xref: /llvm-project/llvm/lib/CodeGen/LiveDebugVariables.cpp (revision e85bbf564de9adfe09d6b24b9861b28e2b78e9ad)
1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the LiveDebugVariables analysis.
10 //
11 // Remove all DBG_VALUE instructions referencing virtual registers and replace
12 // them with a data structure tracking where live user variables are kept - in a
13 // virtual register or in a stack slot.
14 //
15 // Allow the data structure to be updated during register allocation when values
16 // are moved between registers and stack slots. Finally emit new DBG_VALUE
17 // instructions after register allocation is complete.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #include "LiveDebugVariables.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/IntervalMap.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/CodeGen/LexicalScopes.h"
32 #include "llvm/CodeGen/LiveInterval.h"
33 #include "llvm/CodeGen/LiveIntervals.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineDominators.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/SlotIndexes.h"
42 #include "llvm/CodeGen/TargetInstrInfo.h"
43 #include "llvm/CodeGen/TargetOpcodes.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/VirtRegMap.h"
47 #include "llvm/Config/llvm-config.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/MC/MCRegisterInfo.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <iterator>
62 #include <memory>
63 #include <utility>
64 
65 using namespace llvm;
66 
67 #define DEBUG_TYPE "livedebugvars"
68 
69 static cl::opt<bool>
70 EnableLDV("live-debug-variables", cl::init(true),
71           cl::desc("Enable the live debug variables pass"), cl::Hidden);
72 
73 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted");
74 STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted");
75 
76 char LiveDebugVariables::ID = 0;
77 
78 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE,
79                 "Debug Variable Analysis", false, false)
80 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
81 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
82 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE,
83                 "Debug Variable Analysis", false, false)
84 
85 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const {
86   AU.addRequired<MachineDominatorTree>();
87   AU.addRequiredTransitive<LiveIntervals>();
88   AU.setPreservesAll();
89   MachineFunctionPass::getAnalysisUsage(AU);
90 }
91 
92 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) {
93   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
94 }
95 
96 enum : unsigned { UndefLocNo = ~0U };
97 
98 /// Describes a location by number along with some flags about the original
99 /// usage of the location.
100 class DbgValueLocation {
101 public:
102   DbgValueLocation(unsigned LocNo, bool WasIndirect)
103       : LocNo(LocNo), WasIndirect(WasIndirect) {
104     static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing");
105     assert(locNo() == LocNo && "location truncation");
106   }
107 
108   DbgValueLocation() : LocNo(0), WasIndirect(0) {}
109 
110   unsigned locNo() const {
111     // Fix up the undef location number, which gets truncated.
112     return LocNo == INT_MAX ? UndefLocNo : LocNo;
113   }
114   bool wasIndirect() const { return WasIndirect; }
115   bool isUndef() const { return locNo() == UndefLocNo; }
116 
117   DbgValueLocation changeLocNo(unsigned NewLocNo) const {
118     return DbgValueLocation(NewLocNo, WasIndirect);
119   }
120 
121   friend inline bool operator==(const DbgValueLocation &LHS,
122                                 const DbgValueLocation &RHS) {
123     return LHS.LocNo == RHS.LocNo && LHS.WasIndirect == RHS.WasIndirect;
124   }
125 
126   friend inline bool operator!=(const DbgValueLocation &LHS,
127                                 const DbgValueLocation &RHS) {
128     return !(LHS == RHS);
129   }
130 
131 private:
132   unsigned LocNo : 31;
133   unsigned WasIndirect : 1;
134 };
135 
136 /// Map of where a user value is live, and its location.
137 using LocMap = IntervalMap<SlotIndex, DbgValueLocation, 4>;
138 
139 /// Map of stack slot offsets for spilled locations.
140 /// Non-spilled locations are not added to the map.
141 using SpillOffsetMap = DenseMap<unsigned, unsigned>;
142 
143 namespace {
144 
145 class LDVImpl;
146 
147 /// A user value is a part of a debug info user variable.
148 ///
149 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
150 /// holds part of a user variable. The part is identified by a byte offset.
151 ///
152 /// UserValues are grouped into equivalence classes for easier searching. Two
153 /// user values are related if they refer to the same variable, or if they are
154 /// held by the same virtual register. The equivalence class is the transitive
155 /// closure of that relation.
156 class UserValue {
157   const DILocalVariable *Variable; ///< The debug info variable we are part of.
158   const DIExpression *Expression; ///< Any complex address expression.
159   DebugLoc dl;            ///< The debug location for the variable. This is
160                           ///< used by dwarf writer to find lexical scope.
161   UserValue *leader;      ///< Equivalence class leader.
162   UserValue *next = nullptr; ///< Next value in equivalence class, or null.
163 
164   /// Numbered locations referenced by locmap.
165   SmallVector<MachineOperand, 4> locations;
166 
167   /// Map of slot indices where this value is live.
168   LocMap locInts;
169 
170   /// Set of interval start indexes that have been trimmed to the
171   /// lexical scope.
172   SmallSet<SlotIndex, 2> trimmedDefs;
173 
174   /// Insert a DBG_VALUE into MBB at Idx for LocNo.
175   void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
176                         SlotIndex StopIdx, DbgValueLocation Loc, bool Spilled,
177                         unsigned SpillOffset, LiveIntervals &LIS,
178                         const TargetInstrInfo &TII,
179                         const TargetRegisterInfo &TRI);
180 
181   /// Replace OldLocNo ranges with NewRegs ranges where NewRegs
182   /// is live. Returns true if any changes were made.
183   bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
184                      LiveIntervals &LIS);
185 
186 public:
187   /// Create a new UserValue.
188   UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L,
189             LocMap::Allocator &alloc)
190       : Variable(var), Expression(expr), dl(std::move(L)), leader(this),
191         locInts(alloc) {}
192 
193   /// Get the leader of this value's equivalence class.
194   UserValue *getLeader() {
195     UserValue *l = leader;
196     while (l != l->leader)
197       l = l->leader;
198     return leader = l;
199   }
200 
201   /// Return the next UserValue in the equivalence class.
202   UserValue *getNext() const { return next; }
203 
204   /// Does this UserValue match the parameters?
205   bool match(const DILocalVariable *Var, const DIExpression *Expr,
206              const DILocation *IA) const {
207     // FIXME: The fragment should be part of the equivalence class, but not
208     // other things in the expression like stack values.
209     return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA;
210   }
211 
212   /// Merge equivalence classes.
