xref: /llvm-project/llvm/lib/CodeGen/LiveDebugVariables.cpp (revision bdf0c001876c5801e107f327fd0f7cee9658d6c5)
1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveDebugVariables analysis.
11 //
12 // Remove all DBG_VALUE instructions referencing virtual registers and replace
13 // them with a data structure tracking where live user variables are kept - in a
14 // virtual register or in a stack slot.
15 //
16 // Allow the data structure to be updated during register allocation when values
17 // are moved between registers and stack slots. Finally emit new DBG_VALUE
18 // instructions after register allocation is complete.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "LiveDebugVariables.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/IntervalMap.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/CodeGen/LexicalScopes.h"
32 #include "llvm/CodeGen/LiveInterval.h"
33 #include "llvm/CodeGen/LiveIntervals.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineDominators.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/SlotIndexes.h"
42 #include "llvm/CodeGen/TargetInstrInfo.h"
43 #include "llvm/CodeGen/TargetOpcodes.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/VirtRegMap.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/MC/MCRegisterInfo.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <iterator>
61 #include <memory>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "livedebugvars"
67 
68 static cl::opt<bool>
69 EnableLDV("live-debug-variables", cl::init(true),
70           cl::desc("Enable the live debug variables pass"), cl::Hidden);
71 
72 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted");
73 
74 char LiveDebugVariables::ID = 0;
75 
76 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE,
77                 "Debug Variable Analysis", false, false)
78 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
79 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
80 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE,
81                 "Debug Variable Analysis", false, false)
82 
83 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const {
84   AU.addRequired<MachineDominatorTree>();
85   AU.addRequiredTransitive<LiveIntervals>();
86   AU.setPreservesAll();
87   MachineFunctionPass::getAnalysisUsage(AU);
88 }
89 
90 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) {
91   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
92 }
93 
94 enum : unsigned { UndefLocNo = ~0U };
95 
96 /// Describes a location by number along with some flags about the original
97 /// usage of the location.
98 class DbgValueLocation {
99 public:
100   DbgValueLocation(unsigned LocNo, bool WasIndirect)
101       : LocNo(LocNo), WasIndirect(WasIndirect) {
102     static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing");
103     assert(locNo() == LocNo && "location truncation");
104   }
105 
106   DbgValueLocation() : LocNo(0), WasIndirect(0) {}
107 
108   unsigned locNo() const {
109     // Fix up the undef location number, which gets truncated.
110     return LocNo == INT_MAX ? UndefLocNo : LocNo;
111   }
112   bool wasIndirect() const { return WasIndirect; }
113   bool isUndef() const { return locNo() == UndefLocNo; }
114 
115   DbgValueLocation changeLocNo(unsigned NewLocNo) const {
116     return DbgValueLocation(NewLocNo, WasIndirect);
117   }
118 
119   friend inline bool operator==(const DbgValueLocation &LHS,
120                                 const DbgValueLocation &RHS) {
121     return LHS.LocNo == RHS.LocNo && LHS.WasIndirect == RHS.WasIndirect;
122   }
123 
124   friend inline bool operator!=(const DbgValueLocation &LHS,
125                                 const DbgValueLocation &RHS) {
126     return !(LHS == RHS);
127   }
128 
129 private:
130   unsigned LocNo : 31;
131   unsigned WasIndirect : 1;
132 };
133 
134 /// LocMap - Map of where a user value is live, and its location.
135 using LocMap = IntervalMap<SlotIndex, DbgValueLocation, 4>;
136 
137 namespace {
138 
139 class LDVImpl;
140 
141 /// UserValue - A user value is a part of a debug info user variable.
142 ///
143 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
144 /// holds part of a user variable. The part is identified by a byte offset.
145 ///
146 /// UserValues are grouped into equivalence classes for easier searching. Two
147 /// user values are related if they refer to the same variable, or if they are
148 /// held by the same virtual register. The equivalence class is the transitive
149 /// closure of that relation.
150 class UserValue {
151   const DILocalVariable *Variable; ///< The debug info variable we are part of.
152   const DIExpression *Expression; ///< Any complex address expression.
