo extended to reach this copy? If not, another def may be blocking 619 // it, or we are looking at a wrong value of LI. 620 SlotIndex Idx = LIS.getInstructionIndex(*MI); 621 LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); 622 if (!I.valid() || I.value() != LocNo) 623 continue; 624 625 if (!LIS.hasInterval(DstReg)) 626 continue; 627 LiveInterval *DstLI = &LIS.getInterval(DstReg); 628 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); 629 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); 630 CopyValues.push_back(std::make_pair(DstLI, DstVNI)); 631 } 632 633 if (CopyValues.empty()) 634 return; 635 636 DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI << '\n'); 637 638 // Try to add defs of the copied values for each kill point. 639 for (unsigned i = 0, e = Kills.size(); i != e; ++i) { 640 SlotIndex Idx = Kills[i]; 641 for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) { 642 LiveInterval *DstLI = CopyValues[j].first; 643 const VNInfo *DstVNI = CopyValues[j].second; 644 if (DstLI->getVNInfoAt(Idx) != DstVNI) 645 continue; 646 // Check that there isn't already a def at Idx 647 LocMap::iterator I = locInts.find(Idx); 648 if (I.valid() && I.start() <= Idx) 649 continue; 650 DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #" 651 << DstVNI->id << " in " << *DstLI << '\n'); 652 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); 653 assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); 654 unsigned LocNo = getLocationNo(CopyMI->getOperand(0)); 655 I.insert(Idx, Idx.getNextSlot(), LocNo); 656 NewDefs.push_back(std::make_pair(Idx, LocNo)); 657 break; 658 } 659 } 660 } 661 662 void UserValue::computeIntervals(MachineRegisterInfo &MRI, 663 const TargetRegisterInfo &TRI, 664 LiveIntervals &LIS, LexicalScopes &LS) { 665 SmallVector<std::pair<SlotIndex, unsigned>, 16> Defs; 666 667 // Collect all defs to be extended (Skipping undefs). 668 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 669 if (I.value() != UndefLocNo) 670 Defs.push_back(std::make_pair(I.start(), I.value())); 671 672 // Extend all defs, and possibly add new ones along the way. 673 for (unsigned i = 0; i != Defs.size(); ++i) { 674 SlotIndex Idx = Defs[i].first; 675 unsigned LocNo = Defs[i].second; 676 const MachineOperand &Loc = locations[LocNo]; 677 678 if (!Loc.isReg()) { 679 extendDef(Idx, LocNo, nullptr, nullptr, nullptr, LIS); 680 continue; 681 } 682 683 // Register locations are constrained to where the register value is live. 684 if (TargetRegisterInfo::isVirtualRegister(Loc.getReg())) { 685 LiveInterval *LI = nullptr; 686 const VNInfo *VNI = nullptr; 687 if (LIS.hasInterval(Loc.getReg())) { 688 LI = &LIS.getInterval(Loc.getReg()); 689 VNI = LI->getVNInfoAt(Idx); 690 } 691 SmallVector<SlotIndex, 16> Kills; 692 extendDef(Idx, LocNo, LI, VNI, &Kills, LIS); 693 if (LI) 694 addDefsFromCopies(LI, LocNo, Kills, Defs, MRI, LIS); 695 continue; 696 } 697 698 // For physregs, use the live range of the first regunit as a guide. 699 unsigned Unit = *MCRegUnitIterator(Loc.getReg(), &TRI); 700 LiveRange *LR = &LIS.getRegUnit(Unit); 701 const VNInfo *VNI = LR->getVNInfoAt(Idx); 702 // Don't track copies from physregs, it is too expensive. 703 extendDef(Idx, LocNo, LR, VNI, nullptr, LIS); 704 } 705 706 // Erase all the undefs. 707 for (LocMap::iterator I = locInts.begin(); I.valid();) 708 if (I.value() == UndefLocNo) 709 I.erase(); 710 else 711 ++I; 712 713 // The computed intervals may extend beyond the range of the debug 714 // location's lexical scope. In this case, splitting of an interval 715 // can result in an interval outside of the scope being created, 716 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent 717 // this, trim the intervals to the lexical scope. 718 719 LexicalScope *Scope = LS.findLexicalScope(dl); 720 if (!Scope) 721 return; 722 723 SlotIndex PrevEnd; 724 LocMap::iterator I = locInts.begin(); 725 726 // Iterate over the lexical scope ranges. Each time round the loop 727 // we check the intervals for overlap with the end of the previous 728 // range and the start of the next. The first range is handled as 729 // a special case where there is no PrevEnd. 730 for (const InsnRange &Range : Scope->getRanges()) { 731 SlotIndex RStart = LIS.getInstructionIndex(*Range.first); 732 SlotIndex REnd = LIS.getInstructionIndex(*Range.second); 733 734 // At the start of each iteration I has been advanced so that 735 // I.stop() >= PrevEnd. Check for overlap. 