213   static UserValue *merge(UserValue *L1, UserValue *L2) {
214     L2 = L2->getLeader();
215     if (!L1)
216       return L2;
217     L1 = L1->getLeader();
218     if (L1 == L2)
219       return L1;
220     // Splice L2 before L1's members.
221     UserValue *End = L2;
222     while (End->next) {
223       End->leader = L1;
224       End = End->next;
225     }
226     End->leader = L1;
227     End->next = L1->next;
228     L1->next = L2;
229     return L1;
230   }
231 
232   /// Return the location number that matches Loc.
233   ///
234   /// For undef values we always return location number UndefLocNo without
235   /// inserting anything in locations. Since locations is a vector and the
236   /// location number is the position in the vector and UndefLocNo is ~0,
237   /// we would need a very big vector to put the value at the right position.
238   unsigned getLocationNo(const MachineOperand &LocMO) {
239     if (LocMO.isReg()) {
240       if (LocMO.getReg() == 0)
241         return UndefLocNo;
242       // For register locations we dont care about use/def and other flags.
243       for (unsigned i = 0, e = locations.size(); i != e; ++i)
244         if (locations[i].isReg() &&
245             locations[i].getReg() == LocMO.getReg() &&
246             locations[i].getSubReg() == LocMO.getSubReg())
247           return i;
248     } else
249       for (unsigned i = 0, e = locations.size(); i != e; ++i)
250         if (LocMO.isIdenticalTo(locations[i]))
251           return i;
252     locations.push_back(LocMO);
253     // We are storing a MachineOperand outside a MachineInstr.
254     locations.back().clearParent();
255     // Don't store def operands.
256     if (locations.back().isReg()) {
257       if (locations.back().isDef())
258         locations.back().setIsDead(false);
259       locations.back().setIsUse();
260     }
261     return locations.size() - 1;
262   }
263 
264   /// Ensure that all virtual register locations are mapped.
265   void mapVirtRegs(LDVImpl *LDV);
266 
267   /// Add a definition point to this value.
268   void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect) {
269     DbgValueLocation Loc(getLocationNo(LocMO), IsIndirect);
270     // Add a singular (Idx,Idx) -> Loc mapping.
271     LocMap::iterator I = locInts.find(Idx);
272     if (!I.valid() || I.start() != Idx)
273       I.insert(Idx, Idx.getNextSlot(), Loc);
274     else
275       // A later DBG_VALUE at the same SlotIndex overrides the old location.
276       I.setValue(Loc);
277   }
278 
279   /// Extend the current definition as far as possible down.
280   ///
281   /// Stop when meeting an existing def or when leaving the live
282   /// range of VNI. End points where VNI is no longer live are added to Kills.
283   ///
284   /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a
285   /// data-flow analysis to propagate them beyond basic block boundaries.
286   ///
287   /// \param Idx Starting point for the definition.
288   /// \param Loc Location number to propagate.
289   /// \param LR Restrict liveness to where LR has the value VNI. May be null.
290   /// \param VNI When LR is not null, this is the value to restrict to.
291   /// \param [out] Kills Append end points of VNI's live range to Kills.
292   /// \param LIS Live intervals analysis.
293   void extendDef(SlotIndex Idx, DbgValueLocation Loc,
294                  LiveRange *LR, const VNInfo *VNI,
295                  SmallVectorImpl<SlotIndex> *Kills,
296                  LiveIntervals &LIS);
297 
298   /// The value in LI/LocNo may be copies to other registers. Determine if
299   /// any of the copies are available at the kill points, and add defs if
300   /// possible.
301   ///
302   /// \param LI Scan for copies of the value in LI->reg.
303   /// \param LocNo Location number of LI->reg.
304   /// \param WasIndirect Indicates if the original use of LI->reg was indirect
305   /// \param Kills Points where the range of LocNo could be extended.
306   /// \param [in,out] NewDefs Append (Idx, LocNo) of inserted defs here.
307   void addDefsFromCopies(
308       LiveInterval *LI, unsigned LocNo, bool WasIndirect,
309       const SmallVectorImpl<SlotIndex> &Kills,
310       SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
311       MachineRegisterInfo &MRI, LiveIntervals &LIS);
312 
313   /// Compute the live intervals of all locations after collecting all their
314   /// def points.
315   void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
316                         LiveIntervals &LIS, LexicalScopes &LS);
317 
318   /// Replace OldReg ranges with NewRegs ranges where NewRegs is
319   /// live. Returns true if any changes were made.
320   bool splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
321                      LiveIntervals &LIS);
322 
323   /// Rewrite virtual register locations according to the provided virtual
324   /// register map. Record the stack slot offsets for the locations that
325   /// were spilled.
326   void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
327                         const TargetInstrInfo &TII,
328                         const TargetRegisterInfo &TRI,
329                         SpillOffsetMap &SpillOffsets);
330 
331   /// Recreate DBG_VALUE instruction from data structures.
332   void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
333                        const TargetInstrInfo &TII,
334                        const TargetRegisterInfo &TRI,
335                        const SpillOffsetMap &SpillOffsets);
336 
337   /// Return DebugLoc of this UserValue.
338   DebugLoc getDebugLoc() { return dl;}
339 
340   void print(raw_ostream &, const TargetRegisterInfo *);
341 };
342 
343 /// A user label is a part of a debug info user label.
344 class UserLabel {
345   const DILabel *Label; ///< The debug info label we are part of.
346   DebugLoc dl;          ///< The debug location for the label. This is
347                         ///< used by dwarf writer to find lexical scope.
348   SlotIndex loc;        ///< Slot used by the debug label.
349 
350   /// Insert a DBG_LABEL into MBB at Idx.
351   void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx,
352                         LiveIntervals &LIS, const TargetInstrInfo &TII);
353 
354 public:
355   /// Create a new UserLabel.
356   UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx)
357       : Label(label), dl(std::move(L)), loc(Idx) {}
358 
359   /// Does this UserLabel match the parameters?
360   bool match(const DILabel *L, const DILocation *IA,
361              const SlotIndex Index) const {
362     return Label == L && dl->getInlinedAt() == IA && loc == Index;
363   }
364 
365   /// Recreate DBG_LABEL instruction from data structures.
366   void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII);
367 
368   /// Return DebugLoc of this UserLabel.
369   DebugLoc getDebugLoc() { return dl; }
370 
371   void print(raw_ostream &, const TargetRegisterInfo *);
372 };
373 
374 /// Implementation of the LiveDebugVariables pass.
375 class LDVImpl {
376   LiveDebugVariables &pass;
377   LocMap::Allocator allocator;
378   MachineFunction *MF = nullptr;
379   LiveIntervals *LIS;
380   const TargetRegisterInfo *TRI;
381 
382   /// Whether emitDebugValues is called.
