xref: /llvm-project/llvm/lib/CodeGen/LiveDebugVariables.cpp (revision e10e936315410abd222eb58911b1e20fbfa80baf)
1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the LiveDebugVariables analysis.
10 //
11 // Remove all DBG_VALUE instructions referencing virtual registers and replace
12 // them with a data structure tracking where live user variables are kept - in a
13 // virtual register or in a stack slot.
14 //
15 // Allow the data structure to be updated during register allocation when values
16 // are moved between registers and stack slots. Finally emit new DBG_VALUE
17 // instructions after register allocation is complete.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #include "LiveDebugVariables.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/IntervalMap.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/BinaryFormat/Dwarf.h"
32 #include "llvm/CodeGen/LexicalScopes.h"
33 #include "llvm/CodeGen/LiveInterval.h"
34 #include "llvm/CodeGen/LiveIntervals.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineDominators.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineOperand.h"
41 #include "llvm/CodeGen/MachineRegisterInfo.h"
42 #include "llvm/CodeGen/SlotIndexes.h"
43 #include "llvm/CodeGen/TargetInstrInfo.h"
44 #include "llvm/CodeGen/TargetOpcodes.h"
45 #include "llvm/CodeGen/TargetRegisterInfo.h"
46 #include "llvm/CodeGen/TargetSubtargetInfo.h"
47 #include "llvm/CodeGen/VirtRegMap.h"
48 #include "llvm/Config/llvm-config.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <iterator>
61 #include <memory>
62 #include <optional>
63 #include <utility>
64 
65 using namespace llvm;
66 
67 #define DEBUG_TYPE "livedebugvars"
68 
69 static cl::opt<bool>
70 EnableLDV("live-debug-variables", cl::init(true),
71           cl::desc("Enable the live debug variables pass"), cl::Hidden);
72 
73 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted");
74 STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted");
75 
76 char LiveDebugVariables::ID = 0;
77 
78 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE,
79                 "Debug Variable Analysis", false, false)
80 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
81 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
82 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE,
83                 "Debug Variable Analysis", false, false)
84 
85 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const {
86   AU.addRequired<MachineDominatorTree>();
87   AU.addRequiredTransitive<LiveIntervals>();
88   AU.setPreservesAll();
89   MachineFunctionPass::getAnalysisUsage(AU);
90 }
91 
92 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) {
93   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
94 }
95 
96 enum : unsigned { UndefLocNo = ~0U };
97 
98 namespace {
99 /// Describes a debug variable value by location number and expression along
100 /// with some flags about the original usage of the location.
101 class DbgVariableValue {
102 public:
103   DbgVariableValue(ArrayRef<unsigned> NewLocs, bool WasIndirect, bool WasList,
104                    const DIExpression &Expr)
105       : WasIndirect(WasIndirect), WasList(WasList), Expression(&Expr) {
106     assert(!(WasIndirect && WasList) &&
107            "DBG_VALUE_LISTs should not be indirect.");
108     SmallVector<unsigned> LocNoVec;
109     for (unsigned LocNo : NewLocs) {
110       auto It = find(LocNoVec, LocNo);
111       if (It == LocNoVec.end())
112         LocNoVec.push_back(LocNo);
113       else {
114         // Loc duplicates an element in LocNos; replace references to Op
115         // with references to the duplicating element.
116         unsigned OpIdx = LocNoVec.size();
117         unsigned DuplicatingIdx = std::distance(LocNoVec.begin(), It);
118         Expression =
119             DIExpression::replaceArg(Expression, OpIdx, DuplicatingIdx);
120       }
121     }
122     // FIXME: Debug values referencing 64+ unique machine locations are rare and
123     // currently unsupported for performance reasons. If we can verify that
124     // performance is acceptable for such debug values, we can increase the
125     // bit-width of LocNoCount to 14 to enable up to 16384 unique machine
126     // locations. We will also need to verify that this does not cause issues
127     // with LiveDebugVariables' use of IntervalMap.
128     if (LocNoVec.size() < 64) {
129       LocNoCount = LocNoVec.size();
130       if (LocNoCount > 0) {
131         LocNos = std::make_unique<unsigned[]>(LocNoCount);
132         std::copy(LocNoVec.begin(), LocNoVec.end(), loc_nos_begin());
133       }
134     } else {
135       LLVM_DEBUG(dbgs() << "Found debug value with 64+ unique machine "
136                            "locations, dropping...\n");
137       LocNoCount = 1;
138       // Turn this into an undef debug value list; right now, the simplest form
139       // of this is an expression with one arg, and an undef debug operand.
140       Expression =
141           DIExpression::get(Expr.getContext(), {dwarf::DW_OP_LLVM_arg, 0,
142                                                 dwarf::DW_OP_stack_value});
143       if (auto FragmentInfoOpt = Expr.getFragmentInfo())
144         Expression = *DIExpression::createFragmentExpression(
145             Expression, FragmentInfoOpt->OffsetInBits,
146             FragmentInfoOpt->SizeInBits);
147       LocNos = std::make_unique<unsigned[]>(LocNoCount);
148       LocNos[0] = UndefLocNo;
149     }
150   }
151 
152   DbgVariableValue() : LocNoCount(0), WasIndirect(false), WasList(false) {}
153   DbgVariableValue(const DbgVariableValue &Other)
154       : LocNoCount(Other.LocNoCount), WasIndirect(Other.getWasIndirect()),
155         WasList(Other.getWasList()), Expression(Other.getExpression()) {
156     if (Other.getLocNoCount()) {
157       LocNos.reset(new unsigned[Other.getLocNoCount()]);
158       std::copy(Other.loc_nos_begin(), Other.loc_nos_end(), loc_nos_begin());
159     }
160   }
161 
162   DbgVariableValue &operator=(const DbgVariableValue &Other) {
163     if (this == &Other)
164       return *this;
165     if (Other.getLocNoCount()) {
166       LocNos.reset(new unsigned[Other.getLocNoCount()]);
167       std::copy(Other.loc_nos_begin(), Other.loc_nos_end(), loc_nos_begin());
168     } else {
169       LocNos.release();
170     }
171     LocNoCount = Other.getLocNoCount();
172     WasIndirect = Other.getWasIndirect();
173     WasList = Other.getWasList();
174     Expression = Other.getExpression();
175     return *this;
176   }
177 
178   const DIExpression *getExpression() const { return Expression; }
179   uint8_t getLocNoCount() const { return LocNoCount; }
180   bool containsLocNo(unsigned LocNo) const {
181     return is_contained(loc_nos(), LocNo);
182   }
183   bool getWasIndirect() const { return WasIndirect; }
184   bool getWasList() const { return WasList; }
185   bool isUndef() const { return LocNoCount == 0 || containsLocNo(UndefLocNo); }
186 
187   DbgVariableValue decrementLocNosAfterPivot(unsigned Pivot) const {
188     SmallVector<unsigned, 4> NewLocNos;
189     for (unsigned LocNo : loc_nos())
190       NewLocNos.push_back(LocNo != UndefLocNo && LocNo > Pivot ? LocNo - 1
191                                                                : LocNo);
192     return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression);
193   }
194 
195   DbgVariableValue remapLocNos(ArrayRef<unsigned> LocNoMap) const {
196     SmallVector<unsigned> NewLocNos;
197     for (unsigned LocNo : loc_nos())
198       // Undef values don't exist in locations (and thus not in LocNoMap
199       // either) so skip over them. See getLocationNo().
200       NewLocNos.push_back(LocNo == UndefLocNo ? UndefLocNo : LocNoMap[LocNo]);
201     return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression);
202   }
203 
204   DbgVariableValue changeLocNo(unsigned OldLocNo, unsigned NewLocNo) const {
205     SmallVector<unsigned> NewLocNos;
206     NewLocNos.assign(loc_nos_begin(), loc_nos_end());
207     auto OldLocIt = find(NewLocNos, OldLocNo);
208     assert(OldLocIt != NewLocNos.end() && "Old location must be present.");
209     *OldLocIt = NewLocNo;
210     return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression);
211   }
212 
213   bool hasLocNoGreaterThan(unsigned LocNo) const {
214     return any_of(loc_nos(),
215                   [LocNo](unsigned ThisLocNo) { return ThisLocNo > LocNo; });
216   }
217 
218   void printLocNos(llvm::raw_ostream &OS) const {
219     for (const unsigned &Loc : loc_nos())
220       OS << (&Loc == loc_nos_begin() ? " " : ", ") << Loc;
221   }
222 
223   friend inline bool operator==(const DbgVariableValue &LHS,
224                                 const DbgVariableValue &RHS) {
225     if (std::tie(LHS.LocNoCount, LHS.WasIndirect, LHS.WasList,
226                  LHS.Expression) !=
227         std::tie(RHS.LocNoCount, RHS.WasIndirect, RHS.WasList, RHS.Expression))
228       return false;
229     return std::equal(LHS.loc_nos_begin(), LHS.loc_nos_end(),
230                       RHS.loc_nos_begin());
231   }
232 
233   friend inline bool operator!=(const DbgVariableValue &LHS,
234                                 const DbgVariableValue &RHS) {
235     return !(LHS == RHS);
236   }
237 
238   unsigned *loc_nos_begin() { return LocNos.get(); }
239   const unsigned *loc_nos_begin() const { return LocNos.get(); }
240   unsigned *loc_nos_end() { return LocNos.get() + LocNoCount; }
241   const unsigned *loc_nos_end() const { return LocNos.get() + LocNoCount; }
242   ArrayRef<unsigned> loc_nos() const {
243     return ArrayRef<unsigned>(LocNos.get(), LocNoCount);
244   }
245 
246 private:
247   // IntervalMap requires the value object to be very small, to the extent
248   // that we do not have enough room for an std::vector. Using a C-style array
249   // (with a unique_ptr wrapper for convenience) allows us to optimize for this
250   // specific case by packing the array size into only 6 bits (it is highly
251   // unlikely that any debug value will need 64+ locations).
252   std::unique_ptr<unsigned[]> LocNos;
253   uint8_t LocNoCount : 6;
254   bool WasIndirect : 1;
255   bool WasList : 1;
256   const DIExpression *Expression = nullptr;
257 };
258 } // namespace
259 
260 /// Map of where a user value is live to that value.
261 using LocMap = IntervalMap<SlotIndex, DbgVariableValue, 4>;
262 
263 /// Map of stack slot offsets for spilled locations.