153   DebugLoc dl;            ///< The debug location for the variable. This is
154                           ///< used by dwarf writer to find lexical scope.
155   UserValue *leader;      ///< Equivalence class leader.
156   UserValue *next = nullptr; ///< Next value in equivalence class, or null.
157 
158   /// Numbered locations referenced by locmap.
159   SmallVector<MachineOperand, 4> locations;
160 
161   /// Map of slot indices where this value is live.
162   LocMap locInts;
163 
164   /// Set of interval start indexes that have been trimmed to the
165   /// lexical scope.
166   SmallSet<SlotIndex, 2> trimmedDefs;
167 
168   /// insertDebugValue - Insert a DBG_VALUE into MBB at Idx for LocNo.
169   void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
170                         SlotIndex StopIdx,
171                         DbgValueLocation Loc, bool Spilled, LiveIntervals &LIS,
172                         const TargetInstrInfo &TII,
173                         const TargetRegisterInfo &TRI);
174 
175   /// splitLocation - Replace OldLocNo ranges with NewRegs ranges where NewRegs
176   /// is live. Returns true if any changes were made.
177   bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
178                      LiveIntervals &LIS);
179 
180 public:
181   /// UserValue - Create a new UserValue.
182   UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L,
183             LocMap::Allocator &alloc)
184       : Variable(var), Expression(expr), dl(std::move(L)), leader(this),
185         locInts(alloc) {}
186 
187   /// getLeader - Get the leader of this value's equivalence class.
188   UserValue *getLeader() {
189     UserValue *l = leader;
190     while (l != l->leader)
191       l = l->leader;
192     return leader = l;
193   }
194 
195   /// getNext - Return the next UserValue in the equivalence class.
196   UserValue *getNext() const { return next; }
197 
198   /// match - Does this UserValue match the parameters?
199   bool match(const DILocalVariable *Var, const DIExpression *Expr,
200              const DILocation *IA) const {
201     // FIXME: The fragment should be part of the equivalence class, but not
202     // other things in the expression like stack values.
203     return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA;
204   }
205 
206   /// merge - Merge equivalence classes.
207   static UserValue *merge(UserValue *L1, UserValue *L2) {
208     L2 = L2->getLeader();
209     if (!L1)
210       return L2;
211     L1 = L1->getLeader();
212     if (L1 == L2)
213       return L1;
214     // Splice L2 before L1's members.
215     UserValue *End = L2;
216     while (End->next) {
217       End->leader = L1;
218       End = End->next;
219     }
220     End->leader = L1;
221     End->next = L1->next;
222     L1->next = L2;
223     return L1;
224   }
225 
226   /// getLocationNo - Return the location number that matches Loc.
227   unsigned getLocationNo(const MachineOperand &LocMO) {
228     if (LocMO.isReg()) {
229       if (LocMO.getReg() == 0)
230         return UndefLocNo;
231       // For register locations we dont care about use/def and other flags.
232       for (unsigned i = 0, e = locations.size(); i != e; ++i)
233         if (locations[i].isReg() &&
234             locations[i].getReg() == LocMO.getReg() &&
235             locations[i].getSubReg() == LocMO.getSubReg())
236           return i;
237     } else
238       for (unsigned i = 0, e = locations.size(); i != e; ++i)
239         if (LocMO.isIdenticalTo(locations[i]))
240           return i;
241     locations.push_back(LocMO);
242     // We are storing a MachineOperand outside a MachineInstr.
243     locations.back().clearParent();
244     // Don't store def operands.
245     if (locations.back().isReg()) {
246       if (locations.back().isDef())
247         locations.back().setIsDead(false);
248       locations.back().setIsUse();
249     }
250     return locations.size() - 1;
251   }
252 
253   /// mapVirtRegs - Ensure that all virtual register locations are mapped.
254   void mapVirtRegs(LDVImpl *LDV);
255 
256   /// addDef - Add a definition point to this value.
257   void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect) {
258     DbgValueLocation Loc(getLocationNo(LocMO), IsIndirect);
259     // Add a singular (Idx,Idx) -> Loc mapping.
260     LocMap::iterator I = locInts.find(Idx);
261     if (!I.valid() || I.start() != Idx)
262       I.insert(Idx, Idx.getNextSlot(), Loc);
263     else
264       // A later DBG_VALUE at the same SlotIndex overrides the old location.