383   bool EmitDone = false;
384 
385   /// Whether the machine function is modified during the pass.
386   bool ModifiedMF = false;
387 
388   /// All allocated UserValue instances.
389   SmallVector<std::unique_ptr<UserValue>, 8> userValues;
390 
391   /// All allocated UserLabel instances.
392   SmallVector<std::unique_ptr<UserLabel>, 2> userLabels;
393 
394   /// Map virtual register to eq class leader.
395   using VRMap = DenseMap<unsigned, UserValue *>;
396   VRMap virtRegToEqClass;
397 
398   /// Map user variable to eq class leader.
399   using UVMap = DenseMap<const DILocalVariable *, UserValue *>;
400   UVMap userVarMap;
401 
402   /// Find or create a UserValue.
403   UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr,
404                           const DebugLoc &DL);
405 
406   /// Find the EC leader for VirtReg or null.
407   UserValue *lookupVirtReg(unsigned VirtReg);
408 
409   /// Add DBG_VALUE instruction to our maps.
410   ///
411   /// \param MI DBG_VALUE instruction
412   /// \param Idx Last valid SLotIndex before instruction.
413   ///
414   /// \returns True if the DBG_VALUE instruction should be deleted.
415   bool handleDebugValue(MachineInstr &MI, SlotIndex Idx);
416 
417   /// Add DBG_LABEL instruction to UserLabel.
418   ///
419   /// \param MI DBG_LABEL instruction
420   /// \param Idx Last valid SlotIndex before instruction.
421   ///
422   /// \returns True if the DBG_LABEL instruction should be deleted.
423   bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx);
424 
425   /// Collect and erase all DBG_VALUE instructions, adding a UserValue def
426   /// for each instruction.
427   ///
428   /// \param mf MachineFunction to be scanned.
429   ///
430   /// \returns True if any debug values were found.
431   bool collectDebugValues(MachineFunction &mf);
432 
433   /// Compute the live intervals of all user values after collecting all
434   /// their def points.
435   void computeIntervals();
436 
437 public:
438   LDVImpl(LiveDebugVariables *ps) : pass(*ps) {}
439 
440   bool runOnMachineFunction(MachineFunction &mf);
441 
442   /// Release all memory.
443   void clear() {
444     MF = nullptr;
445     userValues.clear();
446     userLabels.clear();
447     virtRegToEqClass.clear();
448     userVarMap.clear();
449     // Make sure we call emitDebugValues if the machine function was modified.
450     assert((!ModifiedMF || EmitDone) &&
451            "Dbg values are not emitted in LDV");
452     EmitDone = false;
453     ModifiedMF = false;
454   }
455 
456   /// Map virtual register to an equivalence class.
457   void mapVirtReg(unsigned VirtReg, UserValue *EC);
458 
459   /// Replace all references to OldReg with NewRegs.
460   void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs);
461 
462   /// Recreate DBG_VALUE instruction from data structures.
463   void emitDebugValues(VirtRegMap *VRM);
464 
465   void print(raw_ostream&);
466 };
467 
468 } // end anonymous namespace
469 
470 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
471 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS,
472                           const LLVMContext &Ctx) {
473   if (!DL)
474     return;
475 
476   auto *Scope = cast<DIScope>(DL.getScope());
477   // Omit the directory, because it's likely to be long and uninteresting.
478   CommentOS << Scope->getFilename();
479   CommentOS << ':' << DL.getLine();
480   if (DL.getCol() != 0)
481     CommentOS << ':' << DL.getCol();
482 
483   DebugLoc InlinedAtDL = DL.getInlinedAt();
484   if (!InlinedAtDL)
485     return;
486 
487   CommentOS << " @[ ";
488   printDebugLoc(InlinedAtDL, CommentOS, Ctx);
489   CommentOS << " ]";
490 }
491 
492 static void printExtendedName(raw_ostream &OS, const DINode *Node,
493                               const DILocation *DL) {
494   const LLVMContext &Ctx = Node->getContext();
495   StringRef Res;
496   unsigned Line;
497   if (const auto *V = dyn_cast<const DILocalVariable>(Node)) {
498     Res = V->getName();
499     Line = V->getLine();
500   } else if (const auto *L = dyn_cast<const DILabel>(Node)) {
501     Res = L->getName();
502     Line = L->getLine();
503   }
504 
505   if (!Res.empty())
506     OS << Res << "," << Line;
507   auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr;
508   if (InlinedAt) {
509     if (DebugLoc InlinedAtDL = InlinedAt) {
510       OS << " @[";
511       printDebugLoc(InlinedAtDL, OS, Ctx);
512       OS << "]";
513     }
514   }
515 }
516 
517 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
518   OS << "!\"";
519   printExtendedName(OS, Variable, dl);
520 
521   OS << "\"\t";
522   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
523     OS << " [" << I.start() << ';' << I.stop() << "):";
524     if (I.value().isUndef())
525       OS << "undef";
526     else {
527       OS << I.value().locNo();
528       if (I.value().wasIndirect())
529         OS << " ind";
530     }
531   }
532   for (unsigned i = 0, e = locations.size(); i != e; ++i) {
533     OS << " Loc" << i << '=';
534     locations[i].print(OS, TRI);
535   }
536   OS << '\n';
537 }
538 
539 void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
540   OS << "!\"";
541   printExtendedName(OS, Label, dl);
542 
543   OS << "\"\t";
544   OS << loc;
545   OS << '\n';
546 }
547 
548 void LDVImpl::print(raw_ostream &OS) {
549   OS << "********** DEBUG VARIABLES **********\n";
550   for (auto &userValue : userValues)
551     userValue->print(OS, TRI);
552   OS << "********** DEBUG LABELS **********\n";
553   for (auto &userLabel : userLabels)
554     userLabel->print(OS, TRI);
555 }
556 #endif
557 
558 void UserValue::mapVirtRegs(LDVImpl *LDV) {
559   for (unsigned i = 0, e = locations.size(); i != e; ++i)
560     if (locations[i].isReg() &&
561         TargetRegisterInfo::isVirtualRegister(locations[i].getReg()))
562       LDV->mapVirtReg(locations[i].getReg(), this);
563 }
564 
565 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var,
566                                  const DIExpression *Expr, const DebugLoc &DL) {
567   UserValue *&Leader = userVarMap[Var];
568   if (Leader) {
569     UserValue *UV = Leader->getLeader();
570     Leader = UV;
571     for (; UV; UV = UV->getNext())
572       if (UV->match(Var, Expr, DL->getInlinedAt()))
573         return UV;
574   }
575 
576   userValues.push_back(
577       llvm::make_unique<UserValue>(Var, Expr, DL, allocator));
578   UserValue *UV = userValues.back().get();
579   Leader = UserValue::merge(Leader, UV);
580   return UV;
581 }
582 
583 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) {
584   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs");
585   UserValue *&Leader = virtRegToEqClass[VirtReg];
586   Leader = UserValue::merge(Leader, EC);
587 }
588 
589 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) {
590   if (UserValue *UV = virtRegToEqClass.lookup(VirtReg))
591     return UV->getLeader();
592   return nullptr;
593 }
594 
595 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) {
596   // DBG_VALUE loc, offset, variable
597   if (MI.getNumOperands() != 4 ||
598       !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) ||
599       !MI.getOperand(2).isMetadata()) {
600     LLVM_DEBUG(dbgs() << "Can't handle " << MI);
601     return false;
602   }
603 
604   // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual
605   // register that hasn't been defined yet. If we do not remove those here, then
606   // the re-insertion of the DBG_VALUE instruction after register allocation
607   // will be incorrect.