736 if (PrevEnd && I.start() < PrevEnd) { 737 SlotIndex IStop = I.stop(); 738 unsigned LocNo = I.value(); 739 740 // Stop overlaps previous end - trim the end of the interval to 741 // the scope range. 742 I.setStopUnchecked(PrevEnd); 743 ++I; 744 745 // If the interval also overlaps the start of the "next" (i.e. 746 // current) range create a new interval for the remainder (which 747 // may be further trimmed). 748 if (RStart < IStop) 749 I.insert(RStart, IStop, LocNo); 750 } 751 752 // Advance I so that I.stop() >= RStart, and check for overlap. 753 I.advanceTo(RStart); 754 if (!I.valid()) 755 return; 756 757 if (I.start() < RStart) { 758 // Interval start overlaps range - trim to the scope range. 759 I.setStartUnchecked(RStart); 760 // Remember that this interval was trimmed. 761 trimmedDefs.insert(RStart); 762 } 763 764 // The end of a lexical scope range is the last instruction in the 765 // range. To convert to an interval we need the index of the 766 // instruction after it. 767 REnd = REnd.getNextIndex(); 768 769 // Advance I to first interval outside current range. 770 I.advanceTo(REnd); 771 if (!I.valid()) 772 return; 773 774 PrevEnd = REnd; 775 } 776 777 // Check for overlap with end of final range. 778 if (PrevEnd && I.start() < PrevEnd) 779 I.setStopUnchecked(PrevEnd); 780 } 781 782 void LDVImpl::computeIntervals() { 783 LexicalScopes LS; 784 LS.initialize(*MF); 785 786 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 787 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS); 788 userValues[i]->mapVirtRegs(this); 789 } 790 } 791 792 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) { 793 clear(); 794 MF = &mf; 795 LIS = &pass.getAnalysis<LiveIntervals>(); 796 TRI = mf.getSubtarget().getRegisterInfo(); 797 DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 798 << mf.getName() << " **********\n"); 799 800 bool Changed = collectDebugValues(mf); 801 computeIntervals(); 802 DEBUG(print(dbgs())); 803 ModifiedMF = Changed; 804 return Changed; 805 } 806 807 static void removeDebugValues(MachineFunction &mf) { 808 for (MachineBasicBlock &MBB : mf) { 809 for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) { 810 if (!MBBI->isDebugValue()) { 811 ++MBBI; 812 continue; 813 } 814 MBBI = MBB.erase(MBBI); 815 } 816 } 817 } 818 819 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { 820 if (!EnableLDV) 821 return false; 822 if (!mf.getFunction()->getSubprogram()) { 823 removeDebugValues(mf); 824 return false; 825 } 826 if (!pImpl) 827 pImpl = new LDVImpl(this); 828 return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf); 829 } 830 831 void LiveDebugVariables::releaseMemory() { 832 if (pImpl) 833 static_cast<LDVImpl*>(pImpl)->clear(); 834 } 835 836 LiveDebugVariables::~LiveDebugVariables() { 837 if (pImpl) 838 delete static_cast<LDVImpl*>(pImpl); 839 } 840 841 //===----------------------------------------------------------------------===// 842 // Live Range Splitting 843 //===----------------------------------------------------------------------===// 844 845 bool 846 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 847 LiveIntervals& LIS) { 848 DEBUG({ 849 dbgs() << "Splitting Loc" << OldLocNo << '\t'; 850 print(dbgs(), nullptr); 851 }); 852 bool DidChange = false; 853 LocMap::iterator LocMapI; 854 LocMapI.setMap(locInts); 855 for (unsigned i = 0; i != NewRegs.size(); ++i) { 856 LiveInterval *LI = &LIS.getInterval(NewRegs[i]); 857 if (LI->empty()) 858 continue; 859 860 // Don't allocate the new LocNo until it is needed. 861 unsigned NewLocNo = UndefLocNo; 862 863 // Iterate over the overlaps between locInts and LI. 864 LocMapI.find(LI->beginIndex()); 865 if (!LocMapI.valid()) 866 continue; 867 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); 868 LiveInterval::iterator LIE = LI->end(); 869 while (LocMapI.valid() && LII != LIE) { 870 // At this point, we know that LocMapI.stop() > LII->start. 871 LII = LI->advanceTo(LII, LocMapI.start()); 872 if (LII == LIE) 873 break; 874 875 // Now LII->end > LocMapI.start(). Do we have an overlap? 