1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the LiveDebugVariables analysis. 10 // 11 // Remove all DBG_VALUE instructions referencing virtual registers and replace 12 // them with a data structure tracking where live user variables are kept - in a 13 // virtual register or in a stack slot. 14 // 15 // Allow the data structure to be updated during register allocation when values 16 // are moved between registers and stack slots. Finally emit new DBG_VALUE 17 // instructions after register allocation is complete. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "LiveDebugVariables.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/IntervalMap.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/CodeGen/LexicalScopes.h" 32 #include "llvm/CodeGen/LiveInterval.h" 33 #include "llvm/CodeGen/LiveIntervals.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineDominators.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/SlotIndexes.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetOpcodes.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/VirtRegMap.h" 47 #include "llvm/Config/llvm-config.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/MC/MCRegisterInfo.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <iterator> 63 #include <memory> 64 #include <utility> 65 66 using namespace llvm; 67 68 #define DEBUG_TYPE "livedebugvars" 69 70 static cl::opt<bool> 71 EnableLDV("live-debug-variables", cl::init(true), 72 cl::desc("Enable the live debug variables pass"), cl::Hidden); 73 74 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); 75 STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted"); 76 77 char LiveDebugVariables::ID = 0; 78 79 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE, 80 "Debug Variable Analysis", false, false) 81 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 82 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 83 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE, 84 "Debug Variable Analysis", false, false) 85 86 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { 87 AU.addRequired<MachineDominatorTree>(); 88 AU.addRequiredTransitive<LiveIntervals>(); 89 AU.setPreservesAll(); 90 MachineFunctionPass::getAnalysisUsage(AU); 91 } 92 93 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) { 94 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 95 } 96 97 enum : unsigned { UndefLocNo = ~0U }; 98 99 /// Describes a location by number along with some flags about the original 100 /// usage of the location. 101 class DbgValueLocation { 102 public: 103 DbgValueLocation(unsigned LocNo) 104 : LocNo(LocNo) { 105 static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing"); 106 assert(locNo() == LocNo && "location truncation"); 107 } 108 109 DbgValueLocation() : LocNo(0) {} 110 111 unsigned locNo() const { 112 // Fix up the undef location number, which gets truncated. 113 return LocNo == INT_MAX ? UndefLocNo : LocNo; 114 } 115 bool isUndef() const { return locNo() == UndefLocNo; } 116 117 DbgValueLocation changeLocNo(unsigned NewLocNo) const { 118 return DbgValueLocation(NewLocNo); 119 } 120 121 friend inline bool operator==(const DbgValueLocation &LHS, 122 const DbgValueLocation &RHS) { 123 return LHS.LocNo == RHS.LocNo; 124 } 125 126 friend inline bool operator!=(const DbgValueLocation &LHS, 127 const DbgValueLocation &RHS) { 128 return !(LHS == RHS); 129 } 130 131 private: 132 unsigned LocNo; 133 }; 134 135 /// Map of where a user value is live, and its location. 136 using LocMap = IntervalMap<SlotIndex, DbgValueLocation, 4>; 137 138 /// Map of stack slot offsets for spilled locations. 139 /// Non-spilled locations are not added to the map. 140 using SpillOffsetMap = DenseMap<unsigned, unsigned>; 141 142 namespace { 143 144 class LDVImpl; 145 146 /// A user value is a part of a debug info user variable. 147 /// 148 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 149 /// holds part of a user variable. The part is identified by a byte offset. 150 /// 151 /// UserValues are grouped into equivalence classes for easier searching. Two 152 /// user values are related if they refer to the same variable, or if they are 153 /// held by the same virtual register. The equivalence class is the transitive 154 /// closure of that relation. 155 class UserValue { 156 const DILocalVariable *Variable; ///< The debug info variable we are part of. 157 const DIExpression *Expression; ///< Any complex address expression. 158 DebugLoc dl; ///< The debug location for the variable. This is 159 ///< used by dwarf writer to find lexical scope. 160 UserValue *leader; ///< Equivalence class leader. 161 UserValue *next = nullptr; ///< Next value in equivalence class, or null. 162 163 /// Numbered locations referenced by locmap. 164 SmallVector<MachineOperand, 4> locations; 165 166 /// Map of slot indices where this value is live. 167 LocMap locInts; 168 169 /// Set of interval start indexes that have been trimmed to the 170 /// lexical scope. 171 SmallSet<SlotIndex, 2> trimmedDefs; 172 173 /// Insert a DBG_VALUE into MBB at Idx for LocNo. 174 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 175 SlotIndex StopIdx, DbgValueLocation Loc, bool Spilled, 176 unsigned SpillOffset, LiveIntervals &LIS, 177 const TargetInstrInfo &TII, 178 const TargetRegisterInfo &TRI); 179 180 /// Replace OldLocNo ranges with NewRegs ranges where NewRegs 181 /// is live. Returns true if any changes were made. 182 bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 183 LiveIntervals &LIS); 184 185 public: 186 /// Create a new UserValue. 187 UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L, 188 LocMap::Allocator &alloc) 189 : Variable(var), Expression(expr), dl(std::move(L)), leader(this), 190 locInts(alloc) {} 191 192 /// Get the leader of this value's equivalence class. 193 UserValue *getLeader() { 194 UserValue *l = leader; 195 while (l != l->leader) 196 l = l->leader; 197 return leader = l; 198 } 199 200 /// Return the next UserValue in the equivalence class. 201 UserValue *getNext() const { return next; } 202 203 /// Does this UserValue match the parameters? 204 bool match(const DILocalVariable *Var, const DIExpression *Expr, 205 const DILocation *IA) const { 206 // FIXME: The fragment should be part of the equivalence class, but not 207 // other things in the expression like stack values. 