608   // TODO: If earlier passes are corrected to generate sane debug information
609   // (and if the machine verifier is improved to catch this), then these checks
610   // could be removed or replaced by asserts.
611   bool Discard = false;
612   if (MI.getOperand(0).isReg() &&
613       TargetRegisterInfo::isVirtualRegister(MI.getOperand(0).getReg())) {
614     const unsigned Reg = MI.getOperand(0).getReg();
615     if (!LIS->hasInterval(Reg)) {
616       // The DBG_VALUE is described by a virtual register that does not have a
617       // live interval. Discard the DBG_VALUE.
618       Discard = true;
619       LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx
620                         << " " << MI);
621     } else {
622       // The DBG_VALUE is only valid if either Reg is live out from Idx, or Reg
623       // is defined dead at Idx (where Idx is the slot index for the instruction
624       // preceding the DBG_VALUE).
625       const LiveInterval &LI = LIS->getInterval(Reg);
626       LiveQueryResult LRQ = LI.Query(Idx);
627       if (!LRQ.valueOutOrDead()) {
628         // We have found a DBG_VALUE with the value in a virtual register that
629         // is not live. Discard the DBG_VALUE.
630         Discard = true;
631         LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx
632                           << " " << MI);
633       }
634     }
635   }
636 
637   // Get or create the UserValue for (variable,offset) here.
638   bool IsIndirect = MI.getOperand(1).isImm();
639   if (IsIndirect)
640     assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
641   const DILocalVariable *Var = MI.getDebugVariable();
642   const DIExpression *Expr = MI.getDebugExpression();
643   UserValue *UV =
644       getUserValue(Var, Expr, MI.getDebugLoc());
645   if (!Discard)
646     UV->addDef(Idx, MI.getOperand(0), IsIndirect);
647   else {
648     MachineOperand MO = MachineOperand::CreateReg(0U, false);
649     MO.setIsDebug();
650     UV->addDef(Idx, MO, false);
651   }
652   return true;
653 }
654 
655 bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) {
656   // DBG_LABEL label
657   if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) {
658     LLVM_DEBUG(dbgs() << "Can't handle " << MI);
659     return false;
660   }
661 
662   // Get or create the UserLabel for label here.
663   const DILabel *Label = MI.getDebugLabel();
664   const DebugLoc &DL = MI.getDebugLoc();
665   bool Found = false;
666   for (auto const &L : userLabels) {
667     if (L->match(Label, DL->getInlinedAt(), Idx)) {
668       Found = true;
669       break;
670     }
671   }
672   if (!Found)
673     userLabels.push_back(llvm::make_unique<UserLabel>(Label, DL, Idx));
674 
675   return true;
676 }
677 
678 bool LDVImpl::collectDebugValues(MachineFunction &mf) {
679   bool Changed = false;
680   for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE;
681        ++MFI) {
682     MachineBasicBlock *MBB = &*MFI;
683     for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end();
684          MBBI != MBBE;) {
685       // Use the first debug instruction in the sequence to get a SlotIndex
686       // for following consecutive debug instructions.
687       if (!MBBI->isDebugInstr()) {
688         ++MBBI;
689         continue;
690       }
691       // Debug instructions has no slot index. Use the previous
692       // non-debug instruction's SlotIndex as its SlotIndex.
693       SlotIndex Idx =
694           MBBI == MBB->begin()
695               ? LIS->getMBBStartIdx(MBB)
696               : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot();
697       // Handle consecutive debug instructions with the same slot index.
698       do {
699         // Only handle DBG_VALUE in handleDebugValue(). Skip all other
700         // kinds of debug instructions.
701         if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) ||
702             (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) {
703           MBBI = MBB->erase(MBBI);
704           Changed = true;
705         } else
706           ++MBBI;
707       } while (MBBI != MBBE && MBBI->isDebugInstr());
708     }
709   }
710   return Changed;
711 }
712 
713 void UserValue::extendDef(SlotIndex Idx, DbgValueLocation Loc, LiveRange *LR,
714                           const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills,
715                           LiveIntervals &LIS) {
716   SlotIndex Start = Idx;
717   MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
718   SlotIndex Stop = LIS.getMBBEndIdx(MBB);
719   LocMap::iterator I = locInts.find(Start);
720 
721   // Limit to VNI's live range.
722   bool ToEnd = true;
723   if (LR && VNI) {
724     LiveInterval::Segment *Segment = LR->getSegmentContaining(Start);
725     if (!Segment || Segment->valno != VNI) {
726       if (Kills)
727         Kills->push_back(Start);
728       return;
729     }
730     if (Segment->end < Stop) {
731       Stop = Segment->end;
732       ToEnd = false;
733     }
734   }
735 
736   // There could already be a short def at Start.
737   if (I.valid() && I.start() <= Start) {
738     // Stop when meeting a different location or an already extended interval.
739     Start = Start.getNextSlot();
740     if (I.value() != Loc || I.stop() != Start)
741       return;
742     // This is a one-slot placeholder. Just skip it.
743     ++I;
744   }
745 
746   // Limited by the next def.
747   if (I.valid() && I.start() < Stop) {
748     Stop = I.start();
749     ToEnd = false;
750   }
751   // Limited by VNI's live range.