264 /// Non-spilled locations are not added to the map.
265 using SpillOffsetMap = DenseMap<unsigned, unsigned>;
266 
267 /// Cache to save the location where it can be used as the starting
268 /// position as input for calling MachineBasicBlock::SkipPHIsLabelsAndDebug.
269 /// This is to prevent MachineBasicBlock::SkipPHIsLabelsAndDebug from
270 /// repeatedly searching the same set of PHIs/Labels/Debug instructions
271 /// if it is called many times for the same block.
272 using BlockSkipInstsMap =
273     DenseMap<MachineBasicBlock *, MachineBasicBlock::iterator>;
274 
275 namespace {
276 
277 class LDVImpl;
278 
279 /// A user value is a part of a debug info user variable.
280 ///
281 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
282 /// holds part of a user variable. The part is identified by a byte offset.
283 ///
284 /// UserValues are grouped into equivalence classes for easier searching. Two
285 /// user values are related if they are held by the same virtual register. The
286 /// equivalence class is the transitive closure of that relation.
287 class UserValue {
288   const DILocalVariable *Variable; ///< The debug info variable we are part of.
289   /// The part of the variable we describe.
290   const std::optional<DIExpression::FragmentInfo> Fragment;
291   DebugLoc dl;            ///< The debug location for the variable. This is
292                           ///< used by dwarf writer to find lexical scope.
293   UserValue *leader;      ///< Equivalence class leader.
294   UserValue *next = nullptr; ///< Next value in equivalence class, or null.
295 
296   /// Numbered locations referenced by locmap.
297   SmallVector<MachineOperand, 4> locations;
298 
299   /// Map of slot indices where this value is live.
300   LocMap locInts;
301 
302   /// Set of interval start indexes that have been trimmed to the
303   /// lexical scope.
304   SmallSet<SlotIndex, 2> trimmedDefs;
305 
306   /// Insert a DBG_VALUE into MBB at Idx for DbgValue.
307   void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
308                         SlotIndex StopIdx, DbgVariableValue DbgValue,
309                         ArrayRef<bool> LocSpills,
310                         ArrayRef<unsigned> SpillOffsets, LiveIntervals &LIS,
311                         const TargetInstrInfo &TII,
312                         const TargetRegisterInfo &TRI,
313                         BlockSkipInstsMap &BBSkipInstsMap);
314 
315   /// Replace OldLocNo ranges with NewRegs ranges where NewRegs
316   /// is live. Returns true if any changes were made.
317   bool splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs,
318                      LiveIntervals &LIS);
319 
320 public:
321   /// Create a new UserValue.
322   UserValue(const DILocalVariable *var,
323             std::optional<DIExpression::FragmentInfo> Fragment, DebugLoc L,
324             LocMap::Allocator &alloc)
325       : Variable(var), Fragment(Fragment), dl(std::move(L)), leader(this),
326         locInts(alloc) {}
327 
328   /// Get the leader of this value's equivalence class.
329   UserValue *getLeader() {
330     UserValue *l = leader;
331     while (l != l->leader)
332       l = l->leader;
333     return leader = l;
334   }
335 
336   /// Return the next UserValue in the equivalence class.
337   UserValue *getNext() const { return next; }
338 
339   /// Merge equivalence classes.
340   static UserValue *merge(UserValue *L1, UserValue *L2) {
341     L2 = L2->getLeader();
342     if (!L1)
343       return L2;
344     L1 = L1->getLeader();
345     if (L1 == L2)
346       return L1;
347     // Splice L2 before L1's members.
348     UserValue *End = L2;
349     while (End->next) {
350       End->leader = L1;
351       End = End->next;
352     }
353     End->leader = L1;
354     End->next = L1->next;
355     L1->next = L2;
356     return L1;
357   }
358 
359   /// Return the location number that matches Loc.
360   ///
361   /// For undef values we always return location number UndefLocNo without
362   /// inserting anything in locations. Since locations is a vector and the
363   /// location number is the position in the vector and UndefLocNo is ~0,
364   /// we would need a very big vector to put the value at the right position.
365   unsigned getLocationNo(const MachineOperand &LocMO) {
366     if (LocMO.isReg()) {
367       if (LocMO.getReg() == 0)
368         return UndefLocNo;
369       // For register locations we dont care about use/def and other flags.
370       for (unsigned i = 0, e = locations.size(); i != e; ++i)
371         if (locations[i].isReg() &&
372             locations[i].getReg() == LocMO.getReg() &&
373             locations[i].getSubReg() == LocMO.getSubReg())
374           return i;
375     } else
376       for (unsigned i = 0, e = locations.size(); i != e; ++i)
377         if (LocMO.isIdenticalTo(locations[i]))
378           return i;
379     locations.push_back(LocMO);
380     // We are storing a MachineOperand outside a MachineInstr.
381     locations.back().clearParent();
382     // Don't store def operands.
383     if (locations.back().isReg()) {
384       if (locations.back().isDef())
385         locations.back().setIsDead(false);
386       locations.back().setIsUse();
387     }
388     return locations.size() - 1;
389   }
390 
391   /// Remove (recycle) a location number. If \p LocNo still is used by the
392   /// locInts nothing is done.
393   void removeLocationIfUnused(unsigned LocNo) {
394     // Bail out if LocNo still is used.
395     for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
396       const DbgVariableValue &DbgValue = I.value();
397       if (DbgValue.containsLocNo(LocNo))
398         return;
399     }
400     // Remove the entry in the locations vector, and adjust all references to
401     // location numbers above the removed entry.
402     locations.erase(locations.begin() + LocNo);
403     for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
404       const DbgVariableValue &DbgValue = I.value();
405       if (DbgValue.hasLocNoGreaterThan(LocNo))
406         I.setValueUnchecked(DbgValue.decrementLocNosAfterPivot(LocNo));
407     }
408   }
409 
410   /// Ensure that all virtual register locations are mapped.
411   void mapVirtRegs(LDVImpl *LDV);
412 
413   /// Add a definition point to this user value.
414   void addDef(SlotIndex Idx, ArrayRef<MachineOperand> LocMOs, bool IsIndirect,
415               bool IsList, const DIExpression &Expr) {
416     SmallVector<unsigned> Locs;
417     for (const MachineOperand &Op : LocMOs)
418       Locs.push_back(getLocationNo(Op));
419     DbgVariableValue DbgValue(Locs, IsIndirect, IsList, Expr);
420     // Add a singular (Idx,Idx) -> value mapping.
421     LocMap::iterator I = locInts.find(Idx);
422     if (!I.valid() || I.start() != Idx)
423       I.insert(Idx, Idx.getNextSlot(), std::move(DbgValue));
424     else
425       // A later DBG_VALUE at the same SlotIndex overrides the old location.
426       I.setValue(std::move(DbgValue));
427   }
428 
429   /// Extend the current definition as far as possible down.
430   ///
431   /// Stop when meeting an existing def or when leaving the live
432   /// range of VNI. End points where VNI is no longer live are added to Kills.
433   ///
434   /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a
435   /// data-flow analysis to propagate them beyond basic block boundaries.
436   ///
437   /// \param Idx Starting point for the definition.
438   /// \param DbgValue value to propagate.
439   /// \param LiveIntervalInfo For each location number key in this map,
440   /// restricts liveness to where the LiveRange has the value equal to the\
441   /// VNInfo.
442   /// \param [out] Kills Append end points of VNI's live range to Kills.
443   /// \param LIS Live intervals analysis.
444   void
445   extendDef(SlotIndex Idx, DbgVariableValue DbgValue,
446             SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>>
447                 &LiveIntervalInfo,
448             std::optional<std::pair<SlotIndex, SmallVector<unsigned>>> &Kills,
449             LiveIntervals &LIS);
450 
451   /// The value in LI may be copies to other registers. Determine if
452   /// any of the copies are available at the kill points, and add defs if
453   /// possible.
454   ///
455   /// \param DbgValue Location number of LI->reg, and DIExpression.
456   /// \param LocIntervals Scan for copies of the value for each location in the
457   /// corresponding LiveInterval->reg.
458   /// \param KilledAt The point where the range of DbgValue could be extended.
459   /// \param [in,out] NewDefs Append (Idx, DbgValue) of inserted defs here.
460   void addDefsFromCopies(
461       DbgVariableValue DbgValue,
462       SmallVectorImpl<std::pair<unsigned, LiveInterval *>> &LocIntervals,
463       SlotIndex KilledAt,
464       SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs,
465       MachineRegisterInfo &MRI, LiveIntervals &LIS);
466 
467   /// Compute the live intervals of all locations after collecting all their
468   /// def points.
469   void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
470                         LiveIntervals &LIS, LexicalScopes &LS);
471 
472   /// Replace OldReg ranges with NewRegs ranges where NewRegs is
473   /// live. Returns true if any changes were made.
474   bool splitRegister(Register OldReg, ArrayRef<Register> NewRegs,
475                      LiveIntervals &LIS);
476 
477   /// Rewrite virtual register locations according to the provided virtual
478   /// register map. Record the stack slot offsets for the locations that
479   /// were spilled.
480   void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
481                         const TargetInstrInfo &TII,
482                         const TargetRegisterInfo &TRI,
483                         SpillOffsetMap &SpillOffsets);
484 
485   /// Recreate DBG_VALUE instruction from data structures.
486   void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
487                        const TargetInstrInfo &TII,
488                        const TargetRegisterInfo &TRI,
489                        const SpillOffsetMap &SpillOffsets,
490                        BlockSkipInstsMap &BBSkipInstsMap);
491 
492   /// Return DebugLoc of this UserValue.
493   const DebugLoc &getDebugLoc() { return dl; }
494 
495   void print(raw_ostream &, const TargetRegisterInfo *);
496 };
497 
498 /// A user label is a part of a debug info user label.
499 class UserLabel {
500   const DILabel *Label; ///< The debug info label we are part of.
501   DebugLoc dl;          ///< The debug location for the label. This is
502                         ///< used by dwarf writer to find lexical scope.
503   SlotIndex loc;        ///< Slot used by the debug label.
504 
505   /// Insert a DBG_LABEL into MBB at Idx.
506   void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx,
507                         LiveIntervals &LIS, const TargetInstrInfo &TII,
508                         BlockSkipInstsMap &BBSkipInstsMap);
509 
510 public:
511   /// Create a new UserLabel.