265       I.setValue(Loc);
266   }
267 
268   /// extendDef - Extend the current definition as far as possible down.
269   /// Stop when meeting an existing def or when leaving the live
270   /// range of VNI.
271   /// End points where VNI is no longer live are added to Kills.
272   /// @param Idx   Starting point for the definition.
273   /// @param Loc   Location number to propagate.
274   /// @param LR    Restrict liveness to where LR has the value VNI. May be null.
275   /// @param VNI   When LR is not null, this is the value to restrict to.
276   /// @param Kills Append end points of VNI's live range to Kills.
277   /// @param LIS   Live intervals analysis.
278   void extendDef(SlotIndex Idx, DbgValueLocation Loc,
279                  LiveRange *LR, const VNInfo *VNI,
280                  SmallVectorImpl<SlotIndex> *Kills,
281                  LiveIntervals &LIS);
282 
283   /// addDefsFromCopies - The value in LI/LocNo may be copies to other
284   /// registers. Determine if any of the copies are available at the kill
285   /// points, and add defs if possible.
286   /// @param LI      Scan for copies of the value in LI->reg.
287   /// @param LocNo   Location number of LI->reg.
288   /// @param WasIndirect Indicates if the original use of LI->reg was indirect
289   /// @param Kills   Points where the range of LocNo could be extended.
290   /// @param NewDefs Append (Idx, LocNo) of inserted defs here.
291   void addDefsFromCopies(
292       LiveInterval *LI, unsigned LocNo, bool WasIndirect,
293       const SmallVectorImpl<SlotIndex> &Kills,
294       SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
295       MachineRegisterInfo &MRI, LiveIntervals &LIS);
296 
297   /// computeIntervals - Compute the live intervals of all locations after
298   /// collecting all their def points.
299   void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
300                         LiveIntervals &LIS, LexicalScopes &LS);
301 
302   /// splitRegister - Replace OldReg ranges with NewRegs ranges where NewRegs is
303   /// live. Returns true if any changes were made.
304   bool splitRegister(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
305                      LiveIntervals &LIS);
306 
307   /// rewriteLocations - Rewrite virtual register locations according to the
308   /// provided virtual register map. Record which locations were spilled.
309   void rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI,
310                         BitVector &SpilledLocations);
311 
312   /// emitDebugValues - Recreate DBG_VALUE instruction from data structures.
313   void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
314                        const TargetInstrInfo &TII,
315                        const TargetRegisterInfo &TRI,
316                        const BitVector &SpilledLocations);
317 
318   /// getDebugLoc - Return DebugLoc of this UserValue.
319   DebugLoc getDebugLoc() { return dl;}
320 
321   void print(raw_ostream &, const TargetRegisterInfo *);
322 };
323 
324 /// LDVImpl - Implementation of the LiveDebugVariables pass.
325 class LDVImpl {
326   LiveDebugVariables &pass;
327   LocMap::Allocator allocator;
328   MachineFunction *MF = nullptr;
329   LiveIntervals *LIS;
330   const TargetRegisterInfo *TRI;
331 
332   /// Whether emitDebugValues is called.
333   bool EmitDone = false;
334 
335   /// Whether the machine function is modified during the pass.
336   bool ModifiedMF = false;
337 
338   /// userValues - All allocated UserValue instances.
339   SmallVector<std::unique_ptr<UserValue>, 8> userValues;
340 
341   /// Map virtual register to eq class leader.
342   using VRMap = DenseMap<unsigned, UserValue *>;
343   VRMap virtRegToEqClass;
344 
345   /// Map user variable to eq class leader.
346   using UVMap = DenseMap<const DILocalVariable *, UserValue *>;
347   UVMap userVarMap;
348 
349   /// getUserValue - Find or create a UserValue.
350   UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr,
351                           const DebugLoc &DL);
352 
353   /// lookupVirtReg - Find the EC leader for VirtReg or null.
354   UserValue *lookupVirtReg(unsigned VirtReg);
355 
356   /// handleDebugValue - Add DBG_VALUE instruction to our maps.