752   else if (!ToEnd && Kills)
753     Kills->push_back(Stop);
754 
755   if (Start < Stop)
756     I.insert(Start, Stop, Loc);
757 }
758 
759 void UserValue::addDefsFromCopies(
760     LiveInterval *LI, unsigned LocNo, bool WasIndirect,
761     const SmallVectorImpl<SlotIndex> &Kills,
762     SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
763     MachineRegisterInfo &MRI, LiveIntervals &LIS) {
764   if (Kills.empty())
765     return;
766   // Don't track copies from physregs, there are too many uses.
767   if (!TargetRegisterInfo::isVirtualRegister(LI->reg))
768     return;
769 
770   // Collect all the (vreg, valno) pairs that are copies of LI.
771   SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues;
772   for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) {
773     MachineInstr *MI = MO.getParent();
774     // Copies of the full value.
775     if (MO.getSubReg() || !MI->isCopy())
776       continue;
777     unsigned DstReg = MI->getOperand(0).getReg();
778 
779     // Don't follow copies to physregs. These are usually setting up call
780     // arguments, and the argument registers are always call clobbered. We are
781     // better off in the source register which could be a callee-saved register,
782     // or it could be spilled.
783     if (!TargetRegisterInfo::isVirtualRegister(DstReg))
784       continue;
785 
786     // Is LocNo extended to reach this copy? If not, another def may be blocking
787     // it, or we are looking at a wrong value of LI.
788     SlotIndex Idx = LIS.getInstructionIndex(*MI);
789     LocMap::iterator I = locInts.find(Idx.getRegSlot(true));
790     if (!I.valid() || I.value().locNo() != LocNo)
791       continue;
792 
793     if (!LIS.hasInterval(DstReg))
794       continue;
795     LiveInterval *DstLI = &LIS.getInterval(DstReg);
796     const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot());
797     assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value");
798     CopyValues.push_back(std::make_pair(DstLI, DstVNI));
799   }
800 
801   if (CopyValues.empty())
802     return;
803 
804   LLVM_DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI
805                     << '\n');
806 
807   // Try to add defs of the copied values for each kill point.
808   for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
809     SlotIndex Idx = Kills[i];
810     for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) {
811       LiveInterval *DstLI = CopyValues[j].first;
812       const VNInfo *DstVNI = CopyValues[j].second;
813       if (DstLI->getVNInfoAt(Idx) != DstVNI)
814         continue;
815       // Check that there isn't already a def at Idx
816       LocMap::iterator I = locInts.find(Idx);
817       if (I.valid() && I.start() <= Idx)
818         continue;
819       LLVM_DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #"
820                         << DstVNI->id << " in " << *DstLI << '\n');
821       MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def);
822       assert(CopyMI && CopyMI->isCopy() && "Bad copy value");
823       unsigned LocNo = getLocationNo(CopyMI->getOperand(0));
824       DbgValueLocation NewLoc(LocNo, WasIndirect);
825       I.insert(Idx, Idx.getNextSlot(), NewLoc);
826       NewDefs.push_back(std::make_pair(Idx, NewLoc));
827       break;
828     }
829   }
830 }
831 
832 void UserValue::computeIntervals(MachineRegisterInfo &MRI,
833                                  const TargetRegisterInfo &TRI,
834                                  LiveIntervals &LIS, LexicalScopes &LS) {
835   SmallVector<std::pair<SlotIndex, DbgValueLocation>, 16> Defs;
836 
837   // Collect all defs to be extended (Skipping undefs).
838   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I)
839     if (!I.value().isUndef())
840       Defs.push_back(std::make_pair(I.start(), I.value()));
841 
842   // Extend all defs, and possibly add new ones along the way.
843   for (unsigned i = 0; i != Defs.size(); ++i) {
844     SlotIndex Idx = Defs[i].first;
845     DbgValueLocation Loc = Defs[i].second;
846     const MachineOperand &LocMO = locations[Loc.locNo()];
847 
848     if (!LocMO.isReg()) {
849       extendDef(Idx, Loc, nullptr, nullptr, nullptr, LIS);
850       continue;
851     }
852 
853     // Register locations are constrained to where the register value is live.
854     if (TargetRegisterInfo::isVirtualRegister(LocMO.getReg())) {
855       LiveInterval *LI = nullptr;
856       const VNInfo *VNI = nullptr;
857       if (LIS.hasInterval(LocMO.getReg())) {
858         LI = &LIS.getInterval(LocMO.getReg());
859         VNI = LI->getVNInfoAt(Idx);
860       }
861       SmallVector<SlotIndex, 16> Kills;
862       extendDef(Idx, Loc, LI, VNI, &Kills, LIS);
863       // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that
864       // if the original location for example is %vreg0:sub_hi, and we find a
865       // full register copy in addDefsFromCopies (at the moment it only handles
866       // full register copies), then we must add the sub1 sub-register index to
867       // the new location. However, that is only possible if the new virtual
868       // register is of the same regclass (or if there is an equivalent
869       // sub-register in that regclass). For now, simply skip handling copies if
870       // a sub-register is involved.
871       if (LI && !LocMO.getSubReg())
872         addDefsFromCopies(LI, Loc.locNo(), Loc.wasIndirect(), Kills, Defs, MRI,
873                           LIS);
874       continue;
875     }
876 
877     // For physregs, we only mark the start slot idx. DwarfDebug will see it
878     // as if the DBG_VALUE is valid up until the end of the basic block, or
879     // the next def of the physical register. So we do not need to extend the
880     // range. It might actually happen that the DBG_VALUE is the last use of
881     // the physical register (e.g. if this is an unused input argument to a
882     // function).
883   }
884 
885   // The computed intervals may extend beyond the range of the debug
886   // location's lexical scope. In this case, splitting of an interval
887   // can result in an interval outside of the scope being created,
888   // causing extra unnecessary DBG_VALUEs to be emitted. To prevent
889   // this, trim the intervals to the lexical scope.
890 
891   LexicalScope *Scope = LS.findLexicalScope(dl);
892   if (!Scope)
893     return;
894 
895   SlotIndex PrevEnd;
896   LocMap::iterator I = locInts.begin();
897 
898   // Iterate over the lexical scope ranges. Each time round the loop
899   // we check the intervals for overlap with the end of the previous
900   // range and the start of the next. The first range is handled as
901   // a special case where there is no PrevEnd.
902   for (const InsnRange &Range : Scope->getRanges()) {
903     SlotIndex RStart = LIS.getInstructionIndex(*Range.first);
904     SlotIndex REnd = LIS.getInstructionIndex(*Range.second);
905 
906     // At the start of each iteration I has been advanced so that
907     // I.stop() >= PrevEnd. Check for overlap.
908     if (PrevEnd && I.start() < PrevEnd) {
909       SlotIndex IStop = I.stop();
910       DbgValueLocation Loc = I.value();
911 
912       // Stop overlaps previous end - trim the end of the interval to
913       // the scope range.