512   UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx)
513       : Label(label), dl(std::move(L)), loc(Idx) {}
514 
515   /// Does this UserLabel match the parameters?
516   bool matches(const DILabel *L, const DILocation *IA,
517              const SlotIndex Index) const {
518     return Label == L && dl->getInlinedAt() == IA && loc == Index;
519   }
520 
521   /// Recreate DBG_LABEL instruction from data structures.
522   void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII,
523                       BlockSkipInstsMap &BBSkipInstsMap);
524 
525   /// Return DebugLoc of this UserLabel.
526   const DebugLoc &getDebugLoc() { return dl; }
527 
528   void print(raw_ostream &, const TargetRegisterInfo *);
529 };
530 
531 /// Implementation of the LiveDebugVariables pass.
532 class LDVImpl {
533   LiveDebugVariables &pass;
534   LocMap::Allocator allocator;
535   MachineFunction *MF = nullptr;
536   LiveIntervals *LIS;
537   const TargetRegisterInfo *TRI;
538 
539   /// Position and VReg of a PHI instruction during register allocation.
540   struct PHIValPos {
541     SlotIndex SI;    /// Slot where this PHI occurs.
542     Register Reg;    /// VReg this PHI occurs in.
543     unsigned SubReg; /// Qualifiying subregister for Reg.
544   };
545 
546   /// Map from debug instruction number to PHI position during allocation.
547   std::map<unsigned, PHIValPos> PHIValToPos;
548   /// Index of, for each VReg, which debug instruction numbers and corresponding
549   /// PHIs are sensitive to splitting. Each VReg may have multiple PHI defs,
550   /// at different positions.
551   DenseMap<Register, std::vector<unsigned>> RegToPHIIdx;
552 
553   /// Record for any debug instructions unlinked from their blocks during
554   /// regalloc. Stores the instr and it's location, so that they can be
555   /// re-inserted after regalloc is over.
556   struct InstrPos {
557     MachineInstr *MI;       ///< Debug instruction, unlinked from it's block.
558     SlotIndex Idx;          ///< Slot position where MI should be re-inserted.
559     MachineBasicBlock *MBB; ///< Block that MI was in.
560   };
561 
562   /// Collection of stored debug instructions, preserved until after regalloc.
563   SmallVector<InstrPos, 32> StashedDebugInstrs;
564 
565   /// Whether emitDebugValues is called.
566   bool EmitDone = false;
567 
568   /// Whether the machine function is modified during the pass.
569   bool ModifiedMF = false;
570 
571   /// All allocated UserValue instances.
572   SmallVector<std::unique_ptr<UserValue>, 8> userValues;
573 
574   /// All allocated UserLabel instances.
575   SmallVector<std::unique_ptr<UserLabel>, 2> userLabels;
576 
577   /// Map virtual register to eq class leader.
578   using VRMap = DenseMap<unsigned, UserValue *>;
579   VRMap virtRegToEqClass;
580 
581   /// Map to find existing UserValue instances.
582   using UVMap = DenseMap<DebugVariable, UserValue *>;
583   UVMap userVarMap;
584 
585   /// Find or create a UserValue.
586   UserValue *getUserValue(const DILocalVariable *Var,
587                           std::optional<DIExpression::FragmentInfo> Fragment,
588                           const DebugLoc &DL);
589 
590   /// Find the EC leader for VirtReg or null.
591   UserValue *lookupVirtReg(Register VirtReg);
592 
593   /// Add DBG_VALUE instruction to our maps.
594   ///
595   /// \param MI DBG_VALUE instruction
596   /// \param Idx Last valid SLotIndex before instruction.
597   ///
598   /// \returns True if the DBG_VALUE instruction should be deleted.
599   bool handleDebugValue(MachineInstr &MI, SlotIndex Idx);
600 
601   /// Track variable location debug instructions while using the instruction
602   /// referencing implementation. Such debug instructions do not need to be
603   /// updated during regalloc because they identify instructions rather than
604   /// register locations. However, they needs to be removed from the
605   /// MachineFunction during regalloc, then re-inserted later, to avoid
606   /// disrupting the allocator.
607   ///
608   /// \param MI Any DBG_VALUE / DBG_INSTR_REF / DBG_PHI instruction
609   /// \param Idx Last valid SlotIndex before instruction
610   ///
611   /// \returns Iterator to continue processing from after unlinking.
612   MachineBasicBlock::iterator handleDebugInstr(MachineInstr &MI, SlotIndex Idx);
613 
614   /// Add DBG_LABEL instruction to UserLabel.
615   ///
616   /// \param MI DBG_LABEL instruction
617   /// \param Idx Last valid SlotIndex before instruction.
618   ///
619   /// \returns True if the DBG_LABEL instruction should be deleted.
620   bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx);
621 
622   /// Collect and erase all DBG_VALUE instructions, adding a UserValue def
623   /// for each instruction.
624   ///
625   /// \param mf MachineFunction to be scanned.
626   /// \param InstrRef Whether to operate in instruction referencing mode. If
627   ///        true, most of LiveDebugVariables doesn't run.
628   ///
629   /// \returns True if any debug values were found.
630   bool collectDebugValues(MachineFunction &mf, bool InstrRef);
631 
632   /// Compute the live intervals of all user values after collecting all
633   /// their def points.
634   void computeIntervals();
635 
636 public:
637   LDVImpl(LiveDebugVariables *ps) : pass(*ps) {}
638 
639   bool runOnMachineFunction(MachineFunction &mf, bool InstrRef);
640 
641   /// Release all memory.
642   void clear() {
643     MF = nullptr;
644     PHIValToPos.clear();
645     RegToPHIIdx.clear();
646     StashedDebugInstrs.clear();
647     userValues.clear();
648     userLabels.clear();
649     virtRegToEqClass.clear();
650     userVarMap.clear();
651     // Make sure we call emitDebugValues if the machine function was modified.
652     assert((!ModifiedMF || EmitDone) &&
653            "Dbg values are not emitted in LDV");
654     EmitDone = false;
655     ModifiedMF = false;
656   }
657 
658   /// Map virtual register to an equivalence class.
659   void mapVirtReg(Register VirtReg, UserValue *EC);
660 
661   /// Replace any PHI referring to OldReg with its corresponding NewReg, if
662   /// present.
663   void splitPHIRegister(Register OldReg, ArrayRef<Register> NewRegs);
664 
665   /// Replace all references to OldReg with NewRegs.
666   void splitRegister(Register OldReg, ArrayRef<Register> NewRegs);
667 
668   /// Recreate DBG_VALUE instruction from data structures.
669   void emitDebugValues(VirtRegMap *VRM);
670 
671   void print(raw_ostream&);
672 };
673 
674 } // end anonymous namespace
675 
676 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
677 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS,
678                           const LLVMContext &Ctx) {
679   if (!DL)
680     return;
681 
682   auto *Scope = cast<DIScope>(DL.getScope());
683   // Omit the directory, because it's likely to be long and uninteresting.
684   CommentOS << Scope->getFilename();
685   CommentOS << ':' << DL.getLine();
686   if (DL.getCol() != 0)
687     CommentOS << ':' << DL.getCol();
688 
689   DebugLoc InlinedAtDL = DL.getInlinedAt();
690   if (!InlinedAtDL)
691     return;
692 
693   CommentOS << " @[ ";
694   printDebugLoc(InlinedAtDL, CommentOS, Ctx);
695   CommentOS << " ]";
696 }
697 
698 static void printExtendedName(raw_ostream &OS, const DINode *Node,
699                               const DILocation *DL) {
700   const LLVMContext &Ctx = Node->getContext();
701   StringRef Res;
702   unsigned Line = 0;
703   if (const auto *V = dyn_cast<const DILocalVariable>(Node)) {
704     Res = V->getName();
705     Line = V->getLine();
706   } else if (const auto *L = dyn_cast<const DILabel>(Node)) {
707     Res = L->getName();
708     Line = L->getLine();
709   }
710 
711   if (!Res.empty())
712     OS << Res << "," << Line;
713   auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr;
714   if (InlinedAt) {
715     if (DebugLoc InlinedAtDL = InlinedAt) {
716       OS << " @[";
717       printDebugLoc(InlinedAtDL, OS, Ctx);
718       OS << "]";
719     }
720   }
721 }
722 
723 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
724   OS << "!\"";
725   printExtendedName(OS, Variable, dl);
726 
727   OS << "\"\t";
728   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
729     OS << " [" << I.start() << ';' << I.stop() << "):";
730     if (I.value().isUndef())
731       OS << " undef";
732     else {
733       I.value().printLocNos(OS);
734       if (I.value().getWasIndirect())
735         OS << " ind";
736       else if (I.value().getWasList())
737         OS << " list";
738     }
739   }
740   for (unsigned i = 0, e = locations.size(); i != e; ++i) {
741     OS << " Loc" << i << '=';
742     locations[i].print(OS, TRI);
743   }
744   OS << '\n';
745 }
746 
747 void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
748   OS << "!\"";
749   printExtendedName(OS, Label, dl);
750 
751   OS << "\"\t";
752   OS << loc;
753   OS << '\n';
754 }
755 
756 void LDVImpl::print(raw_ostream &OS) {
757   OS << "********** DEBUG VARIABLES **********\n";
758   for (auto &userValue : userValues)
759     userValue->print(OS, TRI);
760   OS << "********** DEBUG LABELS **********\n";
761   for (auto &userLabel : userLabels)
762     userLabel->print(OS, TRI);
763 }
764 #endif
765 
766 void UserValue::mapVirtRegs(LDVImpl *LDV) {
767   for (unsigned i = 0, e = locations.size(); i != e; ++i)
768     if (locations[i].isReg() &&
769         Register::isVirtualRegister(locations[i].getReg()))
770       LDV->mapVirtReg(locations[i].getReg(), this);
771 }
772 
773 UserValue *
774 LDVImpl::getUserValue(const DILocalVariable *Var,
775                       std::optional<DIExpression::FragmentInfo> Fragment,
776                       const DebugLoc &DL) {
777   // FIXME: Handle partially overlapping fragments. See
778   // https://reviews.llvm.org/D70121#1849741.
