1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveDebugVariables analysis. 11 // 12 // Remove all DBG_VALUE instructions referencing virtual registers and replace 13 // them with a data structure tracking where live user variables are kept - in a 14 // virtual register or in a stack slot. 15 // 16 // Allow the data structure to be updated during register allocation when values 17 // are moved between registers and stack slots. Finally emit new DBG_VALUE 18 // instructions after register allocation is complete. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "LiveDebugVariables.h" 23 #include "llvm/ADT/ArrayRef.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/IntervalMap.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/CodeGen/LexicalScopes.h" 32 #include "llvm/CodeGen/LiveInterval.h" 33 #include "llvm/CodeGen/LiveIntervals.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineDominators.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/SlotIndexes.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetOpcodes.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/VirtRegMap.h" 47 #include "llvm/Config/llvm-config.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/MC/MCRegisterInfo.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Compiler.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <iterator> 62 #include <memory> 63 #include <utility> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "livedebugvars" 68 69 static cl::opt<bool> 70 EnableLDV("live-debug-variables", cl::init(true), 71 cl::desc("Enable the live debug variables pass"), cl::Hidden); 72 73 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); 74 75 char LiveDebugVariables::ID = 0; 76 77 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE, 78 "Debug Variable Analysis", false, false) 79 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 80 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 81 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE, 82 "Debug Variable Analysis", false, false) 83 84 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { 85 AU.addRequired<MachineDominatorTree>(); 86 AU.addRequiredTransitive<LiveIntervals>(); 87 AU.setPreservesAll(); 88 MachineFunctionPass::getAnalysisUsage(AU); 89 } 90 91 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) { 92 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 93 } 94 95 enum : unsigned { UndefLocNo = ~0U }; 96 97 /// Describes a location by number along with some flags about the original 98 /// usage of the location. 99 class DbgValueLocation { 100 public: 101 DbgValueLocation(unsigned LocNo, bool WasIndirect) 102 : LocNo(LocNo), WasIndirect(WasIndirect) { 103 static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing"); 104 assert(locNo() == LocNo && "location truncation"); 105 } 106 107 DbgValueLocation() : LocNo(0), WasIndirect(0) {} 108 109 unsigned locNo() const { 110 // Fix up the undef location number, which gets truncated. 111 return LocNo == INT_MAX ? UndefLocNo : LocNo; 112 } 113 bool wasIndirect() const { return WasIndirect; } 114 bool isUndef() const { return locNo() == UndefLocNo; } 115 116 DbgValueLocation changeLocNo(unsigned NewLocNo) const { 117 return DbgValueLocation(NewLocNo, WasIndirect); 118 } 119 120 friend inline bool operator==(const DbgValueLocation &LHS, 121 const DbgValueLocation &RHS) { 122 return LHS.LocNo == RHS.LocNo && LHS.WasIndirect == RHS.WasIndirect; 123 } 124 125 friend inline bool operator!=(const DbgValueLocation &LHS, 126 const DbgValueLocation &RHS) { 127 return !(LHS == RHS); 128 } 129 130 private: 131 unsigned LocNo : 31; 132 unsigned WasIndirect : 1; 133 }; 134 135 /// LocMap - Map of where a user value is live, and its location. 136 using LocMap = IntervalMap<SlotIndex, DbgValueLocation, 4>; 137 138 namespace { 139 140 class LDVImpl; 141 142 /// UserValue - A user value is a part of a debug info user variable. 143 /// 144 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 145 /// holds part of a user variable. The part is identified by a byte offset. 146 /// 147 /// UserValues are grouped into equivalence classes for easier searching. Two 148 /// user values are related if they refer to the same variable, or if they are 149 /// held by the same virtual register. The equivalence class is the transitive 150 /// closure of that relation. 151 class UserValue { 152 const DILocalVariable *Variable; ///< The debug info variable we are part of. 153 const DIExpression *Expression; ///< Any complex address expression. 154 DebugLoc dl; ///< The debug location for the variable. This is 155 ///< used by dwarf writer to find lexical scope. 156 UserValue *leader; ///< Equivalence class leader. 157 UserValue *next = nullptr; ///< Next value in equivalence class, or null. 158 159 /// Numbered locations referenced by locmap. 160 SmallVector<MachineOperand, 4> locations; 161 162 /// Map of slot indices where this value is live. 163 LocMap locInts; 164 165 /// Set of interval start indexes that have been trimmed to the 166 /// lexical scope. 167 SmallSet<SlotIndex, 2> trimmedDefs; 168 169 /// insertDebugValue - Insert a DBG_VALUE into MBB at Idx for LocNo. 170 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 171 SlotIndex StopIdx, 172 DbgValueLocation Loc, bool Spilled, LiveIntervals &LIS, 173 const TargetInstrInfo &TII, 174 const TargetRegisterInfo &TRI); 175 176 /// splitLocation - Replace OldLocNo ranges with NewRegs ranges where NewRegs 177 /// is live. Returns true if any changes were made. 178 bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 179 LiveIntervals &LIS); 180 181 public: 182 /// UserValue - Create a new UserValue. 183 UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L, 184 LocMap::Allocator &alloc) 185 : Variable(var), Expression(expr), dl(std::move(L)), leader(this), 186 locInts(alloc) {} 187 188 /// getLeader - Get the leader of this value's equivalence class. 189 UserValue *getLeader() { 190 UserValue *l = leader; 191 while (l != l->leader) 192 l = l->leader; 193 return leader = l; 194 } 195 196 /// getNext - Return the next UserValue in the equivalence class. 197 UserValue *getNext() const { return next; } 198 199 /// match - Does this UserValue match the parameters? 200 bool match(const DILocalVariable *Var, const DIExpression *Expr, 201 const DILocation *IA) const { 202 // FIXME: The fragment should be part of the equivalence class, but not 203 // other things in the expression like stack values. 204 return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA; 205 } 206 207 /// merge - Merge equivalence classes. 208 static UserValue *merge(UserValue *L1, UserValue *L2) { 209 L2 = L2->getLeader(); 210 if (!L1) 211 return L2; 212 L1 = L1->getLeader(); 213 if (L1 == L2) 214 return L1; 215 // Splice L2 before L1's members. 216 UserValue *End = L2; 217 while (End->next) { 218 End->leader = L1; 219 End = End->next; 220 } 221 End->leader = L1; 222 End->next = L1->next; 223 L1->next = L2; 224 return L1; 225 } 226 227 /// getLocationNo - Return the location number that matches Loc. 228 unsigned getLocationNo(const MachineOperand &LocMO) { 229 if (LocMO.isReg()) { 230 if (LocMO.getReg() == 0) 231 return UndefLocNo; 232 // For register locations we dont care about use/def and other flags. 233 for (unsigned i = 0, e = locations.size(); i != e; ++i) 234 if (locations[i].isReg() && 235 locations[i].getReg() == LocMO.getReg() && 236 locations[i].getSubReg() == LocMO.getSubReg()) 237 return i; 238 } else 239 for (unsigned i = 0, e = locations.size(); i != e; ++i) 240 if (LocMO.isIdenticalTo(locations[i])) 241 return i; 242 locations.push_back(LocMO); 243 // We are storing a MachineOperand outside a MachineInstr. 244 locations.back().clearParent(); 245 // Don't store def operands. 246 if (locations.back().isReg()) { 247 if (locations.back().isDef()) 248 locations.back().setIsDead(false); 249 locations.back().setIsUse(); 250 } 251 return locations.size() - 1; 252 } 253 254 /// mapVirtRegs - Ensure that all virtual register locations are mapped. 255 void mapVirtRegs(LDVImpl *LDV); 256 257 /// addDef - Add a definition point to this value. 258 void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect) { 259 DbgValueLocation Loc(getLocationNo(LocMO), IsIndirect); 260 // Add a singular (Idx,Idx) -> Loc mapping. 261 LocMap::iterator I = locInts.find(Idx); 262 if (!I.valid() || I.start() != Idx) 263 I.insert(Idx, Idx.getNextSlot(), Loc); 264 else 265 // A later DBG_VALUE at the same SlotIndex overrides the old location. 266 I.setValue(Loc); 267 } 268 269 /// extendDef - Extend the current definition as far as possible down. 270 /// Stop when meeting an existing def or when leaving the live 271 /// range of VNI. 272 /// End points where VNI is no longer live are added to Kills. 273 /// @param Idx Starting point for the definition. 274 /// @param Loc Location number to propagate. 275 /// @param LR Restrict liveness to where LR has the value VNI. May be null. 276 /// @param VNI When LR is not null, this is the value to restrict to. 277 /// @param Kills Append end points of VNI's live range to Kills. 278 /// @param LIS Live intervals analysis. 279 void extendDef(SlotIndex Idx, DbgValueLocation Loc, 280 LiveRange *LR, const VNInfo *VNI, 281 SmallVectorImpl<SlotIndex> *Kills, 282 LiveIntervals &LIS); 283 284 /// addDefsFromCopies - The value in LI/LocNo may be copies to other 285 /// registers. Determine if any of the copies are available at the kill 286 /// points, and add defs if possible. 287 /// @param LI Scan for copies of the value in LI->reg. 288 /// @param LocNo Location number of LI->reg. 289 /// @param WasIndirect Indicates if the original use of LI->reg was indirect 290 /// @param Kills Points where the range of LocNo could be extended. 291 /// @param NewDefs Append (Idx, LocNo) of inserted defs here. 292 void addDefsFromCopies( 293 LiveInterval *LI, unsigned LocNo, bool WasIndirect, 294 const SmallVectorImpl<SlotIndex> &Kills, 295 SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs, 296 MachineRegisterInfo &MRI, LiveIntervals &LIS); 297 298 /// computeIntervals - Compute the live intervals of all locations after 299 /// collecting all their def points. 300 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, 301 LiveIntervals &LIS, LexicalScopes &LS); 302 303 /// splitRegister - Replace OldReg ranges with NewRegs ranges where NewRegs is 304 /// live. Returns true if any changes were made. 305 bool splitRegister(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 306 LiveIntervals &LIS); 307 308 /// rewriteLocations - Rewrite virtual register locations according to the 309 /// provided virtual register map. Record which locations were spilled. 310 void rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI, 311 BitVector &SpilledLocations); 312 313 /// emitDebugValues - Recreate DBG_VALUE instruction from data structures. 314 void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 315 const TargetInstrInfo &TII, 316 const TargetRegisterInfo &TRI, 317 const BitVector &SpilledLocations); 318 319 /// getDebugLoc - Return DebugLoc of this UserValue. 320 DebugLoc getDebugLoc() { return dl;} 321 322 void print(raw_ostream &, const TargetRegisterInfo *); 323 }; 324 325 /// LDVImpl - Implementation of the LiveDebugVariables pass. 326 class LDVImpl { 327 LiveDebugVariables &pass; 328 LocMap::Allocator allocator; 329 MachineFunction *MF = nullptr; 330 LiveIntervals *LIS; 331 const TargetRegisterInfo *TRI; 332 333 /// Whether emitDebugValues is called. 334 bool EmitDone = false; 335 336 /// Whether the machine function is modified during the pass. 337 bool ModifiedMF = false; 338 339 /// userValues - All allocated UserValue instances. 340 SmallVector<std::unique_ptr<UserValue>, 8> userValues; 341 342 /// Map virtual register to eq class leader. 343 using VRMap = DenseMap<unsigned, UserValue *>; 344 VRMap virtRegToEqClass; 345 346 /// Map user variable to eq class leader. 347 using UVMap = DenseMap<const DILocalVariable *, UserValue *>; 348 UVMap userVarMap; 349 350 /// getUserValue - Find or create a UserValue. 351 UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr, 352 const DebugLoc &DL); 353 354 /// lookupVirtReg - Find the EC leader for VirtReg or null. 355 UserValue *lookupVirtReg(unsigned VirtReg); 356 357 /// handleDebugValue - Add DBG_VALUE instruction to our maps. 358 /// @param MI DBG_VALUE instruction 359 /// @param Idx Last valid SLotIndex before instruction. 360 /// @return True if the DBG_VALUE instruction should be deleted. 361 bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); 362 363 /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding 364 /// a UserValue def for each instruction. 365 /// @param mf MachineFunction to be scanned. 366 /// @return True if any debug values were found. 367 bool collectDebugValues(MachineFunction &mf); 368 369 /// computeIntervals - Compute the live intervals of all user values after 370 /// collecting all their def points. 371 void computeIntervals(); 372 373 public: 374 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} 375 376 bool runOnMachineFunction(MachineFunction &mf); 377 378 /// clear - Release all memory. 379 void clear() { 380 MF = nullptr; 381 userValues.clear(); 382 virtRegToEqClass.clear(); 383 userVarMap.clear(); 384 // Make sure we call emitDebugValues if the machine function was modified. 385 assert((!ModifiedMF || EmitDone) && 386 "Dbg values are not emitted in LDV"); 387 EmitDone = false; 388 ModifiedMF = false; 389 } 390 391 /// mapVirtReg - Map virtual register to an equivalence class. 392 void mapVirtReg(unsigned VirtReg, UserValue *EC); 393 394 /// splitRegister - Replace all references to OldReg with NewRegs. 395 void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs); 396 397 /// emitDebugValues - Recreate DBG_VALUE instruction from data structures. 398 void emitDebugValues(VirtRegMap *VRM); 399 400 void print(raw_ostream&); 401 }; 402 403 } // end anonymous namespace 404 405 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 406 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, 407 const LLVMContext &Ctx) { 408 if (!DL) 409 return; 410 411 auto *Scope = cast<DIScope>(DL.getScope()); 412 // Omit the directory, because it's likely to be long and uninteresting. 413 CommentOS << Scope->getFilename(); 414 CommentOS << ':' << DL.getLine(); 415 if (DL.getCol() != 0) 416 CommentOS << ':' << DL.getCol(); 417 418 DebugLoc InlinedAtDL = DL.getInlinedAt(); 419 if (!InlinedAtDL) 420 return; 421 422 CommentOS << " @[ "; 423 printDebugLoc(InlinedAtDL, CommentOS, Ctx); 424 CommentOS << " ]"; 425 } 426 427 static void printExtendedName(raw_ostream &OS, const DILocalVariable *V, 428 const DILocation *DL) { 429 const LLVMContext &Ctx = V->getContext(); 430 StringRef Res = V->getName(); 431 if (!Res.empty()) 432 OS << Res << "," << V->getLine(); 433 if (auto *InlinedAt = DL->getInlinedAt()) { 434 if (DebugLoc InlinedAtDL = InlinedAt) { 435 OS << " @["; 436 printDebugLoc(InlinedAtDL, OS, Ctx); 437 OS << "]"; 438 } 439 } 440 } 441 442 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 443 auto *DV = cast<DILocalVariable>(Variable); 444 OS << "!\""; 445 printExtendedName(OS, DV, dl); 446 447 OS << "\"\t"; 448 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 449 OS << " [" << I.start() << ';' << I.stop() << "):"; 450 if (I.value().isUndef()) 451 OS << "undef"; 452 else { 453 OS << I.value().locNo(); 454 if (I.value().wasIndirect()) 455 OS << " ind"; 456 } 457 } 458 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 459 OS << " Loc" << i << '='; 460 locations[i].print(OS, TRI); 461 } 462 OS << '\n'; 463 } 464 465 void LDVImpl::print(raw_ostream &OS) { 466 OS << "********** DEBUG VARIABLES **********\n"; 467 for (unsigned i = 0, e = userValues.size(); i != e; ++i) 468 userValues[i]->print(OS, TRI); 469 } 470 #endif 471 472 void UserValue::mapVirtRegs(LDVImpl *LDV) { 473 for (unsigned i = 0, e = locations.size(); i != e; ++i) 474 if (locations[i].isReg() && 475 TargetRegisterInfo::isVirtualRegister(locations[i].getReg())) 476 LDV->mapVirtReg(locations[i].getReg(), this); 477 } 478 479 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var, 480 const DIExpression *Expr, const DebugLoc &DL) { 481 UserValue *&Leader = userVarMap[Var]; 482 if (Leader) { 483 UserValue *UV = Leader->getLeader(); 484 Leader = UV; 485 for (; UV; UV = UV->getNext()) 486 if (UV->match(Var, Expr, DL->getInlinedAt())) 487 return UV; 488 } 489 490 userValues.push_back( 491 llvm::make_unique<UserValue>(Var, Expr, DL, allocator)); 492 UserValue *UV = userValues.back().get(); 493 Leader = UserValue::merge(Leader, UV); 494 return UV; 495 } 496 497 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) { 498 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs"); 499 UserValue *&Leader = virtRegToEqClass[VirtReg]; 500 Leader = UserValue::merge(Leader, EC); 501 } 502 503 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) { 504 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) 505 return UV->getLeader(); 506 return nullptr; 507 } 508 509 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) { 510 // DBG_VALUE loc, offset, variable 511 if (MI.getNumOperands() != 4 || 512 !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) || 513 !MI.getOperand(2).isMetadata()) { 514 LLVM_DEBUG(dbgs() << "Can't handle " << MI); 515 return false; 516 } 517 518 // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual 519 // register that hasn't been defined yet. If we do not remove those here, then 520 // the re-insertion of the DBG_VALUE instruction after register allocation 521 // will be incorrect. 522 // TODO: If earlier passes are corrected to generate sane debug information 523 // (and if the machine verifier is improved to catch this), then these checks 524 // could be removed or replaced by asserts. 525 bool Discard = false; 526 if (MI.getOperand(0).isReg() && 527 TargetRegisterInfo::isVirtualRegister(MI.getOperand(0).getReg())) { 528 const unsigned Reg = MI.getOperand(0).getReg(); 529 if (!LIS->hasInterval(Reg)) { 530 // The DBG_VALUE is described by a virtual register that does not have a 531 // live interval. Discard the DBG_VALUE. 532 Discard = true; 533 LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx 534 << " " << MI); 535 } else { 536 // The DBG_VALUE is only valid if either Reg is live out from Idx, or Reg 537 // is defined dead at Idx (where Idx is the slot index for the instruction 538 // preceeding the DBG_VALUE). 539 const LiveInterval &LI = LIS->getInterval(Reg); 540 LiveQueryResult LRQ = LI.Query(Idx); 541 if (!LRQ.valueOutOrDead()) { 542 // We have found a DBG_VALUE with the value in a virtual register that 543 // is not live. Discard the DBG_VALUE. 544 Discard = true; 545 LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx 546 << " " << MI); 547 } 548 } 549 } 550 551 // Get or create the UserValue for (variable,offset) here. 552 bool IsIndirect = MI.getOperand(1).isImm(); 553 if (IsIndirect) 554 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); 555 const DILocalVariable *Var = MI.getDebugVariable(); 556 const DIExpression *Expr = MI.getDebugExpression(); 557 UserValue *UV = 558 getUserValue(Var, Expr, MI.getDebugLoc()); 559 if (!Discard) 560 UV->addDef(Idx, MI.getOperand(0), IsIndirect); 561 else { 562 MachineOperand MO = MachineOperand::CreateReg(0U, false); 563 MO.setIsDebug(); 564 UV->addDef(Idx, MO, false); 565 } 566 return true; 567 } 568 569 bool LDVImpl::collectDebugValues(MachineFunction &mf) { 570 bool Changed = false; 571 for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE; 572 ++MFI) { 573 MachineBasicBlock *MBB = &*MFI; 574 for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end(); 575 MBBI != MBBE;) { 576 if (!MBBI->isDebugValue()) { 577 ++MBBI; 578 continue; 579 } 580 // DBG_VALUE has no slot index, use the previous instruction instead. 581 SlotIndex Idx = 582 MBBI == MBB->begin() 583 ? LIS->getMBBStartIdx(MBB) 584 : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); 585 // Handle consecutive DBG_VALUE instructions with the same slot index. 586 do { 587 if (handleDebugValue(*MBBI, Idx)) { 588 MBBI = MBB->erase(MBBI); 589 Changed = true; 590 } else 591 ++MBBI; 592 } while (MBBI != MBBE && MBBI->isDebugValue()); 593 } 594 } 595 return Changed; 596 } 597 598 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a 599 /// data-flow analysis to propagate them beyond basic block boundaries. 600 void UserValue::extendDef(SlotIndex Idx, DbgValueLocation Loc, LiveRange *LR, 601 const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills, 602 LiveIntervals &LIS) { 603 SlotIndex Start = Idx; 604 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 605 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 606 LocMap::iterator I = locInts.find(Start); 607 608 // Limit to VNI's live range. 609 bool ToEnd = true; 610 if (LR && VNI) { 611 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); 612 if (!Segment || Segment->valno != VNI) { 613 if (Kills) 614 Kills->push_back(Start); 615 return; 616 } 617 if (Segment->end < Stop) { 618 Stop = Segment->end; 619 ToEnd = false; 620 } 621 } 622 623 // There could already be a short def at Start. 624 if (I.valid() && I.start() <= Start) { 625 // Stop when meeting a different location or an already extended interval. 626 Start = Start.getNextSlot(); 627 if (I.value() != Loc || I.stop() != Start) 628 return; 629 // This is a one-slot placeholder. Just skip it. 630 ++I; 631 } 632 633 // Limited by the next def. 634 if (I.valid() && I.start() < Stop) { 635 Stop = I.start(); 636 ToEnd = false; 637 } 638 // Limited by VNI's live range. 639 else if (!ToEnd && Kills) 640 Kills->push_back(Stop); 641 642 if (Start < Stop) 643 I.insert(Start, Stop, Loc); 644 } 645 646 void UserValue::addDefsFromCopies( 647 LiveInterval *LI, unsigned LocNo, bool WasIndirect, 648 const SmallVectorImpl<SlotIndex> &Kills, 649 SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs, 650 MachineRegisterInfo &MRI, LiveIntervals &LIS) { 651 if (Kills.empty()) 652 return; 653 // Don't track copies from physregs, there are too many uses. 654 if (!TargetRegisterInfo::isVirtualRegister(LI->reg)) 655 return; 656 657 // Collect all the (vreg, valno) pairs that are copies of LI. 658 SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues; 659 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) { 660 MachineInstr *MI = MO.getParent(); 661 // Copies of the full value. 662 if (MO.getSubReg() || !MI->isCopy()) 663 continue; 664 unsigned DstReg = MI->getOperand(0).getReg(); 665 666 // Don't follow copies to physregs. These are usually setting up call 667 // arguments, and the argument registers are always call clobbered. We are 668 // better off in the source register which could be a callee-saved register, 669 // or it could be spilled. 670 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 671 continue; 672 673 // Is LocNo extended to reach this copy? If not, another def may be blocking 674 // it, or we are looking at a wrong value of LI. 675 SlotIndex Idx = LIS.getInstructionIndex(*MI); 676 LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); 677 if (!I.valid() || I.value().locNo() != LocNo) 678 continue; 679 680 if (!LIS.hasInterval(DstReg)) 681 continue; 682 LiveInterval *DstLI = &LIS.getInterval(DstReg); 683 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); 684 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); 685 CopyValues.push_back(std::make_pair(DstLI, DstVNI)); 686 } 687 688 if (CopyValues.empty()) 689 return; 690 691 LLVM_DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI 692 << '\n'); 693 694 // Try to add defs of the copied values for each kill point. 695 for (unsigned i = 0, e = Kills.size(); i != e; ++i) { 696 SlotIndex Idx = Kills[i]; 697 for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) { 698 LiveInterval *DstLI = CopyValues[j].first; 699 const VNInfo *DstVNI = CopyValues[j].second; 700 if (DstLI->getVNInfoAt(Idx) != DstVNI) 701 continue; 702 // Check that there isn't already a def at Idx 703 LocMap::iterator I = locInts.find(Idx); 704 if (I.valid() && I.start() <= Idx) 705 continue; 706 LLVM_DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #" 707 << DstVNI->id << " in " << *DstLI << '\n'); 708 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); 709 assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); 710 unsigned LocNo = getLocationNo(CopyMI->getOperand(0)); 711 DbgValueLocation NewLoc(LocNo, WasIndirect); 712 I.insert(Idx, Idx.getNextSlot(), NewLoc); 713 NewDefs.push_back(std::make_pair(Idx, NewLoc)); 714 break; 715 } 716 } 717 } 718 719 void UserValue::computeIntervals(MachineRegisterInfo &MRI, 720 const TargetRegisterInfo &TRI, 721 LiveIntervals &LIS, LexicalScopes &LS) { 722 SmallVector<std::pair<SlotIndex, DbgValueLocation>, 16> Defs; 723 724 // Collect all defs to be extended (Skipping undefs). 725 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 726 if (!I.value().isUndef()) 727 Defs.push_back(std::make_pair(I.start(), I.value())); 728 729 // Extend all defs, and possibly add new ones along the way. 730 for (unsigned i = 0; i != Defs.size(); ++i) { 731 SlotIndex Idx = Defs[i].first; 732 DbgValueLocation Loc = Defs[i].second; 733 const MachineOperand &LocMO = locations[Loc.locNo()]; 734 735 if (!LocMO.isReg()) { 736 extendDef(Idx, Loc, nullptr, nullptr, nullptr, LIS); 737 continue; 738 } 739 740 // Register locations are constrained to where the register value is live. 741 if (TargetRegisterInfo::isVirtualRegister(LocMO.getReg())) { 742 LiveInterval *LI = nullptr; 743 const VNInfo *VNI = nullptr; 744 if (LIS.hasInterval(LocMO.getReg())) { 745 LI = &LIS.getInterval(LocMO.getReg()); 746 VNI = LI->getVNInfoAt(Idx); 747 } 748 SmallVector<SlotIndex, 16> Kills; 749 extendDef(Idx, Loc, LI, VNI, &Kills, LIS); 750 if (LI) 751 addDefsFromCopies(LI, Loc.locNo(), Loc.wasIndirect(), Kills, Defs, MRI, 752 LIS); 753 continue; 754 } 755 756 // For physregs, we only mark the start slot idx. DwarfDebug will see it 757 // as if the DBG_VALUE is valid up until the end of the basic block, or 758 // the next def of the physical register. So we do not need to extend the 759 // range. It might actually happen that the DBG_VALUE is the last use of 760 // the physical register (e.g. if this is an unused input argument to a 761 // function). 762 } 763 764 // Erase all the undefs. 765 for (LocMap::iterator I = locInts.begin(); I.valid();) 766 if (I.value().isUndef()) 767 I.erase(); 768 else 769 ++I; 770 771 // The computed intervals may extend beyond the range of the debug 772 // location's lexical scope. In this case, splitting of an interval 773 // can result in an interval outside of the scope being created, 774 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent 775 // this, trim the intervals to the lexical scope. 776 777 LexicalScope *Scope = LS.findLexicalScope(dl); 778 if (!Scope) 779 return; 780 781 SlotIndex PrevEnd; 782 LocMap::iterator I = locInts.begin(); 783 784 // Iterate over the lexical scope ranges. Each time round the loop 785 // we check the intervals for overlap with the end of the previous 786 // range and the start of the next. The first range is handled as 787 // a special case where there is no PrevEnd. 788 for (const InsnRange &Range : Scope->getRanges()) { 789 SlotIndex RStart = LIS.getInstructionIndex(*Range.first); 790 SlotIndex REnd = LIS.getInstructionIndex(*Range.second); 791 792 // At the start of each iteration I has been advanced so that 793 // I.stop() >= PrevEnd. Check for overlap. 794 if (PrevEnd && I.start() < PrevEnd) { 795 SlotIndex IStop = I.stop(); 796 DbgValueLocation Loc = I.value(); 797 798 // Stop overlaps previous end - trim the end of the interval to 799 // the scope range. 800 I.setStopUnchecked(PrevEnd); 801 ++I; 802 803 // If the interval also overlaps the start of the "next" (i.e. 804 // current) range create a new interval for the remainder (which 805 // may be further trimmed). 806 if (RStart < IStop) 807 I.insert(RStart, IStop, Loc); 808 } 809 810 // Advance I so that I.stop() >= RStart, and check for overlap. 811 I.advanceTo(RStart); 812 if (!I.valid()) 813 return; 814 815 if (I.start() < RStart) { 816 // Interval start overlaps range - trim to the scope range. 817 I.setStartUnchecked(RStart); 818 // Remember that this interval was trimmed. 819 trimmedDefs.insert(RStart); 820 } 821 822 // The end of a lexical scope range is the last instruction in the 823 // range. To convert to an interval we need the index of the 824 // instruction after it. 825 REnd = REnd.getNextIndex(); 826 827 // Advance I to first interval outside current range. 828 I.advanceTo(REnd); 829 if (!I.valid()) 830 return; 831 832 PrevEnd = REnd; 833 } 834 835 // Check for overlap with end of final range. 836 if (PrevEnd && I.start() < PrevEnd) 837 I.setStopUnchecked(PrevEnd); 838 } 839 840 void LDVImpl::computeIntervals() { 841 LexicalScopes LS; 842 LS.initialize(*MF); 843 844 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 845 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS); 846 userValues[i]->mapVirtRegs(this); 847 } 848 } 849 850 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) { 851 clear(); 852 MF = &mf; 853 LIS = &pass.getAnalysis<LiveIntervals>(); 854 TRI = mf.getSubtarget().getRegisterInfo(); 855 LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 856 << mf.getName() << " **********\n"); 857 858 bool Changed = collectDebugValues(mf); 859 computeIntervals(); 860 LLVM_DEBUG(print(dbgs())); 861 ModifiedMF = Changed; 862 return Changed; 863 } 864 865 static void removeDebugValues(MachineFunction &mf) { 866 for (MachineBasicBlock &MBB : mf) { 867 for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) { 868 if (!MBBI->isDebugValue()) { 869 ++MBBI; 870 continue; 871 } 872 MBBI = MBB.erase(MBBI); 873 } 874 } 875 } 876 877 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { 878 if (!EnableLDV) 879 return false; 880 if (!mf.getFunction().getSubprogram()) { 881 removeDebugValues(mf); 882 return false; 883 } 884 if (!pImpl) 885 pImpl = new LDVImpl(this); 886 return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf); 887 } 888 889 void LiveDebugVariables::releaseMemory() { 890 if (pImpl) 891 static_cast<LDVImpl*>(pImpl)->clear(); 892 } 893 894 LiveDebugVariables::~LiveDebugVariables() { 895 if (pImpl) 896 delete static_cast<LDVImpl*>(pImpl); 897 } 898 899 //===----------------------------------------------------------------------===// 900 // Live Range Splitting 901 //===----------------------------------------------------------------------===// 902 903 bool 904 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 905 LiveIntervals& LIS) { 906 LLVM_DEBUG({ 907 dbgs() << "Splitting Loc" << OldLocNo << '\t'; 908 print(dbgs(), nullptr); 909 }); 910 bool DidChange = false; 911 LocMap::iterator LocMapI; 912 LocMapI.setMap(locInts); 913 for (unsigned i = 0; i != NewRegs.size(); ++i) { 914 LiveInterval *LI = &LIS.getInterval(NewRegs[i]); 915 if (LI->empty()) 916 continue; 917 918 // Don't allocate the new LocNo until it is needed. 919 unsigned NewLocNo = UndefLocNo; 920 921 // Iterate over the overlaps between locInts and LI. 922 LocMapI.find(LI->beginIndex()); 923 if (!LocMapI.valid()) 924 continue; 925 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); 926 LiveInterval::iterator LIE = LI->end(); 927 while (LocMapI.valid() && LII != LIE) { 928 // At this point, we know that LocMapI.stop() > LII->start. 929 LII = LI->advanceTo(LII, LocMapI.start()); 930 if (LII == LIE) 931 break; 932 933 // Now LII->end > LocMapI.start(). Do we have an overlap? 934 if (LocMapI.value().locNo() == OldLocNo && LII->start < LocMapI.stop()) { 935 // Overlapping correct location. Allocate NewLocNo now. 936 if (NewLocNo == UndefLocNo) { 937 MachineOperand MO = MachineOperand::CreateReg(LI->reg, false); 938 MO.setSubReg(locations[OldLocNo].getSubReg()); 939 NewLocNo = getLocationNo(MO); 940 DidChange = true; 941 } 942 943 SlotIndex LStart = LocMapI.start(); 944 SlotIndex LStop = LocMapI.stop(); 945 DbgValueLocation OldLoc = LocMapI.value(); 946 947 // Trim LocMapI down to the LII overlap. 948 if (LStart < LII->start) 949 LocMapI.setStartUnchecked(LII->start); 950 if (LStop > LII->end) 951 LocMapI.setStopUnchecked(LII->end); 952 953 // Change the value in the overlap. This may trigger coalescing. 954 LocMapI.setValue(OldLoc.changeLocNo(NewLocNo)); 955 956 // Re-insert any removed OldLocNo ranges. 957 if (LStart < LocMapI.start()) { 958 LocMapI.insert(LStart, LocMapI.start(), OldLoc); 959 ++LocMapI; 960 assert(LocMapI.valid() && "Unexpected coalescing"); 961 } 962 if (LStop > LocMapI.stop()) { 963 ++LocMapI; 964 LocMapI.insert(LII->end, LStop, OldLoc); 965 --LocMapI; 966 } 967 } 968 969 // Advance to the next overlap. 970 if (LII->end < LocMapI.stop()) { 971 if (++LII == LIE) 972 break; 973 LocMapI.advanceTo(LII->start); 974 } else { 975 ++LocMapI; 976 if (!LocMapI.valid()) 977 break; 978 LII = LI->advanceTo(LII, LocMapI.start()); 979 } 980 } 981 } 982 983 // Finally, remove any remaining OldLocNo intervals and OldLocNo itself. 984 locations.erase(locations.begin() + OldLocNo); 985 LocMapI.goToBegin(); 986 while (LocMapI.valid()) { 987 DbgValueLocation v = LocMapI.value(); 988 if (v.locNo() == OldLocNo) { 989 LLVM_DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';' 990 << LocMapI.stop() << ")\n"); 991 LocMapI.erase(); 992 } else { 993 if (v.locNo() > OldLocNo) 994 LocMapI.setValueUnchecked(v.changeLocNo(v.locNo() - 1)); 995 ++LocMapI; 996 } 997 } 998 999 LLVM_DEBUG({ 1000 dbgs() << "Split result: \t"; 1001 print(dbgs(), nullptr); 1002 }); 1003 return DidChange; 1004 } 1005 1006 bool 1007 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, 1008 LiveIntervals &LIS) { 1009 bool DidChange = false; 1010 // Split locations referring to OldReg. Iterate backwards so splitLocation can 1011 // safely erase unused locations. 1012 for (unsigned i = locations.size(); i ; --i) { 1013 unsigned LocNo = i-1; 1014 const MachineOperand *Loc = &locations[LocNo]; 1015 if (!Loc->isReg() || Loc->getReg() != OldReg) 1016 continue; 1017 DidChange |= splitLocation(LocNo, NewRegs, LIS); 1018 } 1019 return DidChange; 1020 } 1021 1022 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) { 1023 bool DidChange = false; 1024 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) 1025 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); 1026 1027 if (!DidChange) 1028 return; 1029 1030 // Map all of the new virtual registers. 1031 UserValue *UV = lookupVirtReg(OldReg); 1032 for (unsigned i = 0; i != NewRegs.size(); ++i) 1033 mapVirtReg(NewRegs[i], UV); 1034 } 1035 1036 void LiveDebugVariables:: 1037 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) { 1038 if (pImpl) 1039 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); 1040 } 1041 1042 void UserValue::rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI, 1043 BitVector &SpilledLocations) { 1044 // Build a set of new locations with new numbers so we can coalesce our 1045 // IntervalMap if two vreg intervals collapse to the same physical location. 1046 // Use MapVector instead of SetVector because MapVector::insert returns the 1047 // position of the previously or newly inserted element. The boolean value 1048 // tracks if the location was produced by a spill. 1049 // FIXME: This will be problematic if we ever support direct and indirect 1050 // frame index locations, i.e. expressing both variables in memory and 1051 // 'int x, *px = &x'. The "spilled" bit must become part of the location. 1052 MapVector<MachineOperand, bool> NewLocations; 1053 SmallVector<unsigned, 4> LocNoMap(locations.size()); 1054 for (unsigned I = 0, E = locations.size(); I != E; ++I) { 1055 bool Spilled = false; 1056 MachineOperand Loc = locations[I]; 1057 // Only virtual registers are rewritten. 1058 if (Loc.isReg() && Loc.getReg() && 1059 TargetRegisterInfo::isVirtualRegister(Loc.getReg())) { 1060 unsigned VirtReg = Loc.getReg(); 1061 if (VRM.isAssignedReg(VirtReg) && 1062 TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) { 1063 // This can create a %noreg operand in rare cases when the sub-register 1064 // index is no longer available. That means the user value is in a 1065 // non-existent sub-register, and %noreg is exactly what we want. 1066 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); 1067 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { 1068 // FIXME: Translate SubIdx to a stackslot offset. 1069 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); 1070 Spilled = true; 1071 } else { 1072 Loc.setReg(0); 1073 Loc.setSubReg(0); 1074 } 1075 } 1076 1077 // Insert this location if it doesn't already exist and record a mapping 1078 // from the old number to the new number. 1079 auto InsertResult = NewLocations.insert({Loc, Spilled}); 1080 unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first); 1081 LocNoMap[I] = NewLocNo; 1082 } 1083 1084 // Rewrite the locations and record which ones were spill slots. 1085 locations.clear(); 1086 SpilledLocations.clear(); 1087 SpilledLocations.resize(NewLocations.size()); 1088 for (auto &Pair : NewLocations) { 1089 locations.push_back(Pair.first); 1090 if (Pair.second) { 1091 unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair); 1092 SpilledLocations.set(NewLocNo); 1093 } 1094 } 1095 1096 // Update the interval map, but only coalesce left, since intervals to the 1097 // right use the old location numbers. This should merge two contiguous 1098 // DBG_VALUE intervals with different vregs that were allocated to the same 1099 // physical register. 1100 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 1101 DbgValueLocation Loc = I.value(); 1102 unsigned NewLocNo = LocNoMap[Loc.locNo()]; 1103 I.setValueUnchecked(Loc.changeLocNo(NewLocNo)); 1104 I.setStart(I.start()); 1105 } 1106 } 1107 1108 /// Find an iterator for inserting a DBG_VALUE instruction. 1109 static MachineBasicBlock::iterator 1110 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, 1111 LiveIntervals &LIS) { 1112 SlotIndex Start = LIS.getMBBStartIdx(MBB); 1113 Idx = Idx.getBaseIndex(); 1114 1115 // Try to find an insert location by going backwards from Idx. 1116 MachineInstr *MI; 1117 while (!(MI = LIS.getInstructionFromIndex(Idx))) { 1118 // We've reached the beginning of MBB. 1119 if (Idx == Start) { 1120 MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 1121 return I; 1122 } 1123 Idx = Idx.getPrevIndex(); 1124 } 1125 1126 // Don't insert anything after the first terminator, though. 1127 return MI->isTerminator() ? MBB->getFirstTerminator() : 1128 std::next(MachineBasicBlock::iterator(MI)); 1129 } 1130 1131 /// Find an iterator for inserting the next DBG_VALUE instruction 1132 /// (or end if no more insert locations found). 1133 static MachineBasicBlock::iterator 1134 findNextInsertLocation(MachineBasicBlock *MBB, 1135 MachineBasicBlock::iterator I, 1136 SlotIndex StopIdx, MachineOperand &LocMO, 1137 LiveIntervals &LIS, 1138 const TargetRegisterInfo &TRI) { 1139 if (!LocMO.isReg()) 1140 return MBB->instr_end(); 1141 unsigned Reg = LocMO.getReg(); 1142 1143 // Find the next instruction in the MBB that define the register Reg. 1144 while (I != MBB->end() && !I->isTerminator()) { 1145 if (!LIS.isNotInMIMap(*I) && 1146 SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I))) 1147 break; 1148 if (I->definesRegister(Reg, &TRI)) 1149 // The insert location is directly after the instruction/bundle. 1150 return std::next(I); 1151 ++I; 1152 } 1153 return MBB->end(); 1154 } 1155 1156 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 1157 SlotIndex StopIdx, 1158 DbgValueLocation Loc, bool Spilled, 1159 LiveIntervals &LIS, 1160 const TargetInstrInfo &TII, 1161 const TargetRegisterInfo &TRI) { 1162 SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB); 1163 // Only search within the current MBB. 1164 StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx; 1165 MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS); 1166 MachineOperand &MO = locations[Loc.locNo()]; 1167 ++NumInsertedDebugValues; 1168 1169 assert(cast<DILocalVariable>(Variable) 1170 ->isValidLocationForIntrinsic(getDebugLoc()) && 1171 "Expected inlined-at fields to agree"); 1172 1173 // If the location was spilled, the new DBG_VALUE will be indirect. If the 1174 // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate 1175 // that the original virtual register was a pointer. 1176 const DIExpression *Expr = Expression; 1177 bool IsIndirect = Loc.wasIndirect(); 1178 if (Spilled) { 1179 if (IsIndirect) 1180 Expr = DIExpression::prepend(Expr, DIExpression::WithDeref); 1181 IsIndirect = true; 1182 } 1183 1184 assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index"); 1185 1186 do { 1187 MachineInstrBuilder MIB = 1188 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE)) 1189 .add(MO); 1190 if (IsIndirect) 1191 MIB.addImm(0U); 1192 else 1193 MIB.addReg(0U, RegState::Debug); 1194 MIB.addMetadata(Variable).addMetadata(Expr); 1195 1196 // Continue and insert DBG_VALUES after every redefinition of register 1197 // associated with the debug value within the range 1198 I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI); 1199 } while (I != MBB->end()); 1200 } 1201 1202 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 1203 const TargetInstrInfo &TII, 1204 const TargetRegisterInfo &TRI, 1205 const BitVector &SpilledLocations) { 1206 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); 1207 1208 for (LocMap::const_iterator I = locInts.begin(); I.valid();) { 1209 SlotIndex Start = I.start(); 1210 SlotIndex Stop = I.stop(); 1211 DbgValueLocation Loc = I.value(); 1212 bool Spilled = !Loc.isUndef() ? SpilledLocations.test(Loc.locNo()) : false; 1213 1214 // If the interval start was trimmed to the lexical scope insert the 1215 // DBG_VALUE at the previous index (otherwise it appears after the 1216 // first instruction in the range). 1217 if (trimmedDefs.count(Start)) 1218 Start = Start.getPrevIndex(); 1219 1220 LLVM_DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << Loc.locNo()); 1221 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1222 SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); 1223 1224 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1225 insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, LIS, TII, TRI); 1226 // This interval may span multiple basic blocks. 1227 // Insert a DBG_VALUE into each one. 1228 while (Stop > MBBEnd) { 1229 // Move to the next block. 1230 Start = MBBEnd; 1231 if (++MBB == MFEnd) 1232 break; 1233 MBBEnd = LIS.getMBBEndIdx(&*MBB); 1234 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1235 insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, LIS, TII, TRI); 1236 } 1237 LLVM_DEBUG(dbgs() << '\n'); 1238 if (MBB == MFEnd) 1239 break; 1240 1241 ++I; 1242 } 1243 } 1244 1245 void LDVImpl::emitDebugValues(VirtRegMap *VRM) { 1246 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); 1247 if (!MF) 1248 return; 1249 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1250 BitVector SpilledLocations; 1251 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 1252 LLVM_DEBUG(userValues[i]->print(dbgs(), TRI)); 1253 userValues[i]->rewriteLocations(*VRM, *TRI, SpilledLocations); 1254 userValues[i]->emitDebugValues(VRM, *LIS, *TII, *TRI, SpilledLocations); 1255 } 1256 EmitDone = true; 1257 } 1258 1259 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { 1260 if (pImpl) 1261 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); 1262 } 1263 1264 bool LiveDebugVariables::doInitialization(Module &M) { 1265 return Pass::doInitialization(M); 1266 } 1267 1268 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1269 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { 1270 if (pImpl) 1271 static_cast<LDVImpl*>(pImpl)->print(dbgs()); 1272 } 1273 #endif 1274