xref: /llvm-project/llvm/lib/CodeGen/LiveDebugVariables.cpp (revision ed29dbaafa49bb8c9039a35f768244c394411fea)
1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the LiveDebugVariables analysis.
10 //
11 // Remove all DBG_VALUE instructions referencing virtual registers and replace
12 // them with a data structure tracking where live user variables are kept - in a
13 // virtual register or in a stack slot.
14 //
15 // Allow the data structure to be updated during register allocation when values
16 // are moved between registers and stack slots. Finally emit new DBG_VALUE
17 // instructions after register allocation is complete.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #include "LiveDebugVariables.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/IntervalMap.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/CodeGen/LexicalScopes.h"
32 #include "llvm/CodeGen/LiveInterval.h"
33 #include "llvm/CodeGen/LiveIntervals.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineDominators.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/SlotIndexes.h"
42 #include "llvm/CodeGen/TargetInstrInfo.h"
43 #include "llvm/CodeGen/TargetOpcodes.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/VirtRegMap.h"
47 #include "llvm/Config/llvm-config.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/MC/MCRegisterInfo.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <iterator>
62 #include <memory>
63 #include <utility>
64 
65 using namespace llvm;
66 
67 #define DEBUG_TYPE "livedebugvars"
68 
69 static cl::opt<bool>
70 EnableLDV("live-debug-variables", cl::init(true),
71           cl::desc("Enable the live debug variables pass"), cl::Hidden);
72 
73 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted");
74 STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted");
75 
76 char LiveDebugVariables::ID = 0;
77 
78 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE,
79                 "Debug Variable Analysis", false, false)
80 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
81 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
82 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE,
83                 "Debug Variable Analysis", false, false)
84 
85 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const {
86   AU.addRequired<MachineDominatorTree>();
87   AU.addRequiredTransitive<LiveIntervals>();
88   AU.setPreservesAll();
89   MachineFunctionPass::getAnalysisUsage(AU);
90 }
91 
92 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) {
93   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
94 }
95 
96 enum : unsigned { UndefLocNo = ~0U };
97 
98 /// Describes a location by number along with some flags about the original
99 /// usage of the location.
100 class DbgValueLocation {
101 public:
102   DbgValueLocation(unsigned LocNo)
103       : LocNo(LocNo) {
104     static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing");
105     assert(locNo() == LocNo && "location truncation");
106   }
107 
108   DbgValueLocation() : LocNo(0) {}
109 
110   unsigned locNo() const {
111     // Fix up the undef location number, which gets truncated.
112     return LocNo == INT_MAX ? UndefLocNo : LocNo;
113   }
114   bool isUndef() const { return locNo() == UndefLocNo; }
115 
116   DbgValueLocation changeLocNo(unsigned NewLocNo) const {
117     return DbgValueLocation(NewLocNo);
118   }
119 
120   friend inline bool operator==(const DbgValueLocation &LHS,
121                                 const DbgValueLocation &RHS) {
122     return LHS.LocNo == RHS.LocNo;
123   }
124 
125   friend inline bool operator!=(const DbgValueLocation &LHS,
126                                 const DbgValueLocation &RHS) {
127     return !(LHS == RHS);
128   }
129 
130 private:
131   unsigned LocNo;
132 };
133 
134 /// Map of where a user value is live, and its location.
135 using LocMap = IntervalMap<SlotIndex, DbgValueLocation, 4>;
136 
137 /// Map of stack slot offsets for spilled locations.
138 /// Non-spilled locations are not added to the map.
139 using SpillOffsetMap = DenseMap<unsigned, unsigned>;
140 
141 namespace {
142 
143 class LDVImpl;
144 
145 /// A user value is a part of a debug info user variable.
146 ///
147 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
148 /// holds part of a user variable. The part is identified by a byte offset.
149 ///
150 /// UserValues are grouped into equivalence classes for easier searching. Two
151 /// user values are related if they refer to the same variable, or if they are
152 /// held by the same virtual register. The equivalence class is the transitive
153 /// closure of that relation.
154 class UserValue {
155   const DILocalVariable *Variable; ///< The debug info variable we are part of.
156   const DIExpression *Expression; ///< Any complex address expression.
157   DebugLoc dl;            ///< The debug location for the variable. This is
158                           ///< used by dwarf writer to find lexical scope.
159   UserValue *leader;      ///< Equivalence class leader.
160   UserValue *next = nullptr; ///< Next value in equivalence class, or null.
161 
162   /// Numbered locations referenced by locmap.
163   SmallVector<MachineOperand, 4> locations;
164 
165   /// Map of slot indices where this value is live.
166   LocMap locInts;
167 
168   /// Insert a DBG_VALUE into MBB at Idx for LocNo.
169   void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
170                         SlotIndex StopIdx, DbgValueLocation Loc, bool Spilled,
171                         unsigned SpillOffset, LiveIntervals &LIS,
172                         const TargetInstrInfo &TII,
173                         const TargetRegisterInfo &TRI);
174 
175   /// Replace OldLocNo ranges with NewRegs ranges where NewRegs
176   /// is live. Returns true if any changes were made.
177   bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
178                      LiveIntervals &LIS);
179 
180 public:
181   /// Create a new UserValue.
182   UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L,
183             LocMap::Allocator &alloc)
184       : Variable(var), Expression(expr), dl(std::move(L)), leader(this),
185         locInts(alloc) {}
186 
187   /// Get the leader of this value's equivalence class.
188   UserValue *getLeader() {
189     UserValue *l = leader;
190     while (l != l->leader)
191       l = l->leader;
192     return leader = l;
193   }
194 
195   /// Return the next UserValue in the equivalence class.
196   UserValue *getNext() const { return next; }
197 
198   /// Does this UserValue match the parameters?
199   bool match(const DILocalVariable *Var, const DIExpression *Expr,
200              const DILocation *IA) const {
201     // FIXME: The fragment should be part of the equivalence class, but not
202     // other things in the expression like stack values.
203     return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA;
204   }
205 
206   /// Merge equivalence classes.
207   static UserValue *merge(UserValue *L1, UserValue *L2) {
208     L2 = L2->getLeader();
209     if (!L1)
210       return L2;
211     L1 = L1->getLeader();
212     if (L1 == L2)
213       return L1;
214     // Splice L2 before L1's members.