914       I.setStopUnchecked(PrevEnd);
915       ++I;
916 
917       // If the interval also overlaps the start of the "next" (i.e.
918       // current) range create a new interval for the remainder (which
919       // may be further trimmed).
920       if (RStart < IStop)
921         I.insert(RStart, IStop, Loc);
922     }
923 
924     // Advance I so that I.stop() >= RStart, and check for overlap.
925     I.advanceTo(RStart);
926     if (!I.valid())
927       return;
928 
929     if (I.start() < RStart) {
930       // Interval start overlaps range - trim to the scope range.
931       I.setStartUnchecked(RStart);
932       // Remember that this interval was trimmed.
933       trimmedDefs.insert(RStart);
934     }
935 
936     // The end of a lexical scope range is the last instruction in the
937     // range. To convert to an interval we need the index of the
938     // instruction after it.
939     REnd = REnd.getNextIndex();
940 
941     // Advance I to first interval outside current range.
942     I.advanceTo(REnd);
943     if (!I.valid())
944       return;
945 
946     PrevEnd = REnd;
947   }
948 
949   // Check for overlap with end of final range.
950   if (PrevEnd && I.start() < PrevEnd)
951     I.setStopUnchecked(PrevEnd);
952 }
953 
954 void LDVImpl::computeIntervals() {
955   LexicalScopes LS;
956   LS.initialize(*MF);
957 
958   for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
959     userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS);
960     userValues[i]->mapVirtRegs(this);
961   }
962 }
963 
964 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) {
965   clear();
966   MF = &mf;
967   LIS = &pass.getAnalysis<LiveIntervals>();
968   TRI = mf.getSubtarget().getRegisterInfo();
969   LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
970                     << mf.getName() << " **********\n");
971 
972   bool Changed = collectDebugValues(mf);
973   computeIntervals();
974   LLVM_DEBUG(print(dbgs()));
975   ModifiedMF = Changed;
976   return Changed;
977 }
978 
979 static void removeDebugValues(MachineFunction &mf) {
980   for (MachineBasicBlock &MBB : mf) {
981     for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) {
982       if (!MBBI->isDebugValue()) {
983         ++MBBI;
984         continue;
985       }
986       MBBI = MBB.erase(MBBI);
987     }
988   }
989 }
990 
991 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
992   if (!EnableLDV)
993     return false;
994   if (!mf.getFunction().getSubprogram()) {
995     removeDebugValues(mf);
996     return false;
997   }
998   if (!pImpl)
999     pImpl = new LDVImpl(this);
1000   return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf);
1001 }
1002 
1003 void LiveDebugVariables::releaseMemory() {
1004   if (pImpl)
1005     static_cast<LDVImpl*>(pImpl)->clear();
1006 }
1007 
1008 LiveDebugVariables::~LiveDebugVariables() {
1009   if (pImpl)
1010     delete static_cast<LDVImpl*>(pImpl);
1011 }
1012 
1013 //===----------------------------------------------------------------------===//
1014 //                           Live Range Splitting
1015 //===----------------------------------------------------------------------===//
1016 
1017 bool
1018 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
1019                          LiveIntervals& LIS) {
1020   LLVM_DEBUG({
1021     dbgs() << "Splitting Loc" << OldLocNo << '\t';
1022     print(dbgs(), nullptr);
1023   });
1024   bool DidChange = false;
1025   LocMap::iterator LocMapI;
1026   LocMapI.setMap(locInts);
1027   for (unsigned i = 0; i != NewRegs.size(); ++i) {
1028     LiveInterval *LI = &LIS.getInterval(NewRegs[i]);
1029     if (LI->empty())
1030       continue;
1031 
1032     // Don't allocate the new LocNo until it is needed.
1033     unsigned NewLocNo = UndefLocNo;
1034 
1035     // Iterate over the overlaps between locInts and LI.
1036     LocMapI.find(LI->beginIndex());
1037     if (!LocMapI.valid())
1038       continue;
1039     LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start());
1040     LiveInterval::iterator LIE = LI->end();
1041     while (LocMapI.valid() && LII != LIE) {
1042       // At this point, we know that LocMapI.stop() > LII->start.
1043       LII = LI->advanceTo(LII, LocMapI.start());
1044       if (LII == LIE)
1045         break;
1046 
1047       // Now LII->end > LocMapI.start(). Do we have an overlap?
1048       if (LocMapI.value().locNo() == OldLocNo && LII->start < LocMapI.stop()) {
1049         // Overlapping correct location. Allocate NewLocNo now.
1050         if (NewLocNo == UndefLocNo) {
1051           MachineOperand MO = MachineOperand::CreateReg(LI->reg, false);
1052           MO.setSubReg(locations[OldLocNo].getSubReg());
1053           NewLocNo = getLocationNo(MO);
1054           DidChange = true;
1055         }
1056 
1057         SlotIndex LStart = LocMapI.start();
1058         SlotIndex LStop  = LocMapI.stop();
1059         DbgValueLocation OldLoc = LocMapI.value();
1060 
1061         // Trim LocMapI down to the LII overlap.
1062         if (LStart < LII->start)
1063           LocMapI.setStartUnchecked(LII->start);
1064         if (LStop > LII->end)
1065           LocMapI.setStopUnchecked(LII->end);
1066 
1067         // Change the value in the overlap. This may trigger coalescing.
1068         LocMapI.setValue(OldLoc.changeLocNo(NewLocNo));
1069 
1070         // Re-insert any removed OldLocNo ranges.
1071         if (LStart < LocMapI.start()) {
1072           LocMapI.insert(LStart, LocMapI.start(), OldLoc);
1073           ++LocMapI;
1074           assert(LocMapI.valid() && "Unexpected coalescing");
1075         }
1076         if (LStop > LocMapI.stop()) {
1077           ++LocMapI;
1078           LocMapI.insert(LII->end, LStop, OldLoc);
1079           --LocMapI;
1080         }
1081       }
1082 
1083       // Advance to the next overlap.
1084       if (LII->end < LocMapI.stop()) {
1085         if (++LII == LIE)
1086           break;
1087         LocMapI.advanceTo(LII->start);
1088       } else {
1089         ++LocMapI;
1090         if (!LocMapI.valid())
1091           break;
1092         LII = LI->advanceTo(LII, LocMapI.start());
1093       }
1094     }
1095   }
1096 
1097   // Finally, remove any remaining OldLocNo intervals and OldLocNo itself.