208 return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA; 209 } 210 211 /// Merge equivalence classes. 212 static UserValue *merge(UserValue *L1, UserValue *L2) { 213 L2 = L2->getLeader(); 214 if (!L1) 215 return L2; 216 L1 = L1->getLeader(); 217 if (L1 == L2) 218 return L1; 219 // Splice L2 before L1's members. 220 UserValue *End = L2; 221 while (End->next) { 222 End->leader = L1; 223 End = End->next; 224 } 225 End->leader = L1; 226 End->next = L1->next; 227 L1->next = L2; 228 return L1; 229 } 230 231 /// Return the location number that matches Loc. 232 /// 233 /// For undef values we always return location number UndefLocNo without 234 /// inserting anything in locations. Since locations is a vector and the 235 /// location number is the position in the vector and UndefLocNo is ~0, 236 /// we would need a very big vector to put the value at the right position. 237 unsigned getLocationNo(const MachineOperand &LocMO) { 238 if (LocMO.isReg()) { 239 if (LocMO.getReg() == 0) 240 return UndefLocNo; 241 // For register locations we dont care about use/def and other flags. 242 for (unsigned i = 0, e = locations.size(); i != e; ++i) 243 if (locations[i].isReg() && 244 locations[i].getReg() == LocMO.getReg() && 245 locations[i].getSubReg() == LocMO.getSubReg()) 246 return i; 247 } else 248 for (unsigned i = 0, e = locations.size(); i != e; ++i) 249 if (LocMO.isIdenticalTo(locations[i])) 250 return i; 251 locations.push_back(LocMO); 252 // We are storing a MachineOperand outside a MachineInstr. 253 locations.back().clearParent(); 254 // Don't store def operands. 255 if (locations.back().isReg()) { 256 if (locations.back().isDef()) 257 locations.back().setIsDead(false); 258 locations.back().setIsUse(); 259 } 260 return locations.size() - 1; 261 } 262 263 /// Remove (recycle) a location number. If \p LocNo still is used by the 264 /// locInts nothing is done. 265 void removeLocationIfUnused(unsigned LocNo) { 266 // Bail out if LocNo still is used. 267 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 268 DbgValueLocation Loc = I.value(); 269 if (Loc.locNo() == LocNo) 270 return; 271 } 272 // Remove the entry in the locations vector, and adjust all references to 273 // location numbers above the removed entry. 274 locations.erase(locations.begin() + LocNo); 275 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 276 DbgValueLocation Loc = I.value(); 277 if (!Loc.isUndef() && Loc.locNo() > LocNo) 278 I.setValueUnchecked(Loc.changeLocNo(Loc.locNo() - 1)); 279 } 280 } 281 282 /// Ensure that all virtual register locations are mapped. 283 void mapVirtRegs(LDVImpl *LDV); 284 285 /// Add a definition point to this value. 286 void addDef(SlotIndex Idx, const MachineOperand &LocMO) { 287 DbgValueLocation Loc(getLocationNo(LocMO)); 288 // Add a singular (Idx,Idx) -> Loc mapping. 289 LocMap::iterator I = locInts.find(Idx); 290 if (!I.valid() || I.start() != Idx) 291 I.insert(Idx, Idx.getNextSlot(), Loc); 292 else 293 // A later DBG_VALUE at the same SlotIndex overrides the old location. 294 I.setValue(Loc); 295 } 296 297 /// Extend the current definition as far as possible down. 298 /// 299 /// Stop when meeting an existing def or when leaving the live 300 /// range of VNI. End points where VNI is no longer live are added to Kills. 301 /// 302 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a 303 /// data-flow analysis to propagate them beyond basic block boundaries. 304 /// 305 /// \param Idx Starting point for the definition. 306 /// \param Loc Location number to propagate. 307 /// \param LR Restrict liveness to where LR has the value VNI. May be null. 308 /// \param VNI When LR is not null, this is the value to restrict to. 309 /// \param [out] Kills Append end points of VNI's live range to Kills. 310 /// \param LIS Live intervals analysis. 311 void extendDef(SlotIndex Idx, DbgValueLocation Loc, 312 LiveRange *LR, const VNInfo *VNI, 313 SmallVectorImpl<SlotIndex> *Kills, 314 LiveIntervals &LIS); 315 316 /// The value in LI/LocNo may be copies to other registers. Determine if 317 /// any of the copies are available at the kill points, and add defs if 318 /// possible. 319 /// 320 /// \param LI Scan for copies of the value in LI->reg. 321 /// \param LocNo Location number of LI->reg. 322 /// \param Kills Points where the range of LocNo could be extended. 323 /// \param [in,out] NewDefs Append (Idx, LocNo) of inserted defs here. 324 void addDefsFromCopies( 325 LiveInterval *LI, unsigned LocNo, 326 const SmallVectorImpl<SlotIndex> &Kills, 327 SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs, 328 MachineRegisterInfo &MRI, LiveIntervals &LIS); 329 330 /// Compute the live intervals of all locations after collecting all their 331 /// def points. 332 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, 333 LiveIntervals &LIS, LexicalScopes &LS); 334 335 /// Replace OldReg ranges with NewRegs ranges where NewRegs is 336 /// live. Returns true if any changes were made. 337 bool splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, 338 LiveIntervals &LIS); 339 340 /// Rewrite virtual register locations according to the provided virtual 341 /// register map. Record the stack slot offsets for the locations that 342 /// were spilled. 343 void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, 344 const TargetInstrInfo &TII, 345 const TargetRegisterInfo &TRI, 346 SpillOffsetMap &SpillOffsets); 347 348 /// Recreate DBG_VALUE instruction from data structures. 349 void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 350 const TargetInstrInfo &TII, 351 const TargetRegisterInfo &TRI, 352 const SpillOffsetMap &SpillOffsets); 353 354 /// Return DebugLoc of this UserValue. 355 DebugLoc getDebugLoc() { return dl;} 356 357 void print(raw_ostream &, const TargetRegisterInfo *); 358 }; 359 360 /// A user label is a part of a debug info user label. 361 class UserLabel { 362 const DILabel *Label; ///< The debug info label we are part of. 363 DebugLoc dl; ///< The debug location for the label. This is 364 ///< used by dwarf writer to find lexical scope. 365 SlotIndex loc; ///< Slot used by the debug label. 