215     UserValue *End = L2;
216     while (End->next) {
217       End->leader = L1;
218       End = End->next;
219     }
220     End->leader = L1;
221     End->next = L1->next;
222     L1->next = L2;
223     return L1;
224   }
225 
226   /// Return the location number that matches Loc.
227   ///
228   /// For undef values we always return location number UndefLocNo without
229   /// inserting anything in locations. Since locations is a vector and the
230   /// location number is the position in the vector and UndefLocNo is ~0,
231   /// we would need a very big vector to put the value at the right position.
232   unsigned getLocationNo(const MachineOperand &LocMO) {
233     if (LocMO.isReg()) {
234       if (LocMO.getReg() == 0)
235         return UndefLocNo;
236       // For register locations we dont care about use/def and other flags.
237       for (unsigned i = 0, e = locations.size(); i != e; ++i)
238         if (locations[i].isReg() &&
239             locations[i].getReg() == LocMO.getReg() &&
240             locations[i].getSubReg() == LocMO.getSubReg())
241           return i;
242     } else
243       for (unsigned i = 0, e = locations.size(); i != e; ++i)
244         if (LocMO.isIdenticalTo(locations[i]))
245           return i;
246     locations.push_back(LocMO);
247     // We are storing a MachineOperand outside a MachineInstr.
248     locations.back().clearParent();
249     // Don't store def operands.
250     if (locations.back().isReg()) {
251       if (locations.back().isDef())
252         locations.back().setIsDead(false);
253       locations.back().setIsUse();
254     }
255     return locations.size() - 1;
256   }
257 
258   /// Ensure that all virtual register locations are mapped.
259   void mapVirtRegs(LDVImpl *LDV);
260 
261   /// Add a definition point to this value.
262   void addDef(SlotIndex Idx, const MachineOperand &LocMO) {
263     DbgValueLocation Loc(getLocationNo(LocMO));
264     // Add a singular (Idx,Idx) -> Loc mapping.
265     LocMap::iterator I = locInts.find(Idx);
266     if (!I.valid() || I.start() != Idx)
267       I.insert(Idx, Idx.getNextSlot(), Loc);
268     else
269       // A later DBG_VALUE at the same SlotIndex overrides the old location.
270       I.setValue(Loc);
271   }
272 
273   /// Extend the current definition as far as possible down.
274   ///
275   /// Stop when meeting an existing def or when leaving the live
276   /// range of VNI. End points where VNI is no longer live are added to Kills.
277   ///
278   /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a
279   /// data-flow analysis to propagate them beyond basic block boundaries.
280   ///
281   /// \param Idx Starting point for the definition.
282   /// \param Loc Location number to propagate.
283   /// \param LR Restrict liveness to where LR has the value VNI. May be null.
284   /// \param VNI When LR is not null, this is the value to restrict to.
285   /// \param [out] Kills Append end points of VNI's live range to Kills.
286   /// \param LIS Live intervals analysis.
287   void extendDef(SlotIndex Idx, DbgValueLocation Loc,
288                  LiveRange *LR, const VNInfo *VNI,
289                  SmallVectorImpl<SlotIndex> *Kills,
290                  LiveIntervals &LIS);
291 
292   /// The value in LI/LocNo may be copies to other registers. Determine if
293   /// any of the copies are available at the kill points, and add defs if
294   /// possible.
295   ///
296   /// \param LI Scan for copies of the value in LI->reg.
297   /// \param LocNo Location number of LI->reg.
298   /// \param Kills Points where the range of LocNo could be extended.
299   /// \param [in,out] NewDefs Append (Idx, LocNo) of inserted defs here.
300   void addDefsFromCopies(
301       LiveInterval *LI, unsigned LocNo,
302       const SmallVectorImpl<SlotIndex> &Kills,
303       SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
304       MachineRegisterInfo &MRI, LiveIntervals &LIS);
305 
306   /// Compute the live intervals of all locations after collecting all their
307   /// def points.
308   void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
309                         LiveIntervals &LIS, LexicalScopes &LS);
310 
311   /// Replace OldReg ranges with NewRegs ranges where NewRegs is
312   /// live. Returns true if any changes were made.
313   bool splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
314                      LiveIntervals &LIS);
315 
316   /// Rewrite virtual register locations according to the provided virtual
317   /// register map. Record the stack slot offsets for the locations that
318   /// were spilled.
319   void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
320                         const TargetInstrInfo &TII,
321                         const TargetRegisterInfo &TRI,
322                         SpillOffsetMap &SpillOffsets);
323 
324   /// Recreate DBG_VALUE instruction from data structures.
325   void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
326                        const TargetInstrInfo &TII,
327                        const TargetRegisterInfo &TRI,
328                        const SpillOffsetMap &SpillOffsets);
329 
330   /// Return DebugLoc of this UserValue.
331   DebugLoc getDebugLoc() { return dl;}
332 
333   void print(raw_ostream &, const TargetRegisterInfo *);
334 };
335 
336 /// A user label is a part of a debug info user label.
337 class UserLabel {
338   const DILabel *Label; ///< The debug info label we are part of.
339   DebugLoc dl;          ///< The debug location for the label. This is
340                         ///< used by dwarf writer to find lexical scope.
341   SlotIndex loc;        ///< Slot used by the debug label.
342 
343   /// Insert a DBG_LABEL into MBB at Idx.
344   void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx,
345                         LiveIntervals &LIS, const TargetInstrInfo &TII);
346 
347 public:
348   /// Create a new UserLabel.
349   UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx)
350       : Label(label), dl(std::move(L)), loc(Idx) {}
351 
352   /// Does this UserLabel match the parameters?
353   bool match(const DILabel *L, const DILocation *IA,
354              const SlotIndex Index) const {
355     return Label == L && dl->getInlinedAt() == IA && loc == Index;
356   }
357 
358   /// Recreate DBG_LABEL instruction from data structures.
359   void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII);
360 
361   /// Return DebugLoc of this UserLabel.
362   DebugLoc getDebugLoc() { return dl; }
363 
364   void print(raw_ostream &, const TargetRegisterInfo *);
365 };
366 
367 /// Implementation of the LiveDebugVariables pass.
368 class LDVImpl {
369   LiveDebugVariables &pass;
370   LocMap::Allocator allocator;
371   MachineFunction *MF = nullptr;
372   LiveIntervals *LIS;
373   const TargetRegisterInfo *TRI;
374 
375   /// Whether emitDebugValues is called.