876 if (LocMapI.value() == OldLocNo && LII->start < LocMapI.stop()) { 877 // Overlapping correct location. Allocate NewLocNo now. 878 if (NewLocNo == UndefLocNo) { 879 MachineOperand MO = MachineOperand::CreateReg(LI->reg, false); 880 MO.setSubReg(locations[OldLocNo].getSubReg()); 881 NewLocNo = getLocationNo(MO); 882 DidChange = true; 883 } 884 885 SlotIndex LStart = LocMapI.start(); 886 SlotIndex LStop = LocMapI.stop(); 887 888 // Trim LocMapI down to the LII overlap. 889 if (LStart < LII->start) 890 LocMapI.setStartUnchecked(LII->start); 891 if (LStop > LII->end) 892 LocMapI.setStopUnchecked(LII->end); 893 894 // Change the value in the overlap. This may trigger coalescing. 895 LocMapI.setValue(NewLocNo); 896 897 // Re-insert any removed OldLocNo ranges. 898 if (LStart < LocMapI.start()) { 899 LocMapI.insert(LStart, LocMapI.start(), OldLocNo); 900 ++LocMapI; 901 assert(LocMapI.valid() && "Unexpected coalescing"); 902 } 903 if (LStop > LocMapI.stop()) { 904 ++LocMapI; 905 LocMapI.insert(LII->end, LStop, OldLocNo); 906 --LocMapI; 907 } 908 } 909 910 // Advance to the next overlap. 911 if (LII->end < LocMapI.stop()) { 912 if (++LII == LIE) 913 break; 914 LocMapI.advanceTo(LII->start); 915 } else { 916 ++LocMapI; 917 if (!LocMapI.valid()) 918 break; 919 LII = LI->advanceTo(LII, LocMapI.start()); 920 } 921 } 922 } 923 924 // Finally, remove any remaining OldLocNo intervals and OldLocNo itself. 925 locations.erase(locations.begin() + OldLocNo); 926 LocMapI.goToBegin(); 927 while (LocMapI.valid()) { 928 unsigned v = LocMapI.value(); 929 if (v == OldLocNo) { 930 DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';' 931 << LocMapI.stop() << ")\n"); 932 LocMapI.erase(); 933 } else { 934 if (v > OldLocNo) 935 LocMapI.setValueUnchecked(v-1); 936 ++LocMapI; 937 } 938 } 939 940 DEBUG({dbgs() << "Split result: \t"; print(dbgs(), nullptr);}); 941 return DidChange; 942 } 943 944 bool 945 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, 946 LiveIntervals &LIS) { 947 bool DidChange = false; 948 // Split locations referring to OldReg. Iterate backwards so splitLocation can 949 // safely erase unused locations. 950 for (unsigned i = locations.size(); i ; --i) { 951 unsigned LocNo = i-1; 952 const MachineOperand *Loc = &locations[LocNo]; 953 if (!Loc->isReg() || Loc->getReg() != OldReg) 954 continue; 955 DidChange |= splitLocation(LocNo, NewRegs, LIS); 956 } 957 return DidChange; 958 } 959 960 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) { 961 bool DidChange = false; 962 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) 963 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); 964 965 if (!DidChange) 966 return; 967 968 // Map all of the new virtual registers. 969 UserValue *UV = lookupVirtReg(OldReg); 970 for (unsigned i = 0; i != NewRegs.size(); ++i) 971 mapVirtReg(NewRegs[i], UV); 972 } 973 974 void LiveDebugVariables:: 975 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) { 976 if (pImpl) 977 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); 978 } 979 980 void UserValue::rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI, 981 BitVector &SpilledLocations) { 982 SpilledLocations.resize(locations.size()); 983 984 // Iterate over locations in reverse makes it easier to handle coalescing. 985 for (unsigned i = locations.size(); i ; --i) { 986 unsigned LocNo = i-1; 987 MachineOperand &Loc = locations[LocNo]; 988 // Only virtual registers are rewritten. 989 if (!Loc.isReg() || !Loc.getReg() || 990 !TargetRegisterInfo::isVirtualRegister(Loc.getReg())) 991 continue; 992 unsigned VirtReg = Loc.getReg(); 993 if (VRM.isAssignedReg(VirtReg) && 994 TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) { 995 // This can create a %noreg operand in rare cases when the sub-register 996 // index is no longer available. That means the user value is in a 997 // non-existent sub-register, and %noreg is exactly what we want. 998 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); 999 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { 1000 // FIXME: Translate SubIdx to a stackslot offset. 1001 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); 1002 SpilledLocations.set(LocNo); 1003 } else { 1004 Loc.setReg(0); 1005 Loc.setSubReg(0); 1006 } 1007 coalesceLocation(LocNo); 1008 } 1009 } 1010 1011 /// findInsertLocation - Find an iterator for inserting a DBG_VALUE 1012 /// instruction. 