366 367 /// Insert a DBG_LABEL into MBB at Idx. 368 void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, 369 LiveIntervals &LIS, const TargetInstrInfo &TII); 370 371 public: 372 /// Create a new UserLabel. 373 UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx) 374 : Label(label), dl(std::move(L)), loc(Idx) {} 375 376 /// Does this UserLabel match the parameters? 377 bool match(const DILabel *L, const DILocation *IA, 378 const SlotIndex Index) const { 379 return Label == L && dl->getInlinedAt() == IA && loc == Index; 380 } 381 382 /// Recreate DBG_LABEL instruction from data structures. 383 void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII); 384 385 /// Return DebugLoc of this UserLabel. 386 DebugLoc getDebugLoc() { return dl; } 387 388 void print(raw_ostream &, const TargetRegisterInfo *); 389 }; 390 391 /// Implementation of the LiveDebugVariables pass. 392 class LDVImpl { 393 LiveDebugVariables &pass; 394 LocMap::Allocator allocator; 395 MachineFunction *MF = nullptr; 396 LiveIntervals *LIS; 397 const TargetRegisterInfo *TRI; 398 399 /// Whether emitDebugValues is called. 400 bool EmitDone = false; 401 402 /// Whether the machine function is modified during the pass. 403 bool ModifiedMF = false; 404 405 /// All allocated UserValue instances. 406 SmallVector<std::unique_ptr<UserValue>, 8> userValues; 407 408 /// All allocated UserLabel instances. 409 SmallVector<std::unique_ptr<UserLabel>, 2> userLabels; 410 411 /// Map virtual register to eq class leader. 412 using VRMap = DenseMap<unsigned, UserValue *>; 413 VRMap virtRegToEqClass; 414 415 /// Map user variable to eq class leader. 416 using UVMap = DenseMap<const DILocalVariable *, UserValue *>; 417 UVMap userVarMap; 418 419 /// Find or create a UserValue. 420 UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr, 421 const DebugLoc &DL); 422 423 /// Find the EC leader for VirtReg or null. 424 UserValue *lookupVirtReg(unsigned VirtReg); 425 426 /// Add DBG_VALUE instruction to our maps. 427 /// 428 /// \param MI DBG_VALUE instruction 429 /// \param Idx Last valid SLotIndex before instruction. 430 /// 431 /// \returns True if the DBG_VALUE instruction should be deleted. 432 bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); 433 434 /// Add DBG_LABEL instruction to UserLabel. 435 /// 436 /// \param MI DBG_LABEL instruction 437 /// \param Idx Last valid SlotIndex before instruction. 438 /// 439 /// \returns True if the DBG_LABEL instruction should be deleted. 440 bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx); 441 442 /// Collect and erase all DBG_VALUE instructions, adding a UserValue def 443 /// for each instruction. 444 /// 445 /// \param mf MachineFunction to be scanned. 446 /// 447 /// \returns True if any debug values were found. 448 bool collectDebugValues(MachineFunction &mf); 449 450 /// Compute the live intervals of all user values after collecting all 451 /// their def points. 452 void computeIntervals(); 453 454 public: 455 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} 456 457 bool runOnMachineFunction(MachineFunction &mf); 458 459 /// Release all memory. 460 void clear() { 461 MF = nullptr; 462 userValues.clear(); 463 userLabels.clear(); 464 virtRegToEqClass.clear(); 465 userVarMap.clear(); 466 // Make sure we call emitDebugValues if the machine function was modified. 467 assert((!ModifiedMF || EmitDone) && 468 "Dbg values are not emitted in LDV"); 469 EmitDone = false; 470 ModifiedMF = false; 471 } 472 473 /// Map virtual register to an equivalence class. 474 void mapVirtReg(unsigned VirtReg, UserValue *EC); 475 476 /// Replace all references to OldReg with NewRegs. 477 void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs); 478 479 /// Recreate DBG_VALUE instruction from data structures. 480 void emitDebugValues(VirtRegMap *VRM); 481 482 void print(raw_ostream&); 483 }; 484 485 } // end anonymous namespace 486 487 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 488 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, 489 const LLVMContext &Ctx) { 490 if (!DL) 491 return; 492 493 auto *Scope = cast<DIScope>(DL.getScope()); 494 // Omit the directory, because it's likely to be long and uninteresting. 495 CommentOS << Scope->getFilename(); 496 CommentOS << ':' << DL.getLine(); 497 if (DL.getCol() != 0) 498 CommentOS << ':' << DL.getCol(); 499 500 DebugLoc InlinedAtDL = DL.getInlinedAt(); 501 if (!InlinedAtDL) 502 return; 503 504 CommentOS << " @[ "; 505 printDebugLoc(InlinedAtDL, CommentOS, Ctx); 506 CommentOS << " ]"; 507 } 508 509 static void printExtendedName(raw_ostream &OS, const DINode *Node, 510 const DILocation *DL) { 511 const LLVMContext &Ctx = Node->getContext(); 512 StringRef Res; 513 unsigned Line = 0; 514 if (const auto *V = dyn_cast<const DILocalVariable>(Node)) { 515 Res = V->getName(); 516 Line = V->getLine(); 517 } else if (const auto *L = dyn_cast<const DILabel>(Node)) { 518 Res = L->getName(); 519 Line = L->getLine(); 520 } 521 522 if (!Res.empty()) 523 OS << Res << "," << Line; 524 auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr; 525 if (InlinedAt) { 526 if (DebugLoc InlinedAtDL = InlinedAt) { 527 OS << " @["; 528 printDebugLoc(InlinedAtDL, OS, Ctx); 529 OS << "]"; 530 } 531 } 532 } 533 534 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 535 OS << "!\""; 536 printExtendedName(OS, Variable, dl); 537 538 OS << "\"\t"; 539 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 540 OS << " [" << I.start() << ';' << I.stop() << "):"; 541 if (I.value().isUndef()) 542 OS << "undef"; 543 else { 544 OS << I.value().locNo(); 545 } 546 } 547 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 548 OS << " Loc" << i << '='; 549 locations[i].print(OS, TRI); 550 } 551 OS << '\n'; 552 } 553 554 void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 555 OS << "!