376   bool EmitDone = false;
377 
378   /// Whether the machine function is modified during the pass.
379   bool ModifiedMF = false;
380 
381   /// All allocated UserValue instances.
382   SmallVector<std::unique_ptr<UserValue>, 8> userValues;
383 
384   /// All allocated UserLabel instances.
385   SmallVector<std::unique_ptr<UserLabel>, 2> userLabels;
386 
387   /// Map virtual register to eq class leader.
388   using VRMap = DenseMap<unsigned, UserValue *>;
389   VRMap virtRegToEqClass;
390 
391   /// Map user variable to eq class leader.
392   using UVMap = DenseMap<const DILocalVariable *, UserValue *>;
393   UVMap userVarMap;
394 
395   /// Find or create a UserValue.
396   UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr,
397                           const DebugLoc &DL);
398 
399   /// Find the EC leader for VirtReg or null.
400   UserValue *lookupVirtReg(unsigned VirtReg);
401 
402   /// Add DBG_VALUE instruction to our maps.
403   ///
404   /// \param MI DBG_VALUE instruction
405   /// \param Idx Last valid SLotIndex before instruction.
406   ///
407   /// \returns True if the DBG_VALUE instruction should be deleted.
408   bool handleDebugValue(MachineInstr &MI, SlotIndex Idx);
409 
410   /// Add DBG_LABEL instruction to UserLabel.
411   ///
412   /// \param MI DBG_LABEL instruction
413   /// \param Idx Last valid SlotIndex before instruction.
414   ///
415   /// \returns True if the DBG_LABEL instruction should be deleted.
416   bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx);
417 
418   /// Collect and erase all DBG_VALUE instructions, adding a UserValue def
419   /// for each instruction.
420   ///
421   /// \param mf MachineFunction to be scanned.
422   ///
423   /// \returns True if any debug values were found.
424   bool collectDebugValues(MachineFunction &mf);
425 
426   /// Compute the live intervals of all user values after collecting all
427   /// their def points.
428   void computeIntervals();
429 
430 public:
431   LDVImpl(LiveDebugVariables *ps) : pass(*ps) {}
432 
433   bool runOnMachineFunction(MachineFunction &mf);
434 
435   /// Release all memory.
436   void clear() {
437     MF = nullptr;
438     userValues.clear();
439     userLabels.clear();
440     virtRegToEqClass.clear();
441     userVarMap.clear();
442     // Make sure we call emitDebugValues if the machine function was modified.
443     assert((!ModifiedMF || EmitDone) &&
444            "Dbg values are not emitted in LDV");
445     EmitDone = false;
446     ModifiedMF = false;
447   }
448 
449   /// Map virtual register to an equivalence class.
450   void mapVirtReg(unsigned VirtReg, UserValue *EC);
451 
452   /// Replace all references to OldReg with NewRegs.
453   void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs);
454 
455   /// Recreate DBG_VALUE instruction from data structures.
456   void emitDebugValues(VirtRegMap *VRM);
457 
458   void print(raw_ostream&);
459 };
460 
461 } // end anonymous namespace
462 
463 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
464 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS,
465                           const LLVMContext &Ctx) {
466   if (!DL)
467     return;
468 
469   auto *Scope = cast<DIScope>(DL.getScope());
470   // Omit the directory, because it's likely to be long and uninteresting.
471   CommentOS << Scope->getFilename();
472   CommentOS << ':' << DL.getLine();
473   if (DL.getCol() != 0)
474     CommentOS << ':' << DL.getCol();
475 
476   DebugLoc InlinedAtDL = DL.getInlinedAt();
477   if (!InlinedAtDL)
478     return;
479 
480   CommentOS << " @[ ";
481   printDebugLoc(InlinedAtDL, CommentOS, Ctx);
482   CommentOS << " ]";
483 }
484 
485 static void printExtendedName(raw_ostream &OS, const DINode *Node,
486                               const DILocation *DL) {
487   const LLVMContext &Ctx = Node->getContext();
488   StringRef Res;
489   unsigned Line;
490   if (const auto *V = dyn_cast<const DILocalVariable>(Node)) {
491     Res = V->getName();
492     Line = V->getLine();
493   } else if (const auto *L = dyn_cast<const DILabel>(Node)) {
494     Res = L->getName();
495     Line = L->getLine();
496   }
497 
498   if (!Res.empty())
499     OS << Res << "," << Line;
500   auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr;
501   if (InlinedAt) {
502     if (DebugLoc InlinedAtDL = InlinedAt) {
503       OS << " @[";
504       printDebugLoc(InlinedAtDL, OS, Ctx);
505       OS << "]";
506     }
507   }
508 }
509 
510 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
511   OS << "!\"";
512   printExtendedName(OS, Variable, dl);
513 
514   OS << "\"\t";
515   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
516     OS << " [" << I.start() << ';' << I.stop() << "):";
517     if (I.value().isUndef())
518       OS << "undef";
519     else {
520       OS << I.value().locNo();
521     }
522   }
523   for (unsigned i = 0, e = locations.size(); i != e; ++i) {
524     OS << " Loc" << i << '=';
525     locations[i].print(OS, TRI);
526   }
527   OS << '\n';
528 }
529 
530 void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
531   OS << "!\"";
532   printExtendedName(OS, Label, dl);
533 
534   OS << "\"\t";
535   OS << loc;
536   OS << '\n';
537 }
538 
539 void LDVImpl::print(raw_ostream &OS) {
540   OS << "********** DEBUG VARIABLES **********\n";
541   for (auto &userValue : userValues)
542     userValue->print(OS, TRI);
543   OS << "********** DEBUG LABELS **********\n";
544   for (auto &userLabel : userLabels)
545     userLabel->print(OS, TRI);
546 }
547 #endif
548 
549 void UserValue::mapVirtRegs(LDVImpl *LDV) {
550   for (unsigned i = 0, e = locations.size(); i != e; ++i)
551     if (locations[i].isReg() &&
552         Register::isVirtualRegister(locations[i].getReg()))
553       LDV->mapVirtReg(locations[i].getReg(), this);
554 }
555 
556 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var,
557                                  const DIExpression *Expr, const DebugLoc &DL) {
558   UserValue *&Leader = userVarMap[Var];
559   if (Leader) {
560     UserValue *UV = Leader->getLeader();
561     Leader = UV;
562     for (; UV; UV = UV->getNext())
563       if (UV->match(Var, Expr, DL->getInlinedAt()))
564         return UV;
565   }
566 
567   userValues.push_back(
568       std::make_unique<UserValue>(Var, Expr, DL, allocator));
569   UserValue *UV = userValues.back().get();
570   Leader = UserValue::merge(Leader, UV);
571   return UV;
572 }
573 
574 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) {
575   assert(Register::isVirtualRegister(VirtReg) && "Only map VirtRegs");
576   UserValue *&Leader = virtRegToEqClass[VirtReg];
577   Leader = UserValue::merge(Leader, EC);
578 }
579 
580 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) {
581   if (UserValue *UV = virtRegToEqClass.lookup(VirtReg))
582     return UV->getLeader();
583   return nullptr;
584 }
585 
586 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) {
587   // DBG_VALUE loc, offset, variable
588   if (MI.getNumOperands() != 4 ||
589       !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) ||
590       !MI.getOperand(2).isMetadata()) {
591     LLVM_DEBUG(dbgs() << "Can't handle " << MI);
592     return false;
593   }
594 
595   // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual
596   // register that hasn't been defined yet. If we do not remove those here, then
597   // the re-insertion of the DBG_VALUE instruction after register allocation
598   // will be incorrect.