1098   locations.erase(locations.begin() + OldLocNo);
1099   LocMapI.goToBegin();
1100   while (LocMapI.valid()) {
1101     DbgValueLocation v = LocMapI.value();
1102     if (v.locNo() == OldLocNo) {
1103       LLVM_DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';'
1104                         << LocMapI.stop() << ")\n");
1105       LocMapI.erase();
1106     } else {
1107       // Undef values always have location number UndefLocNo, so don't change
1108       // locNo in that case. See getLocationNo().
1109       if (!v.isUndef() && v.locNo() > OldLocNo)
1110         LocMapI.setValueUnchecked(v.changeLocNo(v.locNo() - 1));
1111       ++LocMapI;
1112     }
1113   }
1114 
1115   LLVM_DEBUG({
1116     dbgs() << "Split result: \t";
1117     print(dbgs(), nullptr);
1118   });
1119   return DidChange;
1120 }
1121 
1122 bool
1123 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
1124                          LiveIntervals &LIS) {
1125   bool DidChange = false;
1126   // Split locations referring to OldReg. Iterate backwards so splitLocation can
1127   // safely erase unused locations.
1128   for (unsigned i = locations.size(); i ; --i) {
1129     unsigned LocNo = i-1;
1130     const MachineOperand *Loc = &locations[LocNo];
1131     if (!Loc->isReg() || Loc->getReg() != OldReg)
1132       continue;
1133     DidChange |= splitLocation(LocNo, NewRegs, LIS);
1134   }
1135   return DidChange;
1136 }
1137 
1138 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) {
1139   bool DidChange = false;
1140   for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext())
1141     DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS);
1142 
1143   if (!DidChange)
1144     return;
1145 
1146   // Map all of the new virtual registers.
1147   UserValue *UV = lookupVirtReg(OldReg);
1148   for (unsigned i = 0; i != NewRegs.size(); ++i)
1149     mapVirtReg(NewRegs[i], UV);
1150 }
1151 
1152 void LiveDebugVariables::
1153 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) {
1154   if (pImpl)
1155     static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs);
1156 }
1157 
1158 void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
1159                                  const TargetInstrInfo &TII,
1160                                  const TargetRegisterInfo &TRI,
1161                                  SpillOffsetMap &SpillOffsets) {
1162   // Build a set of new locations with new numbers so we can coalesce our
1163   // IntervalMap if two vreg intervals collapse to the same physical location.
1164   // Use MapVector instead of SetVector because MapVector::insert returns the
1165   // position of the previously or newly inserted element. The boolean value
1166   // tracks if the location was produced by a spill.
1167   // FIXME: This will be problematic if we ever support direct and indirect
1168   // frame index locations, i.e. expressing both variables in memory and
1169   // 'int x, *px = &x'. The "spilled" bit must become part of the location.
1170   MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations;
1171   SmallVector<unsigned, 4> LocNoMap(locations.size());
1172   for (unsigned I = 0, E = locations.size(); I != E; ++I) {
1173     bool Spilled = false;
1174     unsigned SpillOffset = 0;
1175     MachineOperand Loc = locations[I];
1176     // Only virtual registers are rewritten.
1177     if (Loc.isReg() && Loc.getReg() &&
1178         TargetRegisterInfo::isVirtualRegister(Loc.getReg())) {
1179       unsigned VirtReg = Loc.getReg();
1180       if (VRM.isAssignedReg(VirtReg) &&
1181           TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) {
1182         // This can create a %noreg operand in rare cases when the sub-register
1183         // index is no longer available. That means the user value is in a
1184         // non-existent sub-register, and %noreg is exactly what we want.
1185         Loc.substPhysReg(VRM.getPhys(VirtReg), TRI);
1186       } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) {
1187         // Retrieve the stack slot offset.
1188         unsigned SpillSize;
1189         const MachineRegisterInfo &MRI = MF.getRegInfo();
1190         const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg);
1191         bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize,
1192                                              SpillOffset, MF);
1193 
1194         // FIXME: Invalidate the location if the offset couldn't be calculated.
1195         (void)Success;
1196 
1197         Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg));
1198         Spilled = true;
1199       } else {
1200         Loc.setReg(0);
1201         Loc.setSubReg(0);
1202       }
1203     }
1204 
1205     // Insert this location if it doesn't already exist and record a mapping
1206     // from the old number to the new number.
1207     auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}});
1208     unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first);
1209     LocNoMap[I] = NewLocNo;
1210   }
1211 
1212   // Rewrite the locations and record the stack slot offsets for spills.
1213   locations.clear();
1214   SpillOffsets.clear();
1215   for (auto &Pair : NewLocations) {
1216     bool Spilled;
1217     unsigned SpillOffset;
1218     std::tie(Spilled, SpillOffset) = Pair.second;
1219     locations.push_back(Pair.first);
1220     if (Spilled) {
1221       unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair);
1222       SpillOffsets[NewLocNo] = SpillOffset;
1223     }
1224   }
1225 
1226   // Update the interval map, but only coalesce left, since intervals to the
1227   // right use the old location numbers. This should merge two contiguous
1228   // DBG_VALUE intervals with different vregs that were allocated to the same
1229   // physical register.
1230   for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
1231     DbgValueLocation Loc = I.value();
1232     // Undef values don't exist in locations (and thus not in LocNoMap either)
1233     // so skip over them. See getLocationNo().
1234     if (Loc.isUndef())
1235       continue;
1236     unsigned NewLocNo = LocNoMap[Loc.locNo()];
1237     I.setValueUnchecked(Loc.changeLocNo(NewLocNo));
1238     I.setStart(I.start());
1239   }
1240 }
1241 
1242 /// Find an iterator for inserting a DBG_VALUE instruction.
1243 static MachineBasicBlock::iterator
1244 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx,
1245                    LiveIntervals &LIS) {
1246   SlotIndex Start = LIS.getMBBStartIdx(MBB);
1247   Idx = Idx.getBaseIndex();
1248 
1249   // Try to find an insert location by going backwards from Idx.
1250   MachineInstr *MI;
1251   while (!(MI = LIS.getInstructionFromIndex(Idx))) {
1252     // We've reached the beginning of MBB.
1253     if (Idx == Start) {
1254       MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
1255       return I;
1256     }
1257     Idx = Idx.getPrevIndex();
1258   }
1259 
1260   // Don't insert anything after the first terminator, though.
1261   return MI->isTerminator() ? MBB->getFirstTerminator() :
1262                               std::next(MachineBasicBlock::iterator(MI));
1263 }
1264 
1265 /// Find an iterator for inserting the next DBG_VALUE instruction
1266 /// (or end if no more insert locations found).