\""; 556 printExtendedName(OS, Label, dl); 557 558 OS << "\"\t"; 559 OS << loc; 560 OS << '\n'; 561 } 562 563 void LDVImpl::print(raw_ostream &OS) { 564 OS << "********** DEBUG VARIABLES **********\n"; 565 for (auto &userValue : userValues) 566 userValue->print(OS, TRI); 567 OS << "********** DEBUG LABELS **********\n"; 568 for (auto &userLabel : userLabels) 569 userLabel->print(OS, TRI); 570 } 571 #endif 572 573 void UserValue::mapVirtRegs(LDVImpl *LDV) { 574 for (unsigned i = 0, e = locations.size(); i != e; ++i) 575 if (locations[i].isReg() && 576 Register::isVirtualRegister(locations[i].getReg())) 577 LDV->mapVirtReg(locations[i].getReg(), this); 578 } 579 580 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var, 581 const DIExpression *Expr, const DebugLoc &DL) { 582 UserValue *&Leader = userVarMap[Var]; 583 if (Leader) { 584 UserValue *UV = Leader->getLeader(); 585 Leader = UV; 586 for (; UV; UV = UV->getNext()) 587 if (UV->match(Var, Expr, DL->getInlinedAt())) 588 return UV; 589 } 590 591 userValues.push_back( 592 std::make_unique<UserValue>(Var, Expr, DL, allocator)); 593 UserValue *UV = userValues.back().get(); 594 Leader = UserValue::merge(Leader, UV); 595 return UV; 596 } 597 598 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) { 599 assert(Register::isVirtualRegister(VirtReg) && "Only map VirtRegs"); 600 UserValue *&Leader = virtRegToEqClass[VirtReg]; 601 Leader = UserValue::merge(Leader, EC); 602 } 603 604 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) { 605 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) 606 return UV->getLeader(); 607 return nullptr; 608 } 609 610 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) { 611 // DBG_VALUE loc, offset, variable 612 if (MI.getNumOperands() != 4 || 613 !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) || 614 !MI.getOperand(2).isMetadata()) { 615 LLVM_DEBUG(dbgs() << "Can't handle " << MI); 616 return false; 617 } 618 619 // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual 620 // register that hasn't been defined yet. If we do not remove those here, then 621 // the re-insertion of the DBG_VALUE instruction after register allocation 622 // will be incorrect. 623 // TODO: If earlier passes are corrected to generate sane debug information 624 // (and if the machine verifier is improved to catch this), then these checks 625 // could be removed or replaced by asserts. 626 bool Discard = false; 627 if (MI.getOperand(0).isReg() && 628 Register::isVirtualRegister(MI.getOperand(0).getReg())) { 629 const Register Reg = MI.getOperand(0).getReg(); 630 if (!LIS->hasInterval(Reg)) { 631 // The DBG_VALUE is described by a virtual register that does not have a 632 // live interval. Discard the DBG_VALUE. 633 Discard = true; 634 LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx 635 << " " << MI); 636 } else { 637 // The DBG_VALUE is only valid if either Reg is live out from Idx, or Reg 638 // is defined dead at Idx (where Idx is the slot index for the instruction 639 // preceding the DBG_VALUE). 640 const LiveInterval &LI = LIS->getInterval(Reg); 641 LiveQueryResult LRQ = LI.Query(Idx); 642 if (!LRQ.valueOutOrDead()) { 643 // We have found a DBG_VALUE with the value in a virtual register that 644 // is not live. Discard the DBG_VALUE. 645 Discard = true; 646 LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx 647 << " " << MI); 648 } 649 } 650 } 651 652 // Get or create the UserValue for (variable,offset) here. 653 assert(!MI.getOperand(1).isImm() && "DBG_VALUE with indirect flag before " 654 "LiveDebugVariables"); 655 const DILocalVariable *Var = MI.getDebugVariable(); 656 const DIExpression *Expr = MI.getDebugExpression(); 657 UserValue *UV = 658 getUserValue(Var, Expr, MI.getDebugLoc()); 659 if (!Discard) 660 UV->addDef(Idx, MI.getOperand(0)); 661 else { 662 MachineOperand MO = MachineOperand::CreateReg(0U, false); 663 MO.setIsDebug(); 664 UV->addDef(Idx, MO); 665 } 666 return true; 667 } 668 669 bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) { 670 // DBG_LABEL label 671 if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) { 672 LLVM_DEBUG(dbgs() << "Can't handle " << MI); 673 return false; 674 } 675 676 // Get or create the UserLabel for label here. 677 const DILabel *Label = MI.getDebugLabel(); 678 const DebugLoc &DL = MI.getDebugLoc(); 679 bool Found = false; 680 for (auto const &L : userLabels) { 681 if (L->match(Label, DL->getInlinedAt(), Idx)) { 682 Found = true; 683 break; 684 } 685 } 686 if (!Found) 687 userLabels.push_back(std::make_unique<UserLabel>(Label, DL, Idx)); 688 689 return true; 690 } 691 692 bool LDVImpl::collectDebugValues(MachineFunction &mf) { 693 bool Changed = false; 694 for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE; 695 ++MFI) { 696 MachineBasicBlock *MBB = &*MFI; 697 for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end(); 698 MBBI != MBBE;) { 699 // Use the first debug instruction in the sequence to get a SlotIndex 700 // for following consecutive debug instructions. 701 if (!MBBI->isDebugInstr()) { 702 ++MBBI; 703 continue; 704 } 705 // Debug instructions has no slot index. Use the previous 706 // non-debug instruction's SlotIndex as its SlotIndex. 707 SlotIndex Idx = 708 MBBI == MBB->begin() 709 ? LIS->getMBBStartIdx(MBB) 710 : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); 711 // Handle consecutive debug instructions with the same slot index. 712 do { 713 // Only handle DBG_VALUE in handleDebugValue(). Skip all other 714 // kinds of debug instructions. 715 if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) || 716 (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) { 717 MBBI = MBB->erase(MBBI); 718 Changed = true; 719 } else 720 ++MBBI; 721 } while (MBBI != MBBE && MBBI->isDebugInstr()); 722 } 723 } 724 return Changed; 725 } 726 727 void UserValue::extendDef(SlotIndex Idx, DbgValueLocation Loc, LiveRange *LR, 728 const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills, 729 LiveIntervals &LIS) { 730 SlotIndex Start = Idx; 731 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 732 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 733 LocMap::iterator I = locInts.find(Start); 734 735 // Limit to VNI's live range. 736 bool ToEnd = true; 737 if (LR && VNI) { 738 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); 739 if (!Segment || Segment->valno != VNI) { 740 if (Kills) 741 Kills->push_back(Start); 742 return; 743 } 744 if (Segment->end < Stop) { 745 Stop = Segment->end; 746 ToEnd = false; 747 } 748 } 749 750 // There could already be a short def at Start. 751 if (I.valid() && I.start() <= Start) { 752 // Stop when meeting a different location or an already extended interval. 