599   // TODO: If earlier passes are corrected to generate sane debug information
600   // (and if the machine verifier is improved to catch this), then these checks
601   // could be removed or replaced by asserts.
602   bool Discard = false;
603   if (MI.getOperand(0).isReg() &&
604       Register::isVirtualRegister(MI.getOperand(0).getReg())) {
605     const Register Reg = MI.getOperand(0).getReg();
606     if (!LIS->hasInterval(Reg)) {
607       // The DBG_VALUE is described by a virtual register that does not have a
608       // live interval. Discard the DBG_VALUE.
609       Discard = true;
610       LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx
611                         << " " << MI);
612     } else {
613       // The DBG_VALUE is only valid if either Reg is live out from Idx, or Reg
614       // is defined dead at Idx (where Idx is the slot index for the instruction
615       // preceding the DBG_VALUE).
616       const LiveInterval &LI = LIS->getInterval(Reg);
617       LiveQueryResult LRQ = LI.Query(Idx);
618       if (!LRQ.valueOutOrDead()) {
619         // We have found a DBG_VALUE with the value in a virtual register that
620         // is not live. Discard the DBG_VALUE.
621         Discard = true;
622         LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx
623                           << " " << MI);
624       }
625     }
626   }
627 
628   // Get or create the UserValue for (variable,offset) here.
629   assert(!MI.getOperand(1).isImm() && "DBG_VALUE with indirect flag before "
630                                       "LiveDebugVariables");
631   const DILocalVariable *Var = MI.getDebugVariable();
632   const DIExpression *Expr = MI.getDebugExpression();
633   UserValue *UV =
634       getUserValue(Var, Expr, MI.getDebugLoc());
635   if (!Discard)
636     UV->addDef(Idx, MI.getOperand(0));
637   else {
638     MachineOperand MO = MachineOperand::CreateReg(0U, false);
639     MO.setIsDebug();
640     UV->addDef(Idx, MO);
641   }
642   return true;
643 }
644 
645 bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) {
646   // DBG_LABEL label
647   if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) {
648     LLVM_DEBUG(dbgs() << "Can't handle " << MI);
649     return false;
650   }
651 
652   // Get or create the UserLabel for label here.
653   const DILabel *Label = MI.getDebugLabel();
654   const DebugLoc &DL = MI.getDebugLoc();
655   bool Found = false;
656   for (auto const &L : userLabels) {
657     if (L->match(Label, DL->getInlinedAt(), Idx)) {
658       Found = true;
659       break;
660     }
661   }
662   if (!Found)
663     userLabels.push_back(std::make_unique<UserLabel>(Label, DL, Idx));
664 
665   return true;
666 }
667 
668 bool LDVImpl::collectDebugValues(MachineFunction &mf) {
669   bool Changed = false;
670   for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE;
671        ++MFI) {
672     MachineBasicBlock *MBB = &*MFI;
673     for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end();
674          MBBI != MBBE;) {
675       // Use the first debug instruction in the sequence to get a SlotIndex
676       // for following consecutive debug instructions.
677       if (!MBBI->isDebugInstr()) {
678         ++MBBI;
679         continue;
680       }
681       // Debug instructions has no slot index. Use the previous
682       // non-debug instruction's SlotIndex as its SlotIndex.
683       SlotIndex Idx =
684           MBBI == MBB->begin()
685               ? LIS->getMBBStartIdx(MBB)
686               : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot();
687       // Handle consecutive debug instructions with the same slot index.
688       do {
689         // Only handle DBG_VALUE in handleDebugValue(). Skip all other
690         // kinds of debug instructions.
691         if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) ||
692             (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) {
693           MBBI = MBB->erase(MBBI);
694           Changed = true;
695         } else
696           ++MBBI;
697       } while (MBBI != MBBE && MBBI->isDebugInstr());
698     }
699   }
700   return Changed;
701 }
702 
703 void UserValue::extendDef(SlotIndex Idx, DbgValueLocation Loc, LiveRange *LR,
704                           const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills,
705                           LiveIntervals &LIS) {
706   SlotIndex Start = Idx;
707   MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
708   SlotIndex Stop = LIS.getMBBEndIdx(MBB);
709   LocMap::iterator I = locInts.find(Start);
710 
711   // Limit to VNI's live range.
712   bool ToEnd = true;
713   if (LR && VNI) {
714     LiveInterval::Segment *Segment = LR->getSegmentContaining(Start);
715     if (!Segment || Segment->valno != VNI) {
716       if (Kills)
717         Kills->push_back(Start);
718       return;
719     }
720     if (Segment->end < Stop) {
721       Stop = Segment->end;
722       ToEnd = false;
723     }
724   }
725 
726   // There could already be a short def at Start.
727   if (I.valid() && I.start() <= Start) {
728     // Stop when meeting a different location or an already extended interval.
729     Start = Start.getNextSlot();
730     if (I.value() != Loc || I.stop() != Start)
731       return;
732     // This is a one-slot placeholder. Just skip it.
733     ++I;
734   }
735 
736   // Limited by the next def.
737   if (I.valid() && I.start() < Stop)
738     Stop = I.start();
739   // Limited by VNI's live range.