1267 static MachineBasicBlock::iterator
1268 findNextInsertLocation(MachineBasicBlock *MBB,
1269                        MachineBasicBlock::iterator I,
1270                        SlotIndex StopIdx, MachineOperand &LocMO,
1271                        LiveIntervals &LIS,
1272                        const TargetRegisterInfo &TRI) {
1273   if (!LocMO.isReg())
1274     return MBB->instr_end();
1275   unsigned Reg = LocMO.getReg();
1276 
1277   // Find the next instruction in the MBB that define the register Reg.
1278   while (I != MBB->end() && !I->isTerminator()) {
1279     if (!LIS.isNotInMIMap(*I) &&
1280         SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I)))
1281       break;
1282     if (I->definesRegister(Reg, &TRI))
1283       // The insert location is directly after the instruction/bundle.
1284       return std::next(I);
1285     ++I;
1286   }
1287   return MBB->end();
1288 }
1289 
1290 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
1291                                  SlotIndex StopIdx, DbgValueLocation Loc,
1292                                  bool Spilled, unsigned SpillOffset,
1293                                  LiveIntervals &LIS, const TargetInstrInfo &TII,
1294                                  const TargetRegisterInfo &TRI) {
1295   SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB);
1296   // Only search within the current MBB.
1297   StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx;
1298   MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS);
1299   // Undef values don't exist in locations so create new "noreg" register MOs
1300   // for them. See getLocationNo().
1301   MachineOperand MO = !Loc.isUndef() ?
1302     locations[Loc.locNo()] :
1303     MachineOperand::CreateReg(/* Reg */ 0, /* isDef */ false, /* isImp */ false,
1304                               /* isKill */ false, /* isDead */ false,
1305                               /* isUndef */ false, /* isEarlyClobber */ false,
1306                               /* SubReg */ 0, /* isDebug */ true);
1307 
1308   ++NumInsertedDebugValues;
1309 
1310   assert(cast<DILocalVariable>(Variable)
1311              ->isValidLocationForIntrinsic(getDebugLoc()) &&
1312          "Expected inlined-at fields to agree");
1313 
1314   // If the location was spilled, the new DBG_VALUE will be indirect. If the
1315   // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate
1316   // that the original virtual register was a pointer. Also, add the stack slot
1317   // offset for the spilled register to the expression.
1318   const DIExpression *Expr = Expression;
1319   uint8_t DIExprFlags = DIExpression::ApplyOffset;
1320   bool IsIndirect = Loc.wasIndirect();
1321   if (Spilled) {
1322     if (IsIndirect)
1323       DIExprFlags |= DIExpression::DerefAfter;
1324     Expr =
1325         DIExpression::prepend(Expr, DIExprFlags, SpillOffset);
1326     IsIndirect = true;
1327   }
1328 
1329   assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index");
1330 
1331   do {
1332     BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE),
1333             IsIndirect, MO, Variable, Expr);
1334 
1335     // Continue and insert DBG_VALUES after every redefinition of register
1336     // associated with the debug value within the range
1337     I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI);
1338   } while (I != MBB->end());
1339 }
1340 
1341 void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx,
1342                                  LiveIntervals &LIS,
1343                                  const TargetInstrInfo &TII) {
1344   MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS);
1345   ++NumInsertedDebugLabels;
1346   BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL))
1347       .addMetadata(Label);
1348 }
1349 
1350 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
1351                                 const TargetInstrInfo &TII,
1352                                 const TargetRegisterInfo &TRI,
1353                                 const SpillOffsetMap &SpillOffsets) {
1354   MachineFunction::iterator MFEnd = VRM->getMachineFunction().end();
1355 
1356   for (LocMap::const_iterator I = locInts.begin(); I.valid();) {
1357     SlotIndex Start = I.start();
1358     SlotIndex Stop = I.stop();
1359     DbgValueLocation Loc = I.value();
1360     auto SpillIt =
1361         !Loc.isUndef() ? SpillOffsets.find(Loc.locNo()) : SpillOffsets.end();
1362     bool Spilled = SpillIt != SpillOffsets.end();
1363     unsigned SpillOffset = Spilled ? SpillIt->second : 0;
1364 
1365     // If the interval start was trimmed to the lexical scope insert the
1366     // DBG_VALUE at the previous index (otherwise it appears after the
1367     // first instruction in the range).
1368     if (trimmedDefs.count(Start))
1369       Start = Start.getPrevIndex();
1370 
1371     LLVM_DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << Loc.locNo());
1372     MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1373     SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB);
1374 
1375     LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1376     insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, SpillOffset, LIS, TII,
1377                      TRI);
1378     // This interval may span multiple basic blocks.
1379     // Insert a DBG_VALUE into each one.
1380     while (Stop > MBBEnd) {
1381       // Move to the next block.
1382       Start = MBBEnd;
1383       if (++MBB == MFEnd)
1384         break;
1385       MBBEnd = LIS.getMBBEndIdx(&*MBB);
1386       LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1387       insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, SpillOffset, LIS, TII,
1388                        TRI);
1389     }
1390     LLVM_DEBUG(dbgs() << '\n');
1391     if (MBB == MFEnd)
1392       break;
1393 
1394     ++I;
1395   }
1396 }
1397 
1398 void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII) {
1399   LLVM_DEBUG(dbgs() << "\t" << loc);
1400   MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator();
1401 
1402   LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB));
1403   insertDebugLabel(&*MBB, loc, LIS, TII);
1404 
1405   LLVM_DEBUG(dbgs() << '\n');
1406 }
1407 
1408 void LDVImpl::emitDebugValues(VirtRegMap *VRM) {
1409   LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
1410   if (!MF)
1411     return;
1412   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1413   SpillOffsetMap SpillOffsets;
1414   for (auto &userValue : userValues) {
1415     LLVM_DEBUG(userValue->print(dbgs(), TRI));
1416     userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets);
1417     userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets);
1418   }
1419   LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n");
1420   for (auto &userLabel : userLabels) {
1421     LLVM_DEBUG(userLabel->print(dbgs(), TRI));
1422     userLabel->emitDebugLabel(*LIS, *TII);
1423   }
1424   EmitDone = true;
1425 }
1426 
1427 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) {
1428   if (pImpl)
1429     static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM);
1430 }
1431 
1432 bool LiveDebugVariables::doInitialization(Module &M) {
1433   return Pass::doInitialization(M);
1434 }
1435 
1436 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1437 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const {
1438   if (pImpl)
1439     static_cast<LDVImpl*>(pImpl)->print(dbgs());
1440 }
1441 #endif
1442