779   DebugVariable ID(Var, Fragment, DL->getInlinedAt());
780   UserValue *&UV = userVarMap[ID];
781   if (!UV) {
782     userValues.push_back(
783         std::make_unique<UserValue>(Var, Fragment, DL, allocator));
784     UV = userValues.back().get();
785   }
786   return UV;
787 }
788 
789 void LDVImpl::mapVirtReg(Register VirtReg, UserValue *EC) {
790   assert(Register::isVirtualRegister(VirtReg) && "Only map VirtRegs");
791   UserValue *&Leader = virtRegToEqClass[VirtReg];
792   Leader = UserValue::merge(Leader, EC);
793 }
794 
795 UserValue *LDVImpl::lookupVirtReg(Register VirtReg) {
796   if (UserValue *UV = virtRegToEqClass.lookup(VirtReg))
797     return UV->getLeader();
798   return nullptr;
799 }
800 
801 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) {
802   // DBG_VALUE loc, offset, variable, expr
803   // DBG_VALUE_LIST variable, expr, locs...
804   if (!MI.isDebugValue()) {
805     LLVM_DEBUG(dbgs() << "Can't handle non-DBG_VALUE*: " << MI);
806     return false;
807   }
808   if (!MI.getDebugVariableOp().isMetadata()) {
809     LLVM_DEBUG(dbgs() << "Can't handle DBG_VALUE* with invalid variable: "
810                       << MI);
811     return false;
812   }
813   if (MI.isNonListDebugValue() &&
814       (MI.getNumOperands() != 4 ||
815        !(MI.getDebugOffset().isImm() || MI.getDebugOffset().isReg()))) {
816     LLVM_DEBUG(dbgs() << "Can't handle malformed DBG_VALUE: " << MI);
817     return false;
818   }
819 
820   // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual
821   // register that hasn't been defined yet. If we do not remove those here, then
822   // the re-insertion of the DBG_VALUE instruction after register allocation
823   // will be incorrect.
824   bool Discard = false;
825   for (const MachineOperand &Op : MI.debug_operands()) {
826     if (Op.isReg() && Register::isVirtualRegister(Op.getReg())) {
827       const Register Reg = Op.getReg();
828       if (!LIS->hasInterval(Reg)) {
829         // The DBG_VALUE is described by a virtual register that does not have a
830         // live interval. Discard the DBG_VALUE.
831         Discard = true;
832         LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx
833                           << " " << MI);
834       } else {
835         // The DBG_VALUE is only valid if either Reg is live out from Idx, or
836         // Reg is defined dead at Idx (where Idx is the slot index for the
837         // instruction preceding the DBG_VALUE).
838         const LiveInterval &LI = LIS->getInterval(Reg);
839         LiveQueryResult LRQ = LI.Query(Idx);
840         if (!LRQ.valueOutOrDead()) {
841           // We have found a DBG_VALUE with the value in a virtual register that
842           // is not live. Discard the DBG_VALUE.
843           Discard = true;
844           LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx
845                             << " " << MI);
846         }
847       }
848     }
849   }
850 
851   // Get or create the UserValue for (variable,offset) here.
852   bool IsIndirect = MI.isDebugOffsetImm();
853   if (IsIndirect)
854     assert(MI.getDebugOffset().getImm() == 0 &&
855            "DBG_VALUE with nonzero offset");
856   bool IsList = MI.isDebugValueList();
857   const DILocalVariable *Var = MI.getDebugVariable();
858   const DIExpression *Expr = MI.getDebugExpression();
859   UserValue *UV = getUserValue(Var, Expr->getFragmentInfo(), MI.getDebugLoc());
860   if (!Discard)
861     UV->addDef(Idx,
862                ArrayRef<MachineOperand>(MI.debug_operands().begin(),
863                                         MI.debug_operands().end()),
864                IsIndirect, IsList, *Expr);
865   else {
866     MachineOperand MO = MachineOperand::CreateReg(0U, false);
867     MO.setIsDebug();
868     // We should still pass a list the same size as MI.debug_operands() even if
869     // all MOs are undef, so that DbgVariableValue can correctly adjust the
870     // expression while removing the duplicated undefs.
871     SmallVector<MachineOperand, 4> UndefMOs(MI.getNumDebugOperands(), MO);
872     UV->addDef(Idx, UndefMOs, false, IsList, *Expr);
873   }
874   return true;
875 }
876 
877 MachineBasicBlock::iterator LDVImpl::handleDebugInstr(MachineInstr &MI,
878                                                       SlotIndex Idx) {
879   assert(MI.isDebugValueLike() || MI.isDebugPHI());
880 
881   // In instruction referencing mode, there should be no DBG_VALUE instructions
882   // that refer to virtual registers. They might still refer to constants.
883   if (MI.isDebugValueLike())
884     assert(none_of(MI.debug_operands(),
885                    [](const MachineOperand &MO) {
886                      return MO.isReg() && MO.getReg().isVirtual();
887                    }) &&
888            "MIs should not refer to Virtual Registers in InstrRef mode.");
889 
890   // Unlink the instruction, store it in the debug instructions collection.
891   auto NextInst = std::next(MI.getIterator());
892   auto *MBB = MI.getParent();
893   MI.removeFromParent();
894   StashedDebugInstrs.push_back({&MI, Idx, MBB});
895   return NextInst;
896 }
897 
898 bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) {
899   // DBG_LABEL label
900   if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) {
901     LLVM_DEBUG(dbgs() << "Can't handle " << MI);
902     return false;
903   }
904 
905   // Get or create the UserLabel for label here.
906   const DILabel *Label = MI.getDebugLabel();
907   const DebugLoc &DL = MI.getDebugLoc();
908   bool Found = false;
909   for (auto const &L : userLabels) {
910     if (L->matches(Label, DL->getInlinedAt(), Idx)) {
911       Found = true;
912       break;
913     }
914   }
915   if (!Found)
916     userLabels.push_back(std::make_unique<UserLabel>(Label, DL, Idx));
917 
918   return true;
919 }
920 
921 bool LDVImpl::collectDebugValues(MachineFunction &mf, bool InstrRef) {
922   bool Changed = false;
923   for (MachineBasicBlock &MBB : mf) {
924     for (MachineBasicBlock::iterator MBBI = MBB.begin(), MBBE = MBB.end();
925          MBBI != MBBE;) {
926       // Use the first debug instruction in the sequence to get a SlotIndex
927       // for following consecutive debug instructions.
928       if (!MBBI->isDebugOrPseudoInstr()) {
929         ++MBBI;
930         continue;
931       }
932       // Debug instructions has no slot index. Use the previous
933       // non-debug instruction's SlotIndex as its SlotIndex.
934       SlotIndex Idx =
935           MBBI == MBB.begin()
936               ? LIS->getMBBStartIdx(&MBB)
937               : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot();
938       // Handle consecutive debug instructions with the same slot index.
939       do {
940         // In instruction referencing mode, pass each instr to handleDebugInstr
941         // to be unlinked. Ignore DBG_VALUE_LISTs -- they refer to vregs, and
942         // need to go through the normal live interval splitting process.
943         if (InstrRef && (MBBI->isNonListDebugValue() || MBBI->isDebugPHI() ||
944                          MBBI->isDebugRef())) {
945           MBBI = handleDebugInstr(*MBBI, Idx);
946           Changed = true;
947         // In normal debug mode, use the dedicated DBG_VALUE / DBG_LABEL handler
948         // to track things through register allocation, and erase the instr.
949         } else if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) ||
950                    (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) {
951           MBBI = MBB.erase(MBBI);
952           Changed = true;
953         } else
954           ++MBBI;
955       } while (MBBI != MBBE && MBBI->isDebugOrPseudoInstr());
956     }
957   }
958   return Changed;
959 }
960 
961 void UserValue::extendDef(
962     SlotIndex Idx, DbgVariableValue DbgValue,
963     SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>>
964         &LiveIntervalInfo,
965     std::optional<std::pair<SlotIndex, SmallVector<unsigned>>> &Kills,
966     LiveIntervals &LIS) {
967   SlotIndex Start = Idx;
968   MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
969   SlotIndex Stop = LIS.getMBBEndIdx(MBB);
970   LocMap::iterator I = locInts.find(Start);
971 
972   // Limit to the intersection of the VNIs' live ranges.
973   for (auto &LII : LiveIntervalInfo) {
974     LiveRange *LR = LII.second.first;
975     assert(LR && LII.second.second && "Missing range info for Idx.");
976     LiveInterval::Segment *Segment = LR->getSegmentContaining(Start);
977     assert(Segment && Segment->valno == LII.second.second &&
978            "Invalid VNInfo for Idx given?");
979     if (Segment->end < Stop) {
980       Stop = Segment->end;
981       Kills = {Stop, {LII.first}};
982     } else if (Segment->end == Stop && Kills) {
983       // If multiple locations end at the same place, track all of them in
984       // Kills.
985       Kills->second.push_back(LII.first);
986     }
987   }
988 
989   // There could already be a short def at Start.
990   if (I.valid() && I.start() <= Start) {
991     // Stop when meeting a different location or an already extended interval.
992     Start = Start.getNextSlot();
993     if (I.value() != DbgValue || I.stop() != Start) {
994       // Clear `Kills`, as we have a new def available.
995       Kills = std::nullopt;
996       return;
997     }
998     // This is a one-slot placeholder. Just skip it.
999     ++I;
1000   }
1001 
1002   // Limited by the next def.
1003   if (I.valid() && I.start() < Stop) {
1004     Stop = I.start();
1005     // Clear `Kills`, as we have a new def available.
1006     Kills = std::nullopt;
1007   }
1008 
1009   if (Start < Stop) {
1010     DbgVariableValue ExtDbgValue(DbgValue);
1011     I.insert(Start, Stop, std::move(ExtDbgValue));
1012   }
1013 }
1014 
1015 void UserValue::addDefsFromCopies(
1016     DbgVariableValue DbgValue,
1017     SmallVectorImpl<std::pair<unsigned, LiveInterval *>> &LocIntervals,
1018     SlotIndex KilledAt,
1019     SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs,
1020     MachineRegisterInfo &MRI, LiveIntervals &LIS) {
1021   // Don't track copies from physregs, there are too many uses.
1022   if (any_of(LocIntervals, [](auto LocI) {
1023         return !Register::isVirtualRegister(LocI.second->reg());
1024       }))
1025     return;
1026 
1027   // Collect all the (vreg, valno) pairs that are copies of LI.
1028   SmallDenseMap<unsigned,
1029                 SmallVector<std::pair<LiveInterval *, const VNInfo *>, 4>>
1030       CopyValues;
1031   for (auto &LocInterval : LocIntervals) {
1032     unsigned LocNo = LocInterval.first;
1033     LiveInterval *LI = LocInterval.second;
1034     for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg())) {
1035       MachineInstr *MI = MO.getParent();
1036       // Copies of the full value.