740   else if (!ToEnd && Kills)
741     Kills->push_back(Stop);
742 
743   if (Start < Stop)
744     I.insert(Start, Stop, Loc);
745 }
746 
747 void UserValue::addDefsFromCopies(
748     LiveInterval *LI, unsigned LocNo,
749     const SmallVectorImpl<SlotIndex> &Kills,
750     SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
751     MachineRegisterInfo &MRI, LiveIntervals &LIS) {
752   if (Kills.empty())
753     return;
754   // Don't track copies from physregs, there are too many uses.
755   if (!Register::isVirtualRegister(LI->reg))
756     return;
757 
758   // Collect all the (vreg, valno) pairs that are copies of LI.
759   SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues;
760   for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) {
761     MachineInstr *MI = MO.getParent();
762     // Copies of the full value.
763     if (MO.getSubReg() || !MI->isCopy())
764       continue;
765     Register DstReg = MI->getOperand(0).getReg();
766 
767     // Don't follow copies to physregs. These are usually setting up call
768     // arguments, and the argument registers are always call clobbered. We are
769     // better off in the source register which could be a callee-saved register,
770     // or it could be spilled.
771     if (!Register::isVirtualRegister(DstReg))
772       continue;
773 
774     // Is LocNo extended to reach this copy? If not, another def may be blocking
775     // it, or we are looking at a wrong value of LI.
776     SlotIndex Idx = LIS.getInstructionIndex(*MI);
777     LocMap::iterator I = locInts.find(Idx.getRegSlot(true));
778     if (!I.valid() || I.value().locNo() != LocNo)
779       continue;
780 
781     if (!LIS.hasInterval(DstReg))
782       continue;
783     LiveInterval *DstLI = &LIS.getInterval(DstReg);
784     const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot());
785     assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value");
786     CopyValues.push_back(std::make_pair(DstLI, DstVNI));
787   }
788 
789   if (CopyValues.empty())
790     return;
791 
792   LLVM_DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI
793                     << '\n');
794 
795   // Try to add defs of the copied values for each kill point.
796   for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
797     SlotIndex Idx = Kills[i];
798     for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) {
799       LiveInterval *DstLI = CopyValues[j].first;
800       const VNInfo *DstVNI = CopyValues[j].second;
801       if (DstLI->getVNInfoAt(Idx) != DstVNI)
802         continue;
803       // Check that there isn't already a def at Idx
804       LocMap::iterator I = locInts.find(Idx);
805       if (I.valid() && I.start() <= Idx)
806         continue;
807       LLVM_DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #"
808                         << DstVNI->id << " in " << *DstLI << '\n');
809       MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def);
810       assert(CopyMI && CopyMI->isCopy() && "Bad copy value");
811       unsigned LocNo = getLocationNo(CopyMI->getOperand(0));
812       DbgValueLocation NewLoc(LocNo);
813       I.insert(Idx, Idx.getNextSlot(), NewLoc);
814       NewDefs.push_back(std::make_pair(Idx, NewLoc));
815       break;
816     }
817   }
818 }
819 
820 void UserValue::computeIntervals(MachineRegisterInfo &MRI,
821                                  const TargetRegisterInfo &TRI,
822                                  LiveIntervals &LIS, LexicalScopes &LS) {
823   SmallVector<std::pair<SlotIndex, DbgValueLocation>, 16> Defs;
824 
825   // Collect all defs to be extended (Skipping undefs).
826   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I)
827     if (!I.value().isUndef())
828       Defs.push_back(std::make_pair(I.start(), I.value()));
829 
830   // Extend all defs, and possibly add new ones along the way.
831   for (unsigned i = 0; i != Defs.size(); ++i) {
832     SlotIndex Idx = Defs[i].first;
833     DbgValueLocation Loc = Defs[i].second;
834     const MachineOperand &LocMO = locations[Loc.locNo()];
835 
836     if (!LocMO.isReg()) {
837       extendDef(Idx, Loc, nullptr, nullptr, nullptr, LIS);
838       continue;
839     }
840 
841     // Register locations are constrained to where the register value is live.
842     if (Register::isVirtualRegister(LocMO.getReg())) {
843       LiveInterval *LI = nullptr;
844       const VNInfo *VNI = nullptr;
845       if (LIS.hasInterval(LocMO.getReg())) {
846         LI = &LIS.getInterval(LocMO.getReg());
847         VNI = LI->getVNInfoAt(Idx);
848       }
849       SmallVector<SlotIndex, 16> Kills;
850       extendDef(Idx, Loc, LI, VNI, &Kills, LIS);
851       // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that
852       // if the original location for example is %vreg0:sub_hi, and we find a
853       // full register copy in addDefsFromCopies (at the moment it only handles
854       // full register copies), then we must add the sub1 sub-register index to
855       // the new location. However, that is only possible if the new virtual
856       // register is of the same regclass (or if there is an equivalent
857       // sub-register in that regclass). For now, simply skip handling copies if
858       // a sub-register is involved.
859       if (LI && !LocMO.getSubReg())
860         addDefsFromCopies(LI, Loc.locNo(), Kills, Defs, MRI, LIS);
861       continue;
862     }
863 
864     // For physregs, we only mark the start slot idx. DwarfDebug will see it
865     // as if the DBG_VALUE is valid up until the end of the basic block, or
866     // the next def of the physical register. So we do not need to extend the
867     // range. It might actually happen that the DBG_VALUE is the last use of
868     // the physical register (e.g. if this is an unused input argument to a
869     // function).
870   }
871 
872   // The computed intervals may extend beyond the range of the debug
873   // location's lexical scope. In this case, splitting of an interval
874   // can result in an interval outside of the scope being created,
875   // causing extra unnecessary DBG_VALUEs to be emitted. To prevent
876   // this, trim the intervals to the lexical scope.
877 
878   LexicalScope *Scope = LS.findLexicalScope(dl);
879   if (!Scope)
880     return;
881 
882   SlotIndex PrevEnd;
883   LocMap::iterator I = locInts.begin();
884 
885   // Iterate over the lexical scope ranges. Each time round the loop
886   // we check the intervals for overlap with the end of the previous
887   // range and the start of the next. The first range is handled as
888   // a special case where there is no PrevEnd.
889   for (const InsnRange &Range : Scope->getRanges()) {
890     SlotIndex RStart = LIS.getInstructionIndex(*Range.first);
891     SlotIndex REnd = LIS.getInstructionIndex(*Range.second);
892 
893     // At the start of each iteration I has been advanced so that
894     // I.stop() >= PrevEnd. Check for overlap.