753 Start = Start.getNextSlot(); 754 if (I.value() != Loc || I.stop() != Start) 755 return; 756 // This is a one-slot placeholder. Just skip it. 757 ++I; 758 } 759 760 // Limited by the next def. 761 if (I.valid() && I.start() < Stop) 762 Stop = I.start(); 763 // Limited by VNI's live range. 764 else if (!ToEnd && Kills) 765 Kills->push_back(Stop); 766 767 if (Start < Stop) 768 I.insert(Start, Stop, Loc); 769 } 770 771 void UserValue::addDefsFromCopies( 772 LiveInterval *LI, unsigned LocNo, 773 const SmallVectorImpl<SlotIndex> &Kills, 774 SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs, 775 MachineRegisterInfo &MRI, LiveIntervals &LIS) { 776 if (Kills.empty()) 777 return; 778 // Don't track copies from physregs, there are too many uses. 779 if (!Register::isVirtualRegister(LI->reg)) 780 return; 781 782 // Collect all the (vreg, valno) pairs that are copies of LI. 783 SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues; 784 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) { 785 MachineInstr *MI = MO.getParent(); 786 // Copies of the full value. 787 if (MO.getSubReg() || !MI->isCopy()) 788 continue; 789 Register DstReg = MI->getOperand(0).getReg(); 790 791 // Don't follow copies to physregs. These are usually setting up call 792 // arguments, and the argument registers are always call clobbered. We are 793 // better off in the source register which could be a callee-saved register, 794 // or it could be spilled. 795 if (!Register::isVirtualRegister(DstReg)) 796 continue; 797 798 // Is LocNo extended to reach this copy? If not, another def may be blocking 799 // it, or we are looking at a wrong value of LI. 800 SlotIndex Idx = LIS.getInstructionIndex(*MI); 801 LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); 802 if (!I.valid() || I.value().locNo() != LocNo) 803 continue; 804 805 if (!LIS.hasInterval(DstReg)) 806 continue; 807 LiveInterval *DstLI = &LIS.getInterval(DstReg); 808 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); 809 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); 810 CopyValues.push_back(std::make_pair(DstLI, DstVNI)); 811 } 812 813 if (CopyValues.empty()) 814 return; 815 816 LLVM_DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI 817 << '\n'); 818 819 // Try to add defs of the copied values for each kill point. 820 for (unsigned i = 0, e = Kills.size(); i != e; ++i) { 821 SlotIndex Idx = Kills[i]; 822 for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) { 823 LiveInterval *DstLI = CopyValues[j].first; 824 const VNInfo *DstVNI = CopyValues[j].second; 825 if (DstLI->getVNInfoAt(Idx) != DstVNI) 826 continue; 827 // Check that there isn't already a def at Idx 828 LocMap::iterator I = locInts.find(Idx); 829 if (I.valid() && I.start() <= Idx) 830 continue; 831 LLVM_DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #" 832 << DstVNI->id << " in " << *DstLI << '\n'); 833 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); 834 assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); 835 unsigned LocNo = getLocationNo(CopyMI->getOperand(0)); 836 DbgValueLocation NewLoc(LocNo); 837 I.insert(Idx, Idx.getNextSlot(), NewLoc); 838 NewDefs.push_back(std::make_pair(Idx, NewLoc)); 839 break; 840 } 841 } 842 } 843 844 void UserValue::computeIntervals(MachineRegisterInfo &MRI, 845 const TargetRegisterInfo &TRI, 846 LiveIntervals &LIS, LexicalScopes &LS) { 847 SmallVector<std::pair<SlotIndex, DbgValueLocation>, 16> Defs; 848 849 // Collect all defs to be extended (Skipping undefs). 850 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 851 if (!I.value().isUndef()) 852 Defs.push_back(std::make_pair(I.start(), I.value())); 853 854 // Extend all defs, and possibly add new ones along the way. 855 for (unsigned i = 0; i != Defs.size(); ++i) { 856 SlotIndex Idx = Defs[i].first; 857 DbgValueLocation Loc = Defs[i].second; 858 const MachineOperand &LocMO = locations[Loc.locNo()]; 859 860 if (!LocMO.isReg()) { 861 extendDef(Idx, Loc, nullptr, nullptr, nullptr, LIS); 862 continue; 863 } 864 865 // Register locations are constrained to where the register value is live. 866 if (Register::isVirtualRegister(LocMO.getReg())) { 867 LiveInterval *LI = nullptr; 868 const VNInfo *VNI = nullptr; 869 if (LIS.hasInterval(LocMO.getReg())) { 870 LI = &LIS.getInterval(LocMO.getReg()); 871 VNI = LI->getVNInfoAt(Idx); 872 } 873 SmallVector<SlotIndex, 16> Kills; 874 extendDef(Idx, Loc, LI, VNI, &Kills, LIS); 875 // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that 876 // if the original location for example is %vreg0:sub_hi, and we find a 877 // full register copy in addDefsFromCopies (at the moment it only handles 878 // full register copies), then we must add the sub1 sub-register index to 879 // the new location. However, that is only possible if the new virtual 880 // register is of the same regclass (or if there is an equivalent 881 // sub-register in that regclass). For now, simply skip handling copies if 882 // a sub-register is involved. 883 if (LI && !LocMO.getSubReg()) 884 addDefsFromCopies(LI, Loc.locNo(), Kills, Defs, MRI, LIS); 885 continue; 886 } 887 888 // For physregs, we only mark the start slot idx. DwarfDebug will see it 889 // as if the DBG_VALUE is valid up until the end of the basic block, or 890 // the next def of the physical register. So we do not need to extend the 891 // range. It might actually happen that the DBG_VALUE is the last use of 892 // the physical register (e.g. if this is an unused input argument to a 893 // function). 894 } 895 896 // The computed intervals may extend beyond the range of the debug 897 // location's lexical scope. In this case, splitting of an interval 898 // can result in an interval outside of the scope being created, 899 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent 900 // this, trim the intervals to the lexical scope. 901 902 LexicalScope *Scope = LS.findLexicalScope(dl); 903 if (!Scope) 904 return; 905 906 SlotIndex PrevEnd; 907 LocMap::iterator I = locInts.begin(); 908 909 // Iterate over the lexical scope ranges. Each time round the loop 910 // we check the intervals for overlap with the end of the previous 911 // range and the start of the next. The first range is handled as 912 // a special case where there is no PrevEnd. 