1037       if (MO.getSubReg() || !MI->isCopy())
1038         continue;
1039       Register DstReg = MI->getOperand(0).getReg();
1040 
1041       // Don't follow copies to physregs. These are usually setting up call
1042       // arguments, and the argument registers are always call clobbered. We are
1043       // better off in the source register which could be a callee-saved
1044       // register, or it could be spilled.
1045       if (!Register::isVirtualRegister(DstReg))
1046         continue;
1047 
1048       // Is the value extended to reach this copy? If not, another def may be
1049       // blocking it, or we are looking at a wrong value of LI.
1050       SlotIndex Idx = LIS.getInstructionIndex(*MI);
1051       LocMap::iterator I = locInts.find(Idx.getRegSlot(true));
1052       if (!I.valid() || I.value() != DbgValue)
1053         continue;
1054 
1055       if (!LIS.hasInterval(DstReg))
1056         continue;
1057       LiveInterval *DstLI = &LIS.getInterval(DstReg);
1058       const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot());
1059       assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value");
1060       CopyValues[LocNo].push_back(std::make_pair(DstLI, DstVNI));
1061     }
1062   }
1063 
1064   if (CopyValues.empty())
1065     return;
1066 
1067 #if !defined(NDEBUG)
1068   for (auto &LocInterval : LocIntervals)
1069     LLVM_DEBUG(dbgs() << "Got " << CopyValues[LocInterval.first].size()
1070                       << " copies of " << *LocInterval.second << '\n');
1071 #endif
1072 
1073   // Try to add defs of the copied values for the kill point. Check that there
1074   // isn't already a def at Idx.
1075   LocMap::iterator I = locInts.find(KilledAt);
1076   if (I.valid() && I.start() <= KilledAt)
1077     return;
1078   DbgVariableValue NewValue(DbgValue);
1079   for (auto &LocInterval : LocIntervals) {
1080     unsigned LocNo = LocInterval.first;
1081     bool FoundCopy = false;
1082     for (auto &LIAndVNI : CopyValues[LocNo]) {
1083       LiveInterval *DstLI = LIAndVNI.first;
1084       const VNInfo *DstVNI = LIAndVNI.second;
1085       if (DstLI->getVNInfoAt(KilledAt) != DstVNI)
1086         continue;
1087       LLVM_DEBUG(dbgs() << "Kill at " << KilledAt << " covered by valno #"
1088                         << DstVNI->id << " in " << *DstLI << '\n');
1089       MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def);
1090       assert(CopyMI && CopyMI->isCopy() && "Bad copy value");
1091       unsigned NewLocNo = getLocationNo(CopyMI->getOperand(0));
1092       NewValue = NewValue.changeLocNo(LocNo, NewLocNo);
1093       FoundCopy = true;
1094       break;
1095     }
1096     // If there are any killed locations we can't find a copy for, we can't
1097     // extend the variable value.
1098     if (!FoundCopy)
1099       return;
1100   }
1101   I.insert(KilledAt, KilledAt.getNextSlot(), NewValue);
1102   NewDefs.push_back(std::make_pair(KilledAt, NewValue));
1103 }
1104 
1105 void UserValue::computeIntervals(MachineRegisterInfo &MRI,
1106                                  const TargetRegisterInfo &TRI,
1107                                  LiveIntervals &LIS, LexicalScopes &LS) {
1108   SmallVector<std::pair<SlotIndex, DbgVariableValue>, 16> Defs;
1109 
1110   // Collect all defs to be extended (Skipping undefs).
1111   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I)
1112     if (!I.value().isUndef())
1113       Defs.push_back(std::make_pair(I.start(), I.value()));
1114 
1115   // Extend all defs, and possibly add new ones along the way.
1116   for (unsigned i = 0; i != Defs.size(); ++i) {
1117     SlotIndex Idx = Defs[i].first;
1118     DbgVariableValue DbgValue = Defs[i].second;
1119     SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> LIs;
1120     SmallVector<const VNInfo *, 4> VNIs;
1121     bool ShouldExtendDef = false;
1122     for (unsigned LocNo : DbgValue.loc_nos()) {
1123       const MachineOperand &LocMO = locations[LocNo];
1124       if (!LocMO.isReg() || !Register::isVirtualRegister(LocMO.getReg())) {
1125         ShouldExtendDef |= !LocMO.isReg();
1126         continue;
1127       }
1128       ShouldExtendDef = true;
1129       LiveInterval *LI = nullptr;
1130       const VNInfo *VNI = nullptr;
1131       if (LIS.hasInterval(LocMO.getReg())) {
1132         LI = &LIS.getInterval(LocMO.getReg());
1133         VNI = LI->getVNInfoAt(Idx);
1134       }
1135       if (LI && VNI)
1136         LIs[LocNo] = {LI, VNI};
1137     }
1138     if (ShouldExtendDef) {
1139       std::optional<std::pair<SlotIndex, SmallVector<unsigned>>> Kills;
1140       extendDef(Idx, DbgValue, LIs, Kills, LIS);
1141 
1142       if (Kills) {
1143         SmallVector<std::pair<unsigned, LiveInterval *>, 2> KilledLocIntervals;
1144         bool AnySubreg = false;
1145         for (unsigned LocNo : Kills->second) {
1146           const MachineOperand &LocMO = this->locations[LocNo];
1147           if (LocMO.getSubReg()) {
1148             AnySubreg = true;
1149             break;
1150           }
1151           LiveInterval *LI = &LIS.getInterval(LocMO.getReg());
1152           KilledLocIntervals.push_back({LocNo, LI});
1153         }
1154 
1155         // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that
1156         // if the original location for example is %vreg0:sub_hi, and we find a
1157         // full register copy in addDefsFromCopies (at the moment it only
1158         // handles full register copies), then we must add the sub1 sub-register
1159         // index to the new location. However, that is only possible if the new
1160         // virtual register is of the same regclass (or if there is an
1161         // equivalent sub-register in that regclass). For now, simply skip
1162         // handling copies if a sub-register is involved.
1163         if (!AnySubreg)
1164           addDefsFromCopies(DbgValue, KilledLocIntervals, Kills->first, Defs,
1165                             MRI, LIS);
1166       }
1167     }
1168 
1169     // For physregs, we only mark the start slot idx. DwarfDebug will see it
1170     // as if the DBG_VALUE is valid up until the end of the basic block, or
1171     // the next def of the physical register. So we do not need to extend the
1172     // range. It might actually happen that the DBG_VALUE is the last use of
1173     // the physical register (e.g. if this is an unused input argument to a
1174     // function).
1175   }
1176 
1177   // The computed intervals may extend beyond the range of the debug
1178   // location's lexical scope. In this case, splitting of an interval
1179   // can result in an interval outside of the scope being created,
1180   // causing extra unnecessary DBG_VALUEs to be emitted. To prevent
1181   // this, trim the intervals to the lexical scope in the case of inlined
1182   // variables, since heavy inlining may cause production of dramatically big
1183   // number of DBG_VALUEs to be generated.
1184   if (!dl.getInlinedAt())
1185     return;
1186 
1187   LexicalScope *Scope = LS.findLexicalScope(dl);
1188   if (!Scope)
1189     return;
1190 
1191   SlotIndex PrevEnd;
1192   LocMap::iterator I = locInts.begin();
1193 
1194   // Iterate over the lexical scope ranges. Each time round the loop
1195   // we check the intervals for overlap with the end of the previous
1196   // range and the start of the next. The first range is handled as
1197   // a special case where there is no PrevEnd.
1198   for (const InsnRange &Range : Scope->getRanges()) {
1199     SlotIndex RStart = LIS.getInstructionIndex(*Range.first);
1200     SlotIndex REnd = LIS.getInstructionIndex(*Range.second);
1201 
1202     // Variable locations at the first instruction of a block should be
1203     // based on the block's SlotIndex, not the first instruction's index.
1204     if (Range.first == Range.first->getParent()->begin())
1205       RStart = LIS.getSlotIndexes()->getIndexBefore(*Range.first);
1206 
1207     // At the start of each iteration I has been advanced so that
1208     // I.stop() >= PrevEnd. Check for overlap.
1209     if (PrevEnd && I.start() < PrevEnd) {
1210       SlotIndex IStop = I.stop();
1211       DbgVariableValue DbgValue = I.value();
1212 
1213       // Stop overlaps previous end - trim the end of the interval to
1214       // the scope range.
1215       I.setStopUnchecked(PrevEnd);
1216       ++I;
1217 
1218       // If the interval also overlaps the start of the "next" (i.e.
1219       // current) range create a new interval for the remainder (which
1220       // may be further trimmed).
1221       if (RStart < IStop)
1222         I.insert(RStart, IStop, DbgValue);
1223     }
1224 
1225     // Advance I so that I.stop() >= RStart, and check for overlap.
1226     I.advanceTo(RStart);
1227     if (!I.valid())
1228       return;
1229 
1230     if (I.start() < RStart) {
1231       // Interval start overlaps range - trim to the scope range.
1232       I.setStartUnchecked(RStart);
1233       // Remember that this interval was trimmed.
1234       trimmedDefs.insert(RStart);
1235     }
1236 
1237     // The end of a lexical scope range is the last instruction in the
1238     // range. To convert to an interval we need the index of the
1239     // instruction after it.
1240     REnd = REnd.getNextIndex();
1241 
1242     // Advance I to first interval outside current range.
1243     I.advanceTo(REnd);
1244     if (!I.valid())
1245       return;
1246 
1247     PrevEnd = REnd;
1248   }
1249 
1250   // Check for overlap with end of final range.
1251   if (PrevEnd && I.start() < PrevEnd)
1252     I.setStopUnchecked(PrevEnd);
1253 }
1254 
1255 void LDVImpl::computeIntervals() {
1256   LexicalScopes LS;
1257   LS.initialize(*MF);
1258 
1259   for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
1260     userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS);
1261     userValues[i]->mapVirtRegs(this);
1262   }
1263 }
1264 
1265 bool LDVImpl::runOnMachineFunction(MachineFunction &mf, bool InstrRef) {
1266   clear();
1267   MF = &mf;
1268   LIS = &pass.getAnalysis<LiveIntervals>();
1269   TRI = mf.getSubtarget().getRegisterInfo();
1270   LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
1271                     << mf.getName() << " **********\n");
1272 
1273   bool Changed = collectDebugValues(mf, InstrRef);
1274   computeIntervals();
1275   LLVM_DEBUG(print(dbgs()));
1276 
1277   // Collect the set of VReg / SlotIndexs where PHIs occur; index the sensitive
1278   // VRegs too, for when we're notified of a range split.