895     if (PrevEnd && I.start() < PrevEnd) {
896       SlotIndex IStop = I.stop();
897       DbgValueLocation Loc = I.value();
898 
899       // Stop overlaps previous end - trim the end of the interval to
900       // the scope range.
901       I.setStopUnchecked(PrevEnd);
902       ++I;
903 
904       // If the interval also overlaps the start of the "next" (i.e.
905       // current) range create a new interval for the remainder
906       if (RStart < IStop)
907         I.insert(RStart, IStop, Loc);
908     }
909 
910     // Advance I so that I.stop() >= RStart, and check for overlap.
911     I.advanceTo(RStart);
912     if (!I.valid())
913       return;
914 
915     // The end of a lexical scope range is the last instruction in the
916     // range. To convert to an interval we need the index of the
917     // instruction after it.
918     REnd = REnd.getNextIndex();
919 
920     // Advance I to first interval outside current range.
921     I.advanceTo(REnd);
922     if (!I.valid())
923       return;
924 
925     PrevEnd = REnd;
926   }
927 
928   // Check for overlap with end of final range.
929   if (PrevEnd && I.start() < PrevEnd)
930     I.setStopUnchecked(PrevEnd);
931 }
932 
933 void LDVImpl::computeIntervals() {
934   LexicalScopes LS;
935   LS.initialize(*MF);
936 
937   for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
938     userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS);
939     userValues[i]->mapVirtRegs(this);
940   }
941 }
942 
943 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) {
944   clear();
945   MF = &mf;
946   LIS = &pass.getAnalysis<LiveIntervals>();
947   TRI = mf.getSubtarget().getRegisterInfo();
948   LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
949                     << mf.getName() << " **********\n");
950 
951   bool Changed = collectDebugValues(mf);
952   computeIntervals();
953   LLVM_DEBUG(print(dbgs()));
954   ModifiedMF = Changed;
955   return Changed;
956 }
957 
958 static void removeDebugValues(MachineFunction &mf) {
959   for (MachineBasicBlock &MBB : mf) {
960     for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) {
961       if (!MBBI->isDebugValue()) {
962         ++MBBI;
963         continue;
964       }
965       MBBI = MBB.erase(MBBI);
966     }
967   }
968 }
969 
970 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
971   if (!EnableLDV)
972     return false;
973   if (!mf.getFunction().getSubprogram()) {
974     removeDebugValues(mf);
975     return false;
976   }
977   if (!pImpl)
978     pImpl = new LDVImpl(this);
979   return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf);
980 }
981 
982 void LiveDebugVariables::releaseMemory() {
983   if (pImpl)
984     static_cast<LDVImpl*>(pImpl)->clear();
985 }
986 
987 LiveDebugVariables::~LiveDebugVariables() {
988   if (pImpl)
989     delete static_cast<LDVImpl*>(pImpl);
990 }
991 
992 //===----------------------------------------------------------------------===//
993 //                           Live Range Splitting
994 //===----------------------------------------------------------------------===//
995 
996 bool
997 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
998                          LiveIntervals& LIS) {
999   LLVM_DEBUG({
1000     dbgs() << "Splitting Loc" << OldLocNo << '\t';
1001     print(dbgs(), nullptr);
1002   });
1003   bool DidChange = false;
1004   LocMap::iterator LocMapI;
1005   LocMapI.setMap(locInts);
1006   for (unsigned i = 0; i != NewRegs.size(); ++i) {
1007     LiveInterval *LI = &LIS.getInterval(NewRegs[i]);
1008     if (LI->empty())
1009       continue;
1010 
1011     // Don't allocate the new LocNo until it is needed.
1012     unsigned NewLocNo = UndefLocNo;
1013 
1014     // Iterate over the overlaps between locInts and LI.
1015     LocMapI.find(LI->beginIndex());
1016     if (!LocMapI.valid())
1017       continue;
1018     LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start());
1019     LiveInterval::iterator LIE = LI->end();
1020     while (LocMapI.valid() && LII != LIE) {
1021       // At this point, we know that LocMapI.stop() > LII->start.
1022       LII = LI->advanceTo(LII, LocMapI.start());
1023       if (LII == LIE)
1024         break;
1025 
1026       // Now LII->end > LocMapI.start(). Do we have an overlap?
1027       if (LocMapI.value().locNo() == OldLocNo && LII->start < LocMapI.stop()) {
1028         // Overlapping correct location. Allocate NewLocNo now.
1029         if (NewLocNo == UndefLocNo) {
1030           MachineOperand MO = MachineOperand::CreateReg(LI->reg, false);
1031           MO.setSubReg(locations[OldLocNo].getSubReg());
1032           NewLocNo = getLocationNo(MO);
1033           DidChange = true;
1034         }
1035 
1036         SlotIndex LStart = LocMapI.start();
1037         SlotIndex LStop  = LocMapI.stop();
1038         DbgValueLocation OldLoc = LocMapI.value();
1039 
1040         // Trim LocMapI down to the LII overlap.
1041         if (LStart < LII->start)
1042           LocMapI.setStartUnchecked(LII->start);
1043         if (LStop > LII->end)
1044           LocMapI.setStopUnchecked(LII->end);
1045 
1046         // Change the value in the overlap. This may trigger coalescing.
1047         LocMapI.setValue(OldLoc.changeLocNo(NewLocNo));
1048 
1049         // Re-insert any removed OldLocNo ranges.
1050         if (LStart < LocMapI.start()) {
1051           LocMapI.insert(LStart, LocMapI.start(), OldLoc);
1052           ++LocMapI;
1053           assert(LocMapI.valid() && "Unexpected coalescing");
1054         }
1055         if (LStop > LocMapI.stop()) {
1056           ++LocMapI;
1057           LocMapI.insert(LII->end, LStop, OldLoc);
1058           --LocMapI;
1059         }
1060       }
1061 
1062       // Advance to the next overlap.
1063       if (LII->end < LocMapI.stop()) {
1064         if (++LII == LIE)
1065           break;
1066         LocMapI.advanceTo(LII->start);
1067       } else {
1068         ++LocMapI;
1069         if (!LocMapI.valid())
1070           break;
1071         LII = LI->advanceTo(LII, LocMapI.start());
1072       }
1073     }
1074   }
1075 
1076   // Finally, remove any remaining OldLocNo intervals and OldLocNo itself.