913 for (const InsnRange &Range : Scope->getRanges()) { 914 SlotIndex RStart = LIS.getInstructionIndex(*Range.first); 915 SlotIndex REnd = LIS.getInstructionIndex(*Range.second); 916 917 // Variable locations at the first instruction of a block should be 918 // based on the block's SlotIndex, not the first instruction's index. 919 if (Range.first == Range.first->getParent()->begin()) 920 RStart = LIS.getSlotIndexes()->getIndexBefore(*Range.first); 921 922 // At the start of each iteration I has been advanced so that 923 // I.stop() >= PrevEnd. Check for overlap. 924 if (PrevEnd && I.start() < PrevEnd) { 925 SlotIndex IStop = I.stop(); 926 DbgValueLocation Loc = I.value(); 927 928 // Stop overlaps previous end - trim the end of the interval to 929 // the scope range. 930 I.setStopUnchecked(PrevEnd); 931 ++I; 932 933 // If the interval also overlaps the start of the "next" (i.e. 934 // current) range create a new interval for the remainder (which 935 // may be further trimmed). 936 if (RStart < IStop) 937 I.insert(RStart, IStop, Loc); 938 } 939 940 // Advance I so that I.stop() >= RStart, and check for overlap. 941 I.advanceTo(RStart); 942 if (!I.valid()) 943 return; 944 945 if (I.start() < RStart) { 946 // Interval start overlaps range - trim to the scope range. 947 I.setStartUnchecked(RStart); 948 // Remember that this interval was trimmed. 949 trimmedDefs.insert(RStart); 950 } 951 952 // The end of a lexical scope range is the last instruction in the 953 // range. To convert to an interval we need the index of the 954 // instruction after it. 955 REnd = REnd.getNextIndex(); 956 957 // Advance I to first interval outside current range. 958 I.advanceTo(REnd); 959 if (!I.valid()) 960 return; 961 962 PrevEnd = REnd; 963 } 964 965 // Check for overlap with end of final range. 966 if (PrevEnd && I.start() < PrevEnd) 967 I.setStopUnchecked(PrevEnd); 968 } 969 970 void LDVImpl::computeIntervals() { 971 LexicalScopes LS; 972 LS.initialize(*MF); 973 974 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 975 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS); 976 userValues[i]->mapVirtRegs(this); 977 } 978 } 979 980 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) { 981 clear(); 982 MF = &mf; 983 LIS = &pass.getAnalysis<LiveIntervals>(); 984 TRI = mf.getSubtarget().getRegisterInfo(); 985 LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 986 << mf.getName() << " **********\n"); 987 988 bool Changed = collectDebugValues(mf); 989 computeIntervals(); 990 LLVM_DEBUG(print(dbgs())); 991 ModifiedMF = Changed; 992 return Changed; 993 } 994 995 static void removeDebugValues(MachineFunction &mf) { 996 for (MachineBasicBlock &MBB : mf) { 997 for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) { 998 if (!MBBI->isDebugValue()) { 999 ++MBBI; 1000 continue; 1001 } 1002 MBBI = MBB.erase(MBBI); 1003 } 1004 } 1005 } 1006 1007 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { 1008 if (!EnableLDV) 1009 return false; 1010 if (!mf.getFunction().getSubprogram()) { 1011 removeDebugValues(mf); 1012 return false; 1013 } 1014 if (!pImpl) 1015 pImpl = new LDVImpl(this); 1016 return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf); 1017 } 1018 1019 void LiveDebugVariables::releaseMemory() { 1020 if (pImpl) 1021 static_cast<LDVImpl*>(pImpl)->clear(); 1022 } 1023 1024 LiveDebugVariables::~LiveDebugVariables() { 1025 if (pImpl) 1026 delete static_cast<LDVImpl*>(pImpl); 1027 } 1028 1029 //===----------------------------------------------------------------------===// 1030 // Live Range Splitting 1031 //===----------------------------------------------------------------------===// 1032 1033 bool 1034 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 1035 LiveIntervals& LIS) { 1036 LLVM_DEBUG({ 1037 dbgs() << "Splitting Loc" << OldLocNo << '\t'; 1038 print(dbgs(), nullptr); 1039 }); 1040 bool DidChange = false; 1041 LocMap::iterator LocMapI; 1042 LocMapI.setMap(locInts); 1043 for (unsigned i = 0; i != NewRegs.size(); ++i) { 1044 LiveInterval *LI = &LIS.getInterval(NewRegs[i]); 1045 if (LI->empty()) 1046 continue; 1047 1048 // Don't allocate the new LocNo until it is needed. 1049 unsigned NewLocNo = UndefLocNo; 1050 1051 // Iterate over the overlaps between locInts and LI. 1052 LocMapI.find(LI->beginIndex()); 1053 if (!LocMapI.valid()) 1054 continue; 1055 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); 1056 LiveInterval::iterator LIE = LI->end(); 1057 while (LocMapI.valid() && LII != LIE) { 1058 // At this point, we know that LocMapI.stop() > LII->start. 1059 LII = LI->advanceTo(LII, LocMapI.start()); 1060 if (LII == LIE) 1061 break; 1062 1063 // Now LII->end > LocMapI.start(). Do we have an overlap? 1064 if (LocMapI.value().locNo() == OldLocNo && LII->start < LocMapI.stop()) { 1065 // Overlapping correct location. Allocate NewLocNo now. 1066 if (NewLocNo == UndefLocNo) { 1067 MachineOperand MO = MachineOperand::CreateReg(LI->reg, false); 1068 MO.setSubReg(locations[OldLocNo].getSubReg()); 1069 NewLocNo = getLocationNo(MO); 1070 DidChange = true; 1071 } 1072 1073 SlotIndex LStart = LocMapI.start(); 1074 SlotIndex LStop = LocMapI.stop(); 1075 DbgValueLocation OldLoc = LocMapI.value(); 1076 1077 // Trim LocMapI down to the LII overlap. 1078 if (LStart < LII->start) 1079 LocMapI.setStartUnchecked(LII->start); 1080 if (LStop > LII->end) 1081 LocMapI.setStopUnchecked(LII->end); 1082 1083 // Change the value in the overlap. This may trigger coalescing. 1084 LocMapI.setValue(OldLoc.changeLocNo(NewLocNo)); 1085 1086 // Re-insert any removed OldLocNo ranges. 1087 if (LStart < LocMapI.start()) { 1088 LocMapI.insert(LStart, LocMapI.start(), OldLoc); 1089 ++LocMapI; 1090 assert(LocMapI.valid() && "Unexpected coalescing"); 1091 } 1092 if (LStop > LocMapI.stop()) { 1093 ++LocMapI; 1094 LocMapI.insert(LII->end, LStop, OldLoc); 1095 --LocMapI; 1096 } 1097 } 1098 1099 // Advance to the next overlap. 1100 if (LII->end < LocMapI.stop()) { 1101 if (++LII == LIE) 1102 break; 1103 LocMapI.advanceTo(LII->start); 1104 } else { 1105 ++LocMapI; 1106 if (!LocMapI.valid()) 1107 break; 1108 LII = LI->advanceTo(LII, LocMapI.start()); 1109 } 1110 } 1111 } 1112 1113 // Finally, remove OldLocNo unless it is still used by some interval in the 1114 // locInts map. One case when OldLocNo still is in use is when the register 1115 // has been spilled. In such situations the spilled register is kept as a 1116 // location until rewriteLocations is called (VirtRegMap is mapping the old 1117 // register to the spill slot). So for a while we can have locations that map 1118 // to virtual registers that have been removed from both the MachineFunction 1119 // and from LiveIntervals. 