1013 static MachineBasicBlock::iterator 1014 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, 1015 LiveIntervals &LIS) { 1016 SlotIndex Start = LIS.getMBBStartIdx(MBB); 1017 Idx = Idx.getBaseIndex(); 1018 1019 // Try to find an insert location by going backwards from Idx. 1020 MachineInstr *MI; 1021 while (!(MI = LIS.getInstructionFromIndex(Idx))) { 1022 // We've reached the beginning of MBB. 1023 if (Idx == Start) { 1024 MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 1025 return I; 1026 } 1027 Idx = Idx.getPrevIndex(); 1028 } 1029 1030 // Don't insert anything after the first terminator, though. 1031 return MI->isTerminator() ? MBB->getFirstTerminator() : 1032 std::next(MachineBasicBlock::iterator(MI)); 1033 } 1034 1035 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx, 1036 unsigned LocNo, bool Spilled, 1037 LiveIntervals &LIS, 1038 const TargetInstrInfo &TII) { 1039 MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS); 1040 MachineOperand &Loc = locations[LocNo]; 1041 ++NumInsertedDebugValues; 1042 1043 assert(cast<DILocalVariable>(Variable) 1044 ->isValidLocationForIntrinsic(getDebugLoc()) && 1045 "Expected inlined-at fields to agree"); 1046 1047 // If the location was spilled, the new DBG_VALUE will be indirect. If the 1048 // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate 1049 // that the original virtual register was a pointer. 1050 bool NewIndirect = IsIndirect || Spilled; 1051 const DIExpression *Expr = Expression; 1052 if (Spilled && IsIndirect) 1053 Expr = DIExpression::prepend(Expr, DIExpression::WithDeref); 1054 1055 MachineInstrBuilder MIB = 1056 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE)) 1057 .add(Loc); 1058 if (NewIndirect) 1059 MIB.addImm(0U); 1060 else 1061 MIB.addReg(0U, RegState::Debug); 1062 MIB.addMetadata(Variable).addMetadata(Expr); 1063 } 1064 1065 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 1066 const TargetInstrInfo &TII, 1067 const BitVector &SpilledLocations) { 1068 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); 1069 1070 for (LocMap::const_iterator I = locInts.begin(); I.valid();) { 1071 SlotIndex Start = I.start(); 1072 SlotIndex Stop = I.stop(); 1073 unsigned LocNo = I.value(); 1074 bool Spilled = LocNo != UndefLocNo ? SpilledLocations.test(LocNo) : false; 1075 1076 // If the interval start was trimmed to the lexical scope insert the 1077 // DBG_VALUE at the previous index (otherwise it appears after the 1078 // first instruction in the range). 1079 if (trimmedDefs.count(Start)) 1080 Start = Start.getPrevIndex(); 1081 1082 DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << LocNo); 1083 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1084 SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); 1085 1086 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd); 1087 insertDebugValue(&*MBB, Start, LocNo, Spilled, LIS, TII); 1088 // This interval may span multiple basic blocks. 1089 // Insert a DBG_VALUE into each one. 1090 while(Stop > MBBEnd) { 1091 // Move to the next block. 1092 Start = MBBEnd; 1093 if (++MBB == MFEnd) 1094 break; 1095 MBBEnd = LIS.getMBBEndIdx(&*MBB); 1096 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd); 1097 insertDebugValue(&*MBB, Start, LocNo, Spilled, LIS, TII); 1098 } 1099 DEBUG(dbgs() << '\n'); 1100 if (MBB == MFEnd) 1101 break; 1102 1103 ++I; 1104 } 1105 } 1106 1107 void LDVImpl::emitDebugValues(VirtRegMap *VRM) { 1108 DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); 1109 if (!MF) 1110 return; 1111 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1112 BitVector SpilledLocations; 1113 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 1114 DEBUG(userValues[i]->print(dbgs(), TRI)); 1115 userValues[i]->rewriteLocations(*VRM, *TRI, SpilledLocations); 1116 userValues[i]->emitDebugValues(VRM, *LIS, *TII, SpilledLocations); 1117 } 1118 EmitDone = true; 1119 } 1120 1121 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { 1122 if (pImpl) 1123 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); 1124 } 1125 1126 bool LiveDebugVariables::doInitialization(Module &M) { 1127 return Pass::doInitialization(M); 1128 } 1129 1130 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1131 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { 1132 if (pImpl) 1133 static_cast<LDVImpl*>(pImpl)->print(dbgs()); 1134 } 1135 #endif 1136