1077   locations.erase(locations.begin() + OldLocNo);
1078   LocMapI.goToBegin();
1079   while (LocMapI.valid()) {
1080     DbgValueLocation v = LocMapI.value();
1081     if (v.locNo() == OldLocNo) {
1082       LLVM_DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';'
1083                         << LocMapI.stop() << ")\n");
1084       LocMapI.erase();
1085     } else {
1086       // Undef values always have location number UndefLocNo, so don't change
1087       // locNo in that case. See getLocationNo().
1088       if (!v.isUndef() && v.locNo() > OldLocNo)
1089         LocMapI.setValueUnchecked(v.changeLocNo(v.locNo() - 1));
1090       ++LocMapI;
1091     }
1092   }
1093 
1094   LLVM_DEBUG({
1095     dbgs() << "Split result: \t";
1096     print(dbgs(), nullptr);
1097   });
1098   return DidChange;
1099 }
1100 
1101 bool
1102 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
1103                          LiveIntervals &LIS) {
1104   bool DidChange = false;
1105   // Split locations referring to OldReg. Iterate backwards so splitLocation can
1106   // safely erase unused locations.
1107   for (unsigned i = locations.size(); i ; --i) {
1108     unsigned LocNo = i-1;
1109     const MachineOperand *Loc = &locations[LocNo];
1110     if (!Loc->isReg() || Loc->getReg() != OldReg)
1111       continue;
1112     DidChange |= splitLocation(LocNo, NewRegs, LIS);
1113   }
1114   return DidChange;
1115 }
1116 
1117 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) {
1118   bool DidChange = false;
1119   for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext())
1120     DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS);
1121 
1122   if (!DidChange)
1123     return;
1124 
1125   // Map all of the new virtual registers.
1126   UserValue *UV = lookupVirtReg(OldReg);
1127   for (unsigned i = 0; i != NewRegs.size(); ++i)
1128     mapVirtReg(NewRegs[i], UV);
1129 }
1130 
1131 void LiveDebugVariables::
1132 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) {
1133   if (pImpl)
1134     static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs);
1135 }
1136 
1137 void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
1138                                  const TargetInstrInfo &TII,
1139                                  const TargetRegisterInfo &TRI,
1140                                  SpillOffsetMap &SpillOffsets) {
1141   // Build a set of new locations with new numbers so we can coalesce our
1142   // IntervalMap if two vreg intervals collapse to the same physical location.
1143   // Use MapVector instead of SetVector because MapVector::insert returns the
1144   // position of the previously or newly inserted element. The boolean value
1145   // tracks if the location was produced by a spill.
1146   // FIXME: This will be problematic if we ever support direct and indirect
1147   // frame index locations, i.e. expressing both variables in memory and
1148   // 'int x, *px = &x'. The "spilled" bit must become part of the location.
1149   MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations;
1150   SmallVector<unsigned, 4> LocNoMap(locations.size());
1151   for (unsigned I = 0, E = locations.size(); I != E; ++I) {
1152     bool Spilled = false;
1153     unsigned SpillOffset = 0;
1154     MachineOperand Loc = locations[I];
1155     // Only virtual registers are rewritten.
1156     if (Loc.isReg() && Loc.getReg() &&
1157         Register::isVirtualRegister(Loc.getReg())) {
1158       Register VirtReg = Loc.getReg();
1159       if (VRM.isAssignedReg(VirtReg) &&
1160           Register::isPhysicalRegister(VRM.getPhys(VirtReg))) {
1161         // This can create a %noreg operand in rare cases when the sub-register
1162         // index is no longer available. That means the user value is in a
1163         // non-existent sub-register, and %noreg is exactly what we want.
1164         Loc.substPhysReg(VRM.getPhys(VirtReg), TRI);
1165       } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) {
1166         // Retrieve the stack slot offset.
1167         unsigned SpillSize;
1168         const MachineRegisterInfo &MRI = MF.getRegInfo();
1169         const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg);
1170         bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize,
1171                                              SpillOffset, MF);
1172 
1173         // FIXME: Invalidate the location if the offset couldn't be calculated.
1174         (void)Success;
1175 
1176         Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg));
1177         Spilled = true;
1178       } else {
1179         Loc.setReg(0);
1180         Loc.setSubReg(0);
1181       }
1182     }
1183 
1184     // Insert this location if it doesn't already exist and record a mapping
1185     // from the old number to the new number.
1186     auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}});
1187     unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first);
1188     LocNoMap[I] = NewLocNo;
1189   }
1190 
1191   // Rewrite the locations and record the stack slot offsets for spills.
1192   locations.clear();
1193   SpillOffsets.clear();
1194   for (auto &Pair : NewLocations) {
1195     bool Spilled;
1196     unsigned SpillOffset;
1197     std::tie(Spilled, SpillOffset) = Pair.second;
1198     locations.push_back(Pair.first);
1199     if (Spilled) {
1200       unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair);
1201       SpillOffsets[NewLocNo] = SpillOffset;
1202     }
1203   }
1204 
1205   // Update the interval map, but only coalesce left, since intervals to the
1206   // right use the old location numbers. This should merge two contiguous
1207   // DBG_VALUE intervals with different vregs that were allocated to the same
1208   // physical register.
1209   for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
1210     DbgValueLocation Loc = I.value();
1211     // Undef values don't exist in locations (and thus not in LocNoMap either)
1212     // so skip over them. See getLocationNo().
1213     if (Loc.isUndef())
1214       continue;
1215     unsigned NewLocNo = LocNoMap[Loc.locNo()];
1216     I.setValueUnchecked(Loc.changeLocNo(NewLocNo));
1217     I.setStart(I.start());
1218   }
1219 }
1220 
1221 /// Find an iterator for inserting a DBG_VALUE instruction.
1222 static MachineBasicBlock::iterator
1223 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx,
1224                    LiveIntervals &LIS) {
1225   SlotIndex Start = LIS.getMBBStartIdx(MBB);
1226   Idx = Idx.getBaseIndex();
1227 
1228   // Try to find an insert location by going backwards from Idx.
1229   MachineInstr *MI;
1230   while (!(MI = LIS.getInstructionFromIndex(Idx))) {
1231     // We've reached the beginning of MBB.