1120 removeLocationIfUnused(OldLocNo); 1121 1122 LLVM_DEBUG({ 1123 dbgs() << "Split result: \t"; 1124 print(dbgs(), nullptr); 1125 }); 1126 return DidChange; 1127 } 1128 1129 bool 1130 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, 1131 LiveIntervals &LIS) { 1132 bool DidChange = false; 1133 // Split locations referring to OldReg. Iterate backwards so splitLocation can 1134 // safely erase unused locations. 1135 for (unsigned i = locations.size(); i ; --i) { 1136 unsigned LocNo = i-1; 1137 const MachineOperand *Loc = &locations[LocNo]; 1138 if (!Loc->isReg() || Loc->getReg() != OldReg) 1139 continue; 1140 DidChange |= splitLocation(LocNo, NewRegs, LIS); 1141 } 1142 return DidChange; 1143 } 1144 1145 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) { 1146 bool DidChange = false; 1147 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) 1148 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); 1149 1150 if (!DidChange) 1151 return; 1152 1153 // Map all of the new virtual registers. 1154 UserValue *UV = lookupVirtReg(OldReg); 1155 for (unsigned i = 0; i != NewRegs.size(); ++i) 1156 mapVirtReg(NewRegs[i], UV); 1157 } 1158 1159 void LiveDebugVariables:: 1160 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) { 1161 if (pImpl) 1162 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); 1163 } 1164 1165 void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, 1166 const TargetInstrInfo &TII, 1167 const TargetRegisterInfo &TRI, 1168 SpillOffsetMap &SpillOffsets) { 1169 // Build a set of new locations with new numbers so we can coalesce our 1170 // IntervalMap if two vreg intervals collapse to the same physical location. 1171 // Use MapVector instead of SetVector because MapVector::insert returns the 1172 // position of the previously or newly inserted element. The boolean value 1173 // tracks if the location was produced by a spill. 1174 // FIXME: This will be problematic if we ever support direct and indirect 1175 // frame index locations, i.e. expressing both variables in memory and 1176 // 'int x, *px = &x'. The "spilled" bit must become part of the location. 1177 MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations; 1178 SmallVector<unsigned, 4> LocNoMap(locations.size()); 1179 for (unsigned I = 0, E = locations.size(); I != E; ++I) { 1180 bool Spilled = false; 1181 unsigned SpillOffset = 0; 1182 MachineOperand Loc = locations[I]; 1183 // Only virtual registers are rewritten. 1184 if (Loc.isReg() && Loc.getReg() && 1185 Register::isVirtualRegister(Loc.getReg())) { 1186 Register VirtReg = Loc.getReg(); 1187 if (VRM.isAssignedReg(VirtReg) && 1188 Register::isPhysicalRegister(VRM.getPhys(VirtReg))) { 1189 // This can create a %noreg operand in rare cases when the sub-register 1190 // index is no longer available. That means the user value is in a 1191 // non-existent sub-register, and %noreg is exactly what we want. 1192 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); 1193 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { 1194 // Retrieve the stack slot offset. 1195 unsigned SpillSize; 1196 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1197 const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg); 1198 bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize, 1199 SpillOffset, MF); 1200 1201 // FIXME: Invalidate the location if the offset couldn't be calculated. 1202 (void)Success; 1203 1204 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); 1205 Spilled = true; 1206 } else { 1207 Loc.setReg(0); 1208 Loc.setSubReg(0); 1209 } 1210 } 1211 1212 // Insert this location if it doesn't already exist and record a mapping 1213 // from the old number to the new number. 1214 auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}}); 1215 unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first); 1216 LocNoMap[I] = NewLocNo; 1217 } 1218 1219 // Rewrite the locations and record the stack slot offsets for spills. 1220 locations.clear(); 1221 SpillOffsets.clear(); 1222 for (auto &Pair : NewLocations) { 1223 bool Spilled; 1224 unsigned SpillOffset; 1225 std::tie(Spilled, SpillOffset) = Pair.second; 1226 locations.push_back(Pair.first); 1227 if (Spilled) { 1228 unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair); 1229 SpillOffsets[NewLocNo] = SpillOffset; 1230 } 1231 } 1232 1233 // Update the interval map, but only coalesce left, since intervals to the 1234 // right use the old location numbers. This should merge two contiguous 1235 // DBG_VALUE intervals with different vregs that were allocated to the same 1236 // physical register. 1237 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 1238 DbgValueLocation Loc = I.value(); 1239 // Undef values don't exist in locations (and thus not in LocNoMap either) 1240 // so skip over them. See getLocationNo(). 1241 if (Loc.isUndef()) 1242 continue; 1243 unsigned NewLocNo = LocNoMap[Loc.locNo()]; 1244 I.setValueUnchecked(Loc.changeLocNo(NewLocNo)); 1245 I.setStart(I.start()); 1246 } 1247 } 1248 1249 /// Find an iterator for inserting a DBG_VALUE instruction. 1250 static MachineBasicBlock::iterator 1251 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, 1252 LiveIntervals &LIS) { 1253 SlotIndex Start = LIS.getMBBStartIdx(MBB); 1254 Idx = Idx.getBaseIndex(); 1255 1256 // Try to find an insert location by going backwards from Idx. 1257 MachineInstr *MI; 1258 while (!(MI = LIS.getInstructionFromIndex(Idx))) { 1259 // We've reached the beginning of MBB. 1260 if (Idx == Start) { 1261 MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 1262 return I; 1263 } 1264 Idx = Idx.getPrevIndex(); 1265 } 1266 1267 // Don't insert anything after the first terminator, though. 1268 return MI->isTerminator() ? MBB->getFirstTerminator() : 1269 std::next(MachineBasicBlock::iterator(MI)); 1270 } 1271 1272 /// Find an iterator for inserting the next DBG_VALUE instruction 1273 /// (or end if no more insert locations found). 