1279   SlotIndexes *Slots = LIS->getSlotIndexes();
1280   for (const auto &PHIIt : MF->DebugPHIPositions) {
1281     const MachineFunction::DebugPHIRegallocPos &Position = PHIIt.second;
1282     MachineBasicBlock *MBB = Position.MBB;
1283     Register Reg = Position.Reg;
1284     unsigned SubReg = Position.SubReg;
1285     SlotIndex SI = Slots->getMBBStartIdx(MBB);
1286     PHIValPos VP = {SI, Reg, SubReg};
1287     PHIValToPos.insert(std::make_pair(PHIIt.first, VP));
1288     RegToPHIIdx[Reg].push_back(PHIIt.first);
1289   }
1290 
1291   ModifiedMF = Changed;
1292   return Changed;
1293 }
1294 
1295 static void removeDebugInstrs(MachineFunction &mf) {
1296   for (MachineBasicBlock &MBB : mf) {
1297     for (MachineInstr &MI : llvm::make_early_inc_range(MBB))
1298       if (MI.isDebugInstr())
1299         MBB.erase(&MI);
1300   }
1301 }
1302 
1303 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
1304   if (!EnableLDV)
1305     return false;
1306   if (!mf.getFunction().getSubprogram()) {
1307     removeDebugInstrs(mf);
1308     return false;
1309   }
1310 
1311   // Have we been asked to track variable locations using instruction
1312   // referencing?
1313   bool InstrRef = mf.useDebugInstrRef();
1314 
1315   if (!pImpl)
1316     pImpl = new LDVImpl(this);
1317   return static_cast<LDVImpl *>(pImpl)->runOnMachineFunction(mf, InstrRef);
1318 }
1319 
1320 void LiveDebugVariables::releaseMemory() {
1321   if (pImpl)
1322     static_cast<LDVImpl*>(pImpl)->clear();
1323 }
1324 
1325 LiveDebugVariables::~LiveDebugVariables() {
1326   if (pImpl)
1327     delete static_cast<LDVImpl*>(pImpl);
1328 }
1329 
1330 //===----------------------------------------------------------------------===//
1331 //                           Live Range Splitting
1332 //===----------------------------------------------------------------------===//
1333 
1334 bool
1335 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs,
1336                          LiveIntervals& LIS) {
1337   LLVM_DEBUG({
1338     dbgs() << "Splitting Loc" << OldLocNo << '\t';
1339     print(dbgs(), nullptr);
1340   });
1341   bool DidChange = false;
1342   LocMap::iterator LocMapI;
1343   LocMapI.setMap(locInts);
1344   for (Register NewReg : NewRegs) {
1345     LiveInterval *LI = &LIS.getInterval(NewReg);
1346     if (LI->empty())
1347       continue;
1348 
1349     // Don't allocate the new LocNo until it is needed.
1350     unsigned NewLocNo = UndefLocNo;
1351 
1352     // Iterate over the overlaps between locInts and LI.
1353     LocMapI.find(LI->beginIndex());
1354     if (!LocMapI.valid())
1355       continue;
1356     LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start());
1357     LiveInterval::iterator LIE = LI->end();
1358     while (LocMapI.valid() && LII != LIE) {
1359       // At this point, we know that LocMapI.stop() > LII->start.
1360       LII = LI->advanceTo(LII, LocMapI.start());
1361       if (LII == LIE)
1362         break;
1363 
1364       // Now LII->end > LocMapI.start(). Do we have an overlap?
1365       if (LocMapI.value().containsLocNo(OldLocNo) &&
1366           LII->start < LocMapI.stop()) {
1367         // Overlapping correct location. Allocate NewLocNo now.
1368         if (NewLocNo == UndefLocNo) {
1369           MachineOperand MO = MachineOperand::CreateReg(LI->reg(), false);
1370           MO.setSubReg(locations[OldLocNo].getSubReg());
1371           NewLocNo = getLocationNo(MO);
1372           DidChange = true;
1373         }
1374 
1375         SlotIndex LStart = LocMapI.start();
1376         SlotIndex LStop = LocMapI.stop();
1377         DbgVariableValue OldDbgValue = LocMapI.value();
1378 
1379         // Trim LocMapI down to the LII overlap.
1380         if (LStart < LII->start)
1381           LocMapI.setStartUnchecked(LII->start);
1382         if (LStop > LII->end)
1383           LocMapI.setStopUnchecked(LII->end);
1384 
1385         // Change the value in the overlap. This may trigger coalescing.
1386         LocMapI.setValue(OldDbgValue.changeLocNo(OldLocNo, NewLocNo));
1387 
1388         // Re-insert any removed OldDbgValue ranges.
1389         if (LStart < LocMapI.start()) {
1390           LocMapI.insert(LStart, LocMapI.start(), OldDbgValue);
1391           ++LocMapI;
1392           assert(LocMapI.valid() && "Unexpected coalescing");
1393         }
1394         if (LStop > LocMapI.stop()) {
1395           ++LocMapI;
1396           LocMapI.insert(LII->end, LStop, OldDbgValue);
1397           --LocMapI;
1398         }
1399       }
1400 
1401       // Advance to the next overlap.
1402       if (LII->end < LocMapI.stop()) {
1403         if (++LII == LIE)
1404           break;
1405         LocMapI.advanceTo(LII->start);
1406       } else {
1407         ++LocMapI;
1408         if (!LocMapI.valid())
1409           break;
1410         LII = LI->advanceTo(LII, LocMapI.start());
1411       }
1412     }
1413   }
1414 
1415   // Finally, remove OldLocNo unless it is still used by some interval in the
1416   // locInts map. One case when OldLocNo still is in use is when the register
1417   // has been spilled. In such situations the spilled register is kept as a
1418   // location until rewriteLocations is called (VirtRegMap is mapping the old
1419   // register to the spill slot). So for a while we can have locations that map
1420   // to virtual registers that have been removed from both the MachineFunction
1421   // and from LiveIntervals.
1422   //
1423   // We may also just be using the location for a value with a different
1424   // expression.
1425   removeLocationIfUnused(OldLocNo);
1426 
1427   LLVM_DEBUG({
1428     dbgs() << "Split result: \t";
1429     print(dbgs(), nullptr);
1430   });
1431   return DidChange;
1432 }
1433 
1434 bool
1435 UserValue::splitRegister(Register OldReg, ArrayRef<Register> NewRegs,
1436                          LiveIntervals &LIS) {
1437   bool DidChange = false;
1438   // Split locations referring to OldReg. Iterate backwards so splitLocation can
1439   // safely erase unused locations.
1440   for (unsigned i = locations.size(); i ; --i) {
1441     unsigned LocNo = i-1;
1442     const MachineOperand *Loc = &locations[LocNo];
1443     if (!Loc->isReg() || Loc->getReg() != OldReg)
1444       continue;
1445     DidChange |= splitLocation(LocNo, NewRegs, LIS);
1446   }
1447   return DidChange;
1448 }
1449 
1450 void LDVImpl::splitPHIRegister(Register OldReg, ArrayRef<Register> NewRegs) {
1451   auto RegIt = RegToPHIIdx.find(OldReg);
1452   if (RegIt == RegToPHIIdx.end())
1453     return;
1454 
1455   std::vector<std::pair<Register, unsigned>> NewRegIdxes;
1456   // Iterate over all the debug instruction numbers affected by this split.
1457   for (unsigned InstrID : RegIt->second) {
1458     auto PHIIt = PHIValToPos.find(InstrID);
1459     assert(PHIIt != PHIValToPos.end());
1460     const SlotIndex &Slot = PHIIt->second.SI;
1461     assert(OldReg == PHIIt->second.Reg);
1462 
1463     // Find the new register that covers this position.
1464     for (auto NewReg : NewRegs) {
1465       const LiveInterval &LI = LIS->getInterval(NewReg);
1466       auto LII = LI.find(Slot);
1467       if (LII != LI.end() && LII->start <= Slot) {
1468         // This new register covers this PHI position, record this for indexing.
1469         NewRegIdxes.push_back(std::make_pair(NewReg, InstrID));
1470         // Record that this value lives in a different VReg now.
1471         PHIIt->second.Reg = NewReg;
1472         break;
1473       }
1474     }
1475 
1476     // If we do not find a new register covering this PHI, then register
1477     // allocation has dropped its location, for example because it's not live.
1478     // The old VReg will not be mapped to a physreg, and the instruction
1479     // number will have been optimized out.
1480   }
1481 
1482   // Re-create register index using the new register numbers.
1483   RegToPHIIdx.erase(RegIt);
1484   for (auto &RegAndInstr : NewRegIdxes)
1485     RegToPHIIdx[RegAndInstr.first].push_back(RegAndInstr.second);
1486 }
1487 
1488 void LDVImpl::splitRegister(Register OldReg, ArrayRef<Register> NewRegs) {
1489   // Consider whether this split range affects any PHI locations.
1490   splitPHIRegister(OldReg, NewRegs);
1491 
1492   // Check whether any intervals mapped by a DBG_VALUE were split and need
1493   // updating.
1494   bool DidChange = false;
1495   for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext())
1496     DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS);
1497 
1498   if (!DidChange)
1499     return;
1500 
1501   // Map all of the new virtual registers.
1502   UserValue *UV = lookupVirtReg(OldReg);
1503   for (Register NewReg : NewRegs)
1504     mapVirtReg(NewReg, UV);
1505 }
1506 
1507 void LiveDebugVariables::
1508 splitRegister(Register OldReg, ArrayRef<Register> NewRegs, LiveIntervals &LIS) {
1509   if (pImpl)
1510     static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs);
1511 }
1512 
1513 void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
1514                                  const TargetInstrInfo &TII,
1515                                  const TargetRegisterInfo &TRI,
1516                                  SpillOffsetMap &SpillOffsets) {
1517   // Build a set of new locations with new numbers so we can coalesce our
1518   // IntervalMap if two vreg intervals collapse to the same physical location.