357   /// @param MI  DBG_VALUE instruction
358   /// @param Idx Last valid SLotIndex before instruction.
359   /// @return    True if the DBG_VALUE instruction should be deleted.
360   bool handleDebugValue(MachineInstr &MI, SlotIndex Idx);
361 
362   /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding
363   /// a UserValue def for each instruction.
364   /// @param mf MachineFunction to be scanned.
365   /// @return True if any debug values were found.
366   bool collectDebugValues(MachineFunction &mf);
367 
368   /// computeIntervals - Compute the live intervals of all user values after
369   /// collecting all their def points.
370   void computeIntervals();
371 
372 public:
373   LDVImpl(LiveDebugVariables *ps) : pass(*ps) {}
374 
375   bool runOnMachineFunction(MachineFunction &mf);
376 
377   /// clear - Release all memory.
378   void clear() {
379     MF = nullptr;
380     userValues.clear();
381     virtRegToEqClass.clear();
382     userVarMap.clear();
383     // Make sure we call emitDebugValues if the machine function was modified.
384     assert((!ModifiedMF || EmitDone) &&
385            "Dbg values are not emitted in LDV");
386     EmitDone = false;
387     ModifiedMF = false;
388   }
389 
390   /// mapVirtReg - Map virtual register to an equivalence class.
391   void mapVirtReg(unsigned VirtReg, UserValue *EC);
392 
393   /// splitRegister -  Replace all references to OldReg with NewRegs.
394   void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs);
395 
396   /// emitDebugValues - Recreate DBG_VALUE instruction from data structures.
397   void emitDebugValues(VirtRegMap *VRM);
398 
399   void print(raw_ostream&);
400 };
401 
402 } // end anonymous namespace
403 
404 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
405 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS,
406                           const LLVMContext &Ctx) {
407   if (!DL)
408     return;
409 
410   auto *Scope = cast<DIScope>(DL.getScope());
411   // Omit the directory, because it's likely to be long and uninteresting.
412   CommentOS << Scope->getFilename();
413   CommentOS << ':' << DL.getLine();
414   if (DL.getCol() != 0)
415     CommentOS << ':' << DL.getCol();
416 
417   DebugLoc InlinedAtDL = DL.getInlinedAt();
418   if (!InlinedAtDL)
419     return;
420 
421   CommentOS << " @[ ";
422   printDebugLoc(InlinedAtDL, CommentOS, Ctx);
423   CommentOS << " ]";
424 }
425 
426 static void printExtendedName(raw_ostream &OS, const DILocalVariable *V,
427                               const DILocation *DL) {
428   const LLVMContext &Ctx = V->getContext();
429   StringRef Res = V->getName();
430   if (!Res.empty())
431     OS << Res << "," << V->getLine();
432   if (auto *InlinedAt = DL->getInlinedAt()) {
433     if (DebugLoc InlinedAtDL = InlinedAt) {
434       OS << " @[";
435       printDebugLoc(InlinedAtDL, OS, Ctx);
436       OS << "]";
437     }
438   }
439 }
440 
441 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
442   auto *DV = cast<DILocalVariable>(Variable);
443   OS << "!\"";
444   printExtendedName(OS, DV, dl);
445 
446   OS << "\"\t";
447   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
448     OS << " [" << I.start() << ';' << I.stop() << "):";
449     if (I.value().isUndef())
450       OS << "undef";
451     else {
452       OS << I.value().locNo();
453       if (I.value().wasIndirect())
454         OS << " ind";
455     }
456   }
457   for (unsigned i = 0, e = locations.size(); i != e; ++i) {
458     OS << " Loc" << i << '=';
459     locations[i].print(OS, TRI);
460   }
461   OS << '\n';
462 }
463 
464 void LDVImpl::print(raw_ostream &OS) {
465   OS << "********** DEBUG VARIABLES **********\n";
466   for (unsigned i = 0, e = userValues.size(); i != e; ++i)
467     userValues[i]->print(OS, TRI);
468 }
469 #endif
470 
471 void UserValue::mapVirtRegs(LDVImpl *LDV) {
472   for (unsigned i = 0, e = locations.size(); i != e; ++i)
473     if (locations[i].isReg() &&
474         TargetRegisterInfo::isVirtualRegister(locations[i].getReg()))
475       LDV->mapVirtReg(locations[i].getReg(), this);
476 }
477 