1274 static MachineBasicBlock::iterator 1275 findNextInsertLocation(MachineBasicBlock *MBB, 1276 MachineBasicBlock::iterator I, 1277 SlotIndex StopIdx, MachineOperand &LocMO, 1278 LiveIntervals &LIS, 1279 const TargetRegisterInfo &TRI) { 1280 if (!LocMO.isReg()) 1281 return MBB->instr_end(); 1282 Register Reg = LocMO.getReg(); 1283 1284 // Find the next instruction in the MBB that define the register Reg. 1285 while (I != MBB->end() && !I->isTerminator()) { 1286 if (!LIS.isNotInMIMap(*I) && 1287 SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I))) 1288 break; 1289 if (I->definesRegister(Reg, &TRI)) 1290 // The insert location is directly after the instruction/bundle. 1291 return std::next(I); 1292 ++I; 1293 } 1294 return MBB->end(); 1295 } 1296 1297 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 1298 SlotIndex StopIdx, DbgValueLocation Loc, 1299 bool Spilled, unsigned SpillOffset, 1300 LiveIntervals &LIS, const TargetInstrInfo &TII, 1301 const TargetRegisterInfo &TRI) { 1302 SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB); 1303 // Only search within the current MBB. 1304 StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx; 1305 MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS); 1306 // Undef values don't exist in locations so create new "noreg" register MOs 1307 // for them. See getLocationNo(). 1308 MachineOperand MO = !Loc.isUndef() ? 1309 locations[Loc.locNo()] : 1310 MachineOperand::CreateReg(/* Reg */ 0, /* isDef */ false, /* isImp */ false, 1311 /* isKill */ false, /* isDead */ false, 1312 /* isUndef */ false, /* isEarlyClobber */ false, 1313 /* SubReg */ 0, /* isDebug */ true); 1314 1315 ++NumInsertedDebugValues; 1316 1317 assert(cast<DILocalVariable>(Variable) 1318 ->isValidLocationForIntrinsic(getDebugLoc()) && 1319 "Expected inlined-at fields to agree"); 1320 1321 // If the location was spilled, the new DBG_VALUE will be indirect. If the 1322 // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate 1323 // that the original virtual register was a pointer. Also, add the stack slot 1324 // offset for the spilled register to the expression. 1325 const DIExpression *Expr = Expression; 1326 if (Spilled) 1327 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, SpillOffset); 1328 1329 assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index"); 1330 1331 do { 1332 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE), 1333 Spilled, MO, Variable, Expr); 1334 1335 // Continue and insert DBG_VALUES after every redefinition of register 1336 // associated with the debug value within the range 1337 I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI); 1338 } while (I != MBB->end()); 1339 } 1340 1341 void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, 1342 LiveIntervals &LIS, 1343 const TargetInstrInfo &TII) { 1344 MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS); 1345 ++NumInsertedDebugLabels; 1346 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL)) 1347 .addMetadata(Label); 1348 } 1349 1350 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 1351 const TargetInstrInfo &TII, 1352 const TargetRegisterInfo &TRI, 1353 const SpillOffsetMap &SpillOffsets) { 1354 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); 1355 1356 for (LocMap::const_iterator I = locInts.begin(); I.valid();) { 1357 SlotIndex Start = I.start(); 1358 SlotIndex Stop = I.stop(); 1359 DbgValueLocation Loc = I.value(); 1360 auto SpillIt = 1361 !Loc.isUndef() ? SpillOffsets.find(Loc.locNo()) : SpillOffsets.end(); 1362 bool Spilled = SpillIt != SpillOffsets.end(); 1363 unsigned SpillOffset = Spilled ? SpillIt->second : 0; 1364 1365 // If the interval start was trimmed to the lexical scope insert the 1366 // DBG_VALUE at the previous index (otherwise it appears after the 1367 // first instruction in the range). 1368 if (trimmedDefs.count(Start)) 1369 Start = Start.getPrevIndex(); 1370 1371 LLVM_DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << Loc.locNo()); 1372 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1373 SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); 1374 1375 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1376 insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, SpillOffset, LIS, TII, 1377 TRI); 1378 // This interval may span multiple basic blocks. 1379 // Insert a DBG_VALUE into each one. 1380 while (Stop > MBBEnd) { 1381 // Move to the next block. 1382 Start = MBBEnd; 1383 if (++MBB == MFEnd) 1384 break; 1385 MBBEnd = LIS.getMBBEndIdx(&*MBB); 1386 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1387 insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, SpillOffset, LIS, TII, 1388 TRI); 1389 } 1390 LLVM_DEBUG(dbgs() << '\n'); 1391 if (MBB == MFEnd) 1392 break; 1393 1394 ++I; 1395 } 1396 } 1397 1398 void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII) { 1399 LLVM_DEBUG(dbgs() << "\t" << loc); 1400 MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator(); 1401 1402 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB)); 1403 insertDebugLabel(&*MBB, loc, LIS, TII); 1404 1405 LLVM_DEBUG(dbgs() << '\n'); 1406 } 1407 1408 void LDVImpl::emitDebugValues(VirtRegMap *VRM) { 1409 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); 1410 if (!MF) 1411 return; 1412 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1413 SpillOffsetMap SpillOffsets; 1414 for (auto &userValue : userValues) { 1415 LLVM_DEBUG(userValue->print(dbgs(), TRI)); 1416 userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets); 1417 userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets); 1418 } 1419 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n"); 1420 for (auto &userLabel : userLabels) { 1421 LLVM_DEBUG(userLabel->print(dbgs(), TRI)); 1422 userLabel->emitDebugLabel(*LIS, *TII); 1423 } 1424 EmitDone = true; 1425 } 1426 1427 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { 1428 if (pImpl) 1429 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); 1430 } 1431 1432 bool LiveDebugVariables::doInitialization(Module &M) { 1433 return Pass::doInitialization(M); 1434 } 1435 1436 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1437 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { 1438 if (pImpl) 1439 static_cast<LDVImpl*>(pImpl)->print(dbgs()); 1440 } 1441 #endif 1442