1519   // Use MapVector instead of SetVector because MapVector::insert returns the
1520   // position of the previously or newly inserted element. The boolean value
1521   // tracks if the location was produced by a spill.
1522   // FIXME: This will be problematic if we ever support direct and indirect
1523   // frame index locations, i.e. expressing both variables in memory and
1524   // 'int x, *px = &x'. The "spilled" bit must become part of the location.
1525   MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations;
1526   SmallVector<unsigned, 4> LocNoMap(locations.size());
1527   for (unsigned I = 0, E = locations.size(); I != E; ++I) {
1528     bool Spilled = false;
1529     unsigned SpillOffset = 0;
1530     MachineOperand Loc = locations[I];
1531     // Only virtual registers are rewritten.
1532     if (Loc.isReg() && Loc.getReg() &&
1533         Register::isVirtualRegister(Loc.getReg())) {
1534       Register VirtReg = Loc.getReg();
1535       if (VRM.isAssignedReg(VirtReg) &&
1536           Register::isPhysicalRegister(VRM.getPhys(VirtReg))) {
1537         // This can create a %noreg operand in rare cases when the sub-register
1538         // index is no longer available. That means the user value is in a
1539         // non-existent sub-register, and %noreg is exactly what we want.
1540         Loc.substPhysReg(VRM.getPhys(VirtReg), TRI);
1541       } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) {
1542         // Retrieve the stack slot offset.
1543         unsigned SpillSize;
1544         const MachineRegisterInfo &MRI = MF.getRegInfo();
1545         const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg);
1546         bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize,
1547                                              SpillOffset, MF);
1548 
1549         // FIXME: Invalidate the location if the offset couldn't be calculated.
1550         (void)Success;
1551 
1552         Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg));
1553         Spilled = true;
1554       } else {
1555         Loc.setReg(0);
1556         Loc.setSubReg(0);
1557       }
1558     }
1559 
1560     // Insert this location if it doesn't already exist and record a mapping
1561     // from the old number to the new number.
1562     auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}});
1563     unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first);
1564     LocNoMap[I] = NewLocNo;
1565   }
1566 
1567   // Rewrite the locations and record the stack slot offsets for spills.
1568   locations.clear();
1569   SpillOffsets.clear();
1570   for (auto &Pair : NewLocations) {
1571     bool Spilled;
1572     unsigned SpillOffset;
1573     std::tie(Spilled, SpillOffset) = Pair.second;
1574     locations.push_back(Pair.first);
1575     if (Spilled) {
1576       unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair);
1577       SpillOffsets[NewLocNo] = SpillOffset;
1578     }
1579   }
1580 
1581   // Update the interval map, but only coalesce left, since intervals to the
1582   // right use the old location numbers. This should merge two contiguous
1583   // DBG_VALUE intervals with different vregs that were allocated to the same
1584   // physical register.
1585   for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
1586     I.setValueUnchecked(I.value().remapLocNos(LocNoMap));
1587     I.setStart(I.start());
1588   }
1589 }
1590 
1591 /// Find an iterator for inserting a DBG_VALUE instruction.
1592 static MachineBasicBlock::iterator
1593 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, LiveIntervals &LIS,
1594                    BlockSkipInstsMap &BBSkipInstsMap) {
1595   SlotIndex Start = LIS.getMBBStartIdx(MBB);
1596   Idx = Idx.getBaseIndex();
1597 
1598   // Try to find an insert location by going backwards from Idx.
1599   MachineInstr *MI;
1600   while (!(MI = LIS.getInstructionFromIndex(Idx))) {
1601     // We've reached the beginning of MBB.
1602     if (Idx == Start) {
1603       // Retrieve the last PHI/Label/Debug location found when calling
1604       // SkipPHIsLabelsAndDebug last time. Start searching from there.
1605       //
1606       // Note the iterator kept in BBSkipInstsMap is one step back based
1607       // on the iterator returned by SkipPHIsLabelsAndDebug last time.
1608       // One exception is when SkipPHIsLabelsAndDebug returns MBB->begin(),
1609       // BBSkipInstsMap won't save it. This is to consider the case that
1610       // new instructions may be inserted at the beginning of MBB after
1611       // last call of SkipPHIsLabelsAndDebug. If we save MBB->begin() in
1612       // BBSkipInstsMap, after new non-phi/non-label/non-debug instructions
1613       // are inserted at the beginning of the MBB, the iterator in
1614       // BBSkipInstsMap won't point to the beginning of the MBB anymore.
1615       // Therefore The next search in SkipPHIsLabelsAndDebug will skip those
1616       // newly added instructions and that is unwanted.
1617       MachineBasicBlock::iterator BeginIt;
1618       auto MapIt = BBSkipInstsMap.find(MBB);
1619       if (MapIt == BBSkipInstsMap.end())
1620         BeginIt = MBB->begin();
1621       else
1622         BeginIt = std::next(MapIt->second);
1623       auto I = MBB->SkipPHIsLabelsAndDebug(BeginIt);
1624       if (I != BeginIt)
1625         BBSkipInstsMap[MBB] = std::prev(I);
1626       return I;
1627     }
1628     Idx = Idx.getPrevIndex();
1629   }
1630 
1631   // Don't insert anything after the first terminator, though.
1632   return MI->isTerminator() ? MBB->getFirstTerminator() :
1633                               std::next(MachineBasicBlock::iterator(MI));
1634 }
1635 
1636 /// Find an iterator for inserting the next DBG_VALUE instruction
1637 /// (or end if no more insert locations found).
1638 static MachineBasicBlock::iterator
1639 findNextInsertLocation(MachineBasicBlock *MBB, MachineBasicBlock::iterator I,
1640                        SlotIndex StopIdx, ArrayRef<MachineOperand> LocMOs,
1641                        LiveIntervals &LIS, const TargetRegisterInfo &TRI) {
1642   SmallVector<Register, 4> Regs;
1643   for (const MachineOperand &LocMO : LocMOs)
1644     if (LocMO.isReg())
1645       Regs.push_back(LocMO.getReg());
1646   if (Regs.empty())
1647     return MBB->instr_end();
1648 
1649   // Find the next instruction in the MBB that define the register Reg.
1650   while (I != MBB->end() && !I->isTerminator()) {
1651     if (!LIS.isNotInMIMap(*I) &&
1652         SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I)))
1653       break;
1654     if (any_of(Regs, [&I, &TRI](Register &Reg) {
1655           return I->definesRegister(Reg, &TRI);
1656         }))
1657       // The insert location is directly after the instruction/bundle.
1658       return std::next(I);
1659     ++I;
1660   }
1661   return MBB->end();
1662 }
1663 
1664 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
1665                                  SlotIndex StopIdx, DbgVariableValue DbgValue,
1666                                  ArrayRef<bool> LocSpills,
1667                                  ArrayRef<unsigned> SpillOffsets,
1668                                  LiveIntervals &LIS, const TargetInstrInfo &TII,
1669                                  const TargetRegisterInfo &TRI,
1670                                  BlockSkipInstsMap &BBSkipInstsMap) {
1671   SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB);
1672   // Only search within the current MBB.
1673   StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx;
1674   MachineBasicBlock::iterator I =
1675       findInsertLocation(MBB, StartIdx, LIS, BBSkipInstsMap);
1676   // Undef values don't exist in locations so create new "noreg" register MOs
1677   // for them. See getLocationNo().
1678   SmallVector<MachineOperand, 8> MOs;
1679   if (DbgValue.isUndef()) {
1680     MOs.assign(DbgValue.loc_nos().size(),
1681                MachineOperand::CreateReg(
1682                    /* Reg */ 0, /* isDef */ false, /* isImp */ false,
1683                    /* isKill */ false, /* isDead */ false,
1684                    /* isUndef */ false, /* isEarlyClobber */ false,
1685                    /* SubReg */ 0, /* isDebug */ true));
1686   } else {
1687     for (unsigned LocNo : DbgValue.loc_nos())
1688       MOs.push_back(locations[LocNo]);
1689   }
1690 
1691   ++NumInsertedDebugValues;
1692 
1693   assert(cast<DILocalVariable>(Variable)
1694              ->isValidLocationForIntrinsic(getDebugLoc()) &&
1695          "Expected inlined-at fields to agree");
1696 
1697   // If the location was spilled, the new DBG_VALUE will be indirect. If the
1698   // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate
1699   // that the original virtual register was a pointer. Also, add the stack slot
1700   // offset for the spilled register to the expression.
1701   const DIExpression *Expr = DbgValue.getExpression();
1702   bool IsIndirect = DbgValue.getWasIndirect();
1703   bool IsList = DbgValue.getWasList();
1704   for (unsigned I = 0, E = LocSpills.size(); I != E; ++I) {
1705     if (LocSpills[I]) {
1706       if (!IsList) {
1707         uint8_t DIExprFlags = DIExpression::ApplyOffset;
1708         if (IsIndirect)
1709           DIExprFlags |= DIExpression::DerefAfter;
1710         Expr = DIExpression::prepend(Expr, DIExprFlags, SpillOffsets[I]);
1711         IsIndirect = true;
1712       } else {
1713         SmallVector<uint64_t, 4> Ops;
1714         DIExpression::appendOffset(Ops, SpillOffsets[I]);
1715         Ops.push_back(dwarf::DW_OP_deref);
1716         Expr = DIExpression::appendOpsToArg(Expr, Ops, I);
1717       }
1718     }
1719 
1720     assert((!LocSpills[I] || MOs[I].isFI()) &&
1721            "a spilled location must be a frame index");
1722   }
1723 
1724   unsigned DbgValueOpcode =
1725       IsList ? TargetOpcode::DBG_VALUE_LIST : TargetOpcode::DBG_VALUE;
1726   do {
1727     BuildMI(*MBB, I, getDebugLoc(), TII.get(DbgValueOpcode), IsIndirect, MOs,
1728             Variable, Expr);
1729 
1730     // Continue and insert DBG_VALUES after every redefinition of a register
1731     // associated with the debug value within the range
1732     I = findNextInsertLocation(MBB, I, StopIdx, MOs, LIS, TRI);
1733   } while (I != MBB->end());
1734 }
1735 
1736 void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx,
1737                                  LiveIntervals &LIS, const TargetInstrInfo &TII,
1738                                  BlockSkipInstsMap &BBSkipInstsMap) {
1739   MachineBasicBlock::iterator I =
1740       findInsertLocation(MBB, Idx, LIS, BBSkipInstsMap);
1741   ++NumInsertedDebugLabels;
1742   BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL))
1743       .addMetadata(Label);
1744 }
1745 
1746 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
1747                                 const TargetInstrInfo &TII,
1748                                 const TargetRegisterInfo &TRI,
1749                                 const SpillOffsetMap &SpillOffsets,
1750                                 BlockSkipInstsMap &BBSkipInstsMap) {
1751   MachineFunction::iterator MFEnd = VRM->getMachineFunction().end();
1752 
1753   for (LocMap::const_iterator I = locInts.begin(); I.valid();) {
1754     SlotIndex Start = I.start();
1755     SlotIndex Stop = I.stop();
1756     DbgVariableValue DbgValue = I.value();
1757 
1758     SmallVector<bool> SpilledLocs;
1759     SmallVector<unsigned> LocSpillOffsets;
1760     for (unsigned LocNo : DbgValue.loc_nos()) {
1761       auto SpillIt =
1762           !DbgValue.isUndef() ? SpillOffsets.find(LocNo) : SpillOffsets.end();
1763       bool Spilled = SpillIt != SpillOffsets.end();
1764       SpilledLocs.push_back(Spilled);
1765       LocSpillOffsets.push_back(Spilled ? SpillIt->second : 0);
1766     }
1767 
1768     // If the interval start was trimmed to the lexical scope insert the
1769     // DBG_VALUE at the previous index (otherwise it appears after the
1770     // first instruction in the range).