478 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var,
479                                  const DIExpression *Expr, const DebugLoc &DL) {
480   UserValue *&Leader = userVarMap[Var];
481   if (Leader) {
482     UserValue *UV = Leader->getLeader();
483     Leader = UV;
484     for (; UV; UV = UV->getNext())
485       if (UV->match(Var, Expr, DL->getInlinedAt()))
486         return UV;
487   }
488 
489   userValues.push_back(
490       llvm::make_unique<UserValue>(Var, Expr, DL, allocator));
491   UserValue *UV = userValues.back().get();
492   Leader = UserValue::merge(Leader, UV);
493   return UV;
494 }
495 
496 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) {
497   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs");
498   UserValue *&Leader = virtRegToEqClass[VirtReg];
499   Leader = UserValue::merge(Leader, EC);
500 }
501 
502 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) {
503   if (UserValue *UV = virtRegToEqClass.lookup(VirtReg))
504     return UV->getLeader();
505   return nullptr;
506 }
507 
508 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) {
509   // DBG_VALUE loc, offset, variable
510   if (MI.getNumOperands() != 4 ||
511       !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) ||
512       !MI.getOperand(2).isMetadata()) {
513     DEBUG(dbgs() << "Can't handle " << MI);
514     return false;
515   }
516 
517   // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual
518   // register that hasn't been defined yet. If we do not remove those here, then
519   // the re-insertion of the DBG_VALUE instruction after register allocation
520   // will be incorrect.
521   // TODO: If earlier passes are corrected to generate sane debug information
522   // (and if the machine verifier is improved to catch this), then these checks
523   // could be removed or replaced by asserts.
524   bool Discard = false;
525   if (MI.getOperand(0).isReg() &&
526       TargetRegisterInfo::isVirtualRegister(MI.getOperand(0).getReg())) {
527     const unsigned Reg = MI.getOperand(0).getReg();
528     if (!LIS->hasInterval(Reg)) {
529       // The DBG_VALUE is described by a virtual register that does not have a
530       // live interval. Discard the DBG_VALUE.
531       Discard = true;
532       DEBUG(dbgs() << "Discarding debug info (no LIS interval): "
533             << Idx << " " << MI);
534     } else {
535       // The DBG_VALUE is only valid if either Reg is live out from Idx, or Reg
536       // is defined dead at Idx (where Idx is the slot index for the instruction
537       // preceeding the DBG_VALUE).
538       const LiveInterval &LI = LIS->getInterval(Reg);
539       LiveQueryResult LRQ = LI.Query(Idx);
540       if (!LRQ.valueOutOrDead()) {
541         // We have found a DBG_VALUE with the value in a virtual register that
542         // is not live. Discard the DBG_VALUE.
543         Discard = true;
544         DEBUG(dbgs() << "Discarding debug info (reg not live): "
545               << Idx << " " << MI);
546       }
547     }
548   }
549 
550   // Get or create the UserValue for (variable,offset) here.
551   bool IsIndirect = MI.getOperand(1).isImm();
552   if (IsIndirect)
553     assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
554   const DILocalVariable *Var = MI.getDebugVariable();
555   const DIExpression *Expr = MI.getDebugExpression();
556   UserValue *UV =
557       getUserValue(Var, Expr, MI.getDebugLoc());
558   if (!Discard)
559     UV->addDef(Idx, MI.getOperand(0), IsIndirect);
560   else
561     UV->addDef(Idx, MachineOperand::CreateReg(0U, RegState::Debug), false);
562   return true;
563 }
564 
565 bool LDVImpl::collectDebugValues(MachineFunction &mf) {
566   bool Changed = false;
567   for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE;
568        ++MFI) {
569     MachineBasicBlock *MBB = &*MFI;
570     for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end();
571          MBBI != MBBE;) {
572       if (!MBBI->isDebugValue()) {
573         ++MBBI;
574         continue;
575       }
576       // DBG_VALUE has no slot index, use the previous instruction instead.