1232     if (Idx == Start) {
1233       MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
1234       return I;
1235     }
1236     Idx = Idx.getPrevIndex();
1237   }
1238 
1239   // Don't insert anything after the first terminator, though.
1240   return MI->isTerminator() ? MBB->getFirstTerminator() :
1241                               std::next(MachineBasicBlock::iterator(MI));
1242 }
1243 
1244 /// Find an iterator for inserting the next DBG_VALUE instruction
1245 /// (or end if no more insert locations found).
1246 static MachineBasicBlock::iterator
1247 findNextInsertLocation(MachineBasicBlock *MBB,
1248                        MachineBasicBlock::iterator I,
1249                        SlotIndex StopIdx, MachineOperand &LocMO,
1250                        LiveIntervals &LIS,
1251                        const TargetRegisterInfo &TRI) {
1252   if (!LocMO.isReg())
1253     return MBB->instr_end();
1254   Register Reg = LocMO.getReg();
1255 
1256   // Find the next instruction in the MBB that define the register Reg.
1257   while (I != MBB->end() && !I->isTerminator()) {
1258     if (!LIS.isNotInMIMap(*I) &&
1259         SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I)))
1260       break;
1261     if (I->definesRegister(Reg, &TRI))
1262       // The insert location is directly after the instruction/bundle.
1263       return std::next(I);
1264     ++I;
1265   }
1266   return MBB->end();
1267 }
1268 
1269 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
1270                                  SlotIndex StopIdx, DbgValueLocation Loc,
1271                                  bool Spilled, unsigned SpillOffset,
1272                                  LiveIntervals &LIS, const TargetInstrInfo &TII,
1273                                  const TargetRegisterInfo &TRI) {
1274   SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB);
1275   // Only search within the current MBB.
1276   StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx;
1277   MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS);
1278   // Undef values don't exist in locations so create new "noreg" register MOs
1279   // for them. See getLocationNo().
1280   MachineOperand MO = !Loc.isUndef() ?
1281     locations[Loc.locNo()] :
1282     MachineOperand::CreateReg(/* Reg */ 0, /* isDef */ false, /* isImp */ false,
1283                               /* isKill */ false, /* isDead */ false,
1284                               /* isUndef */ false, /* isEarlyClobber */ false,
1285                               /* SubReg */ 0, /* isDebug */ true);
1286 
1287   ++NumInsertedDebugValues;
1288 
1289   assert(cast<DILocalVariable>(Variable)
1290              ->isValidLocationForIntrinsic(getDebugLoc()) &&
1291          "Expected inlined-at fields to agree");
1292 
1293   // If the location was spilled, the new DBG_VALUE will be indirect. If the
1294   // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate
1295   // that the original virtual register was a pointer. Also, add the stack slot
1296   // offset for the spilled register to the expression.
1297   const DIExpression *Expr = Expression;
1298   if (Spilled)
1299     Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, SpillOffset);
1300 
1301   assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index");
1302 
1303   do {
1304     BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE),
1305             Spilled, MO, Variable, Expr);
1306 
1307     // Continue and insert DBG_VALUES after every redefinition of register
1308     // associated with the debug value within the range
1309     I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI);
1310   } while (I != MBB->end());
1311 }
1312 
1313 void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx,
1314                                  LiveIntervals &LIS,
1315                                  const TargetInstrInfo &TII) {
1316   MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS);
1317   ++NumInsertedDebugLabels;
1318   BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL))
1319       .addMetadata(Label);
1320 }
1321 
1322 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
1323                                 const TargetInstrInfo &TII,
1324                                 const TargetRegisterInfo &TRI,
1325                                 const SpillOffsetMap &SpillOffsets) {
1326   MachineFunction::iterator MFEnd = VRM->getMachineFunction().end();
1327 
1328   for (LocMap::const_iterator I = locInts.begin(); I.valid();) {
1329     SlotIndex Start = I.start();
1330     SlotIndex Stop = I.stop();
1331     DbgValueLocation Loc = I.value();
1332     auto SpillIt =
1333         !Loc.isUndef() ? SpillOffsets.find(Loc.locNo()) : SpillOffsets.end();
1334     bool Spilled = SpillIt != SpillOffsets.end();
1335     unsigned SpillOffset = Spilled ? SpillIt->second : 0;
1336 
1337     LLVM_DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << Loc.locNo());
1338     MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1339     SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB);
1340 
1341     LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1342     insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, SpillOffset, LIS, TII,
1343                      TRI);
1344     // This interval may span multiple basic blocks.
1345     // Insert a DBG_VALUE into each one.
1346     while (Stop > MBBEnd) {
1347       // Move to the next block.
1348       Start = MBBEnd;
1349       if (++MBB == MFEnd)
1350         break;
1351       MBBEnd = LIS.getMBBEndIdx(&*MBB);
1352       LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1353       insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, SpillOffset, LIS, TII,
1354                        TRI);
1355     }
1356     LLVM_DEBUG(dbgs() << '\n');
1357     if (MBB == MFEnd)
1358       break;
1359 
1360     ++I;
1361   }
1362 }
1363 
1364 void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII) {
1365   LLVM_DEBUG(dbgs() << "\t" << loc);
1366   MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator();
1367 
1368   LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB));
1369   insertDebugLabel(&*MBB, loc, LIS, TII);
1370 
1371   LLVM_DEBUG(dbgs() << '\n');
1372 }
1373 
1374 void LDVImpl::emitDebugValues(VirtRegMap *VRM) {
1375   LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
1376   if (!MF)
1377     return;
1378   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1379   SpillOffsetMap SpillOffsets;
1380   for (auto &userValue : userValues) {
1381     LLVM_DEBUG(userValue->print(dbgs(), TRI));
1382     userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets);
1383     userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets);
1384   }
1385   LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n");
1386   for (auto &userLabel : userLabels) {
1387     LLVM_DEBUG(userLabel->print(dbgs(), TRI));
1388     userLabel->emitDebugLabel(*LIS, *TII);
1389   }
1390   EmitDone = true;
1391 }
1392 
1393 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) {
1394   if (pImpl)
1395     static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM);
1396 }
1397 
1398 bool LiveDebugVariables::doInitialization(Module &M) {
1399   return Pass::doInitialization(M);
1400 }
1401 
1402 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1403 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const {
1404   if (pImpl)
1405     static_cast<LDVImpl*>(pImpl)->print(dbgs());
1406 }
1407 #endif
1408