1771     if (trimmedDefs.count(Start))
1772       Start = Start.getPrevIndex();
1773 
1774     LLVM_DEBUG(auto &dbg = dbgs(); dbg << "\t[" << Start << ';' << Stop << "):";
1775                DbgValue.printLocNos(dbg));
1776     MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1777     SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB);
1778 
1779     LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1780     insertDebugValue(&*MBB, Start, Stop, DbgValue, SpilledLocs, LocSpillOffsets,
1781                      LIS, TII, TRI, BBSkipInstsMap);
1782     // This interval may span multiple basic blocks.
1783     // Insert a DBG_VALUE into each one.
1784     while (Stop > MBBEnd) {
1785       // Move to the next block.
1786       Start = MBBEnd;
1787       if (++MBB == MFEnd)
1788         break;
1789       MBBEnd = LIS.getMBBEndIdx(&*MBB);
1790       LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1791       insertDebugValue(&*MBB, Start, Stop, DbgValue, SpilledLocs,
1792                        LocSpillOffsets, LIS, TII, TRI, BBSkipInstsMap);
1793     }
1794     LLVM_DEBUG(dbgs() << '\n');
1795     if (MBB == MFEnd)
1796       break;
1797 
1798     ++I;
1799   }
1800 }
1801 
1802 void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII,
1803                                BlockSkipInstsMap &BBSkipInstsMap) {
1804   LLVM_DEBUG(dbgs() << "\t" << loc);
1805   MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator();
1806 
1807   LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB));
1808   insertDebugLabel(&*MBB, loc, LIS, TII, BBSkipInstsMap);
1809 
1810   LLVM_DEBUG(dbgs() << '\n');
1811 }
1812 
1813 void LDVImpl::emitDebugValues(VirtRegMap *VRM) {
1814   LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
1815   if (!MF)
1816     return;
1817 
1818   BlockSkipInstsMap BBSkipInstsMap;
1819   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1820   SpillOffsetMap SpillOffsets;
1821   for (auto &userValue : userValues) {
1822     LLVM_DEBUG(userValue->print(dbgs(), TRI));
1823     userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets);
1824     userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets,
1825                                BBSkipInstsMap);
1826   }
1827   LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n");
1828   for (auto &userLabel : userLabels) {
1829     LLVM_DEBUG(userLabel->print(dbgs(), TRI));
1830     userLabel->emitDebugLabel(*LIS, *TII, BBSkipInstsMap);
1831   }
1832 
1833   LLVM_DEBUG(dbgs() << "********** EMITTING DEBUG PHIS **********\n");
1834 
1835   auto Slots = LIS->getSlotIndexes();
1836   for (auto &It : PHIValToPos) {
1837     // For each ex-PHI, identify its physreg location or stack slot, and emit
1838     // a DBG_PHI for it.
1839     unsigned InstNum = It.first;
1840     auto Slot = It.second.SI;
1841     Register Reg = It.second.Reg;
1842     unsigned SubReg = It.second.SubReg;
1843 
1844     MachineBasicBlock *OrigMBB = Slots->getMBBFromIndex(Slot);
1845     if (VRM->isAssignedReg(Reg) &&
1846         Register::isPhysicalRegister(VRM->getPhys(Reg))) {
1847       unsigned PhysReg = VRM->getPhys(Reg);
1848       if (SubReg != 0)
1849         PhysReg = TRI->getSubReg(PhysReg, SubReg);
1850 
1851       auto Builder = BuildMI(*OrigMBB, OrigMBB->begin(), DebugLoc(),
1852                              TII->get(TargetOpcode::DBG_PHI));
1853       Builder.addReg(PhysReg);
1854       Builder.addImm(InstNum);
1855     } else if (VRM->getStackSlot(Reg) != VirtRegMap::NO_STACK_SLOT) {
1856       const MachineRegisterInfo &MRI = MF->getRegInfo();
1857       const TargetRegisterClass *TRC = MRI.getRegClass(Reg);
1858       unsigned SpillSize, SpillOffset;
1859 
1860       unsigned regSizeInBits = TRI->getRegSizeInBits(*TRC);
1861       if (SubReg)
1862         regSizeInBits = TRI->getSubRegIdxSize(SubReg);
1863 
1864       // Test whether this location is legal with the given subreg. If the
1865       // subregister has a nonzero offset, drop this location, it's too complex
1866       // to describe. (TODO: future work).
1867       bool Success =
1868           TII->getStackSlotRange(TRC, SubReg, SpillSize, SpillOffset, *MF);
1869 
1870       if (Success && SpillOffset == 0) {
1871         auto Builder = BuildMI(*OrigMBB, OrigMBB->begin(), DebugLoc(),
1872                                TII->get(TargetOpcode::DBG_PHI));
1873         Builder.addFrameIndex(VRM->getStackSlot(Reg));
1874         Builder.addImm(InstNum);
1875         // Record how large the original value is. The stack slot might be
1876         // merged and altered during optimisation, but we will want to know how
1877         // large the value is, at this DBG_PHI.
1878         Builder.addImm(regSizeInBits);
1879       }
1880 
1881       LLVM_DEBUG(
1882       if (SpillOffset != 0) {
1883         dbgs() << "DBG_PHI for Vreg " << Reg << " subreg " << SubReg <<
1884                   " has nonzero offset\n";
1885       }
1886       );
1887     }
1888     // If there was no mapping for a value ID, it's optimized out. Create no
1889     // DBG_PHI, and any variables using this value will become optimized out.
1890   }
1891   MF->DebugPHIPositions.clear();
1892 
1893   LLVM_DEBUG(dbgs() << "********** EMITTING INSTR REFERENCES **********\n");
1894 
1895   // Re-insert any debug instrs back in the position they were. We must
1896   // re-insert in the same order to ensure that debug instructions don't swap,
1897   // which could re-order assignments. Do so in a batch -- once we find the
1898   // insert position, insert all instructions at the same SlotIdx. They are
1899   // guaranteed to appear in-sequence in StashedDebugInstrs because we insert
1900   // them in order.
1901   for (auto *StashIt = StashedDebugInstrs.begin();
1902        StashIt != StashedDebugInstrs.end(); ++StashIt) {
1903     SlotIndex Idx = StashIt->Idx;
1904     MachineBasicBlock *MBB = StashIt->MBB;
1905     MachineInstr *MI = StashIt->MI;
1906 
1907     auto EmitInstsHere = [this, &StashIt, MBB, Idx,
1908                           MI](MachineBasicBlock::iterator InsertPos) {
1909       // Insert this debug instruction.
1910       MBB->insert(InsertPos, MI);
1911 
1912       // Look at subsequent stashed debug instructions: if they're at the same
1913       // index, insert those too.
1914       auto NextItem = std::next(StashIt);
1915       while (NextItem != StashedDebugInstrs.end() && NextItem->Idx == Idx) {
1916         assert(NextItem->MBB == MBB && "Instrs with same slot index should be"
1917                "in the same block");
1918         MBB->insert(InsertPos, NextItem->MI);
1919         StashIt = NextItem;
1920         NextItem = std::next(StashIt);
1921       };
1922     };
1923 
1924     // Start block index: find the first non-debug instr in the block, and
1925     // insert before it.
1926     if (Idx == Slots->getMBBStartIdx(MBB)) {
1927       MachineBasicBlock::iterator InsertPos =
1928           findInsertLocation(MBB, Idx, *LIS, BBSkipInstsMap);
1929       EmitInstsHere(InsertPos);
1930       continue;
1931     }
1932 
1933     if (MachineInstr *Pos = Slots->getInstructionFromIndex(Idx)) {
1934       // Insert at the end of any debug instructions.
1935       auto PostDebug = std::next(Pos->getIterator());
1936       PostDebug = skipDebugInstructionsForward(PostDebug, MBB->instr_end());
1937       EmitInstsHere(PostDebug);
1938     } else {
1939       // Insert position disappeared; walk forwards through slots until we
1940       // find a new one.
1941       SlotIndex End = Slots->getMBBEndIdx(MBB);
1942       for (; Idx < End; Idx = Slots->getNextNonNullIndex(Idx)) {
1943         Pos = Slots->getInstructionFromIndex(Idx);
1944         if (Pos) {
1945           EmitInstsHere(Pos->getIterator());
1946           break;
1947         }
1948       }
1949 
1950       // We have reached the end of the block and didn't find anywhere to
1951       // insert! It's not safe to discard any debug instructions; place them
1952       // in front of the first terminator, or in front of end().
1953       if (Idx >= End) {
1954         auto TermIt = MBB->getFirstTerminator();
1955         EmitInstsHere(TermIt);
1956       }
1957     }
1958   }
1959 
1960   EmitDone = true;
1961   BBSkipInstsMap.clear();
1962 }
1963 
1964 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) {
1965   if (pImpl)
1966     static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM);
1967 }
1968 
1969 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1970 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const {
1971   if (pImpl)
1972     static_cast<LDVImpl*>(pImpl)->print(dbgs());
1973 }
1974 #endif
1975