577       SlotIndex Idx =
578           MBBI == MBB->begin()
579               ? LIS->getMBBStartIdx(MBB)
580               : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot();
581       // Handle consecutive DBG_VALUE instructions with the same slot index.
582       do {
583         if (handleDebugValue(*MBBI, Idx)) {
584           MBBI = MBB->erase(MBBI);
585           Changed = true;
586         } else
587           ++MBBI;
588       } while (MBBI != MBBE && MBBI->isDebugValue());
589     }
590   }
591   return Changed;
592 }
593 
594 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a
595 /// data-flow analysis to propagate them beyond basic block boundaries.
596 void UserValue::extendDef(SlotIndex Idx, DbgValueLocation Loc, LiveRange *LR,
597                           const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills,
598                           LiveIntervals &LIS) {
599   SlotIndex Start = Idx;
600   MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
601   SlotIndex Stop = LIS.getMBBEndIdx(MBB);
602   LocMap::iterator I = locInts.find(Start);
603 
604   // Limit to VNI's live range.
605   bool ToEnd = true;
606   if (LR && VNI) {
607     LiveInterval::Segment *Segment = LR->getSegmentContaining(Start);
608     if (!Segment || Segment->valno != VNI) {
609       if (Kills)
610         Kills->push_back(Start);
611       return;
612     }
613     if (Segment->end < Stop) {
614       Stop = Segment->end;
615       ToEnd = false;
616     }
617   }
618 
619   // There could already be a short def at Start.
620   if (I.valid() && I.start() <= Start) {
621     // Stop when meeting a different location or an already extended interval.
622     Start = Start.getNextSlot();
623     if (I.value() != Loc || I.stop() != Start)
624       return;
625     // This is a one-slot placeholder. Just skip it.
626     ++I;
627   }
628 
629   // Limited by the next def.
630   if (I.valid() && I.start() < Stop) {
631     Stop = I.start();
632     ToEnd = false;
633   }
634   // Limited by VNI's live range.
635   else if (!ToEnd && Kills)
636     Kills->push_back(Stop);
637 
638   if (Start < Stop)
639     I.insert(Start, Stop, Loc);
640 }
641 
642 void UserValue::addDefsFromCopies(
643     LiveInterval *LI, unsigned LocNo, bool WasIndirect,
644     const SmallVectorImpl<SlotIndex> &Kills,
645     SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
646     MachineRegisterInfo &MRI, LiveIntervals &LIS) {
647   if (Kills.empty())
648     return;
649   // Don't track copies from physregs, there are too many uses.
650   if (!TargetRegisterInfo::isVirtualRegister(LI->reg))
651     return;
652 
653   // Collect all the (vreg, valno) pairs that are copies of LI.
654   SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues;
655   for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) {
656     MachineInstr *MI = MO.getParent();
657     // Copies of the full value.
658     if (MO.getSubReg() || !MI->isCopy())
659       continue;
660     unsigned DstReg = MI->getOperand(0).getReg();
661 
662     // Don't follow copies to physregs. These are usually setting up call
663     // arguments, and the argument registers are always call clobbered. We are
664     // better off in the source register which could be a callee-saved register,
665     // or it could be spilled.
666     if (!TargetRegisterInfo::isVirtualRegister(DstReg))
667       continue;
668 
669     // Is LocNo extended to reach this copy? If not, another def may be blocking
670     // it, or we are looking at a wrong value of LI.
671     SlotIndex Idx = LIS.getInstructionIndex(*MI);
672     LocMap::iterator I = locInts.find(Idx.getRegSlot(true));
673     if (!I.valid() || I.value().locNo() != LocNo)
674       continue;
675 
676     if (!LIS.hasInterval(DstReg))
677       continue;
678     LiveInterval *DstLI = &LIS.getInterval(DstReg);
679     const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot());
680     assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value");
681     CopyValues.push_back(std::make_pair(DstLI, DstVNI));
682   }
683 
684   if (CopyValues.empty())
685     return;
686 
687   DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI << '\n');
688 
689   // Try to add defs of the copied values for each kill point.
690   for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
691     SlotIndex Idx = Kills[i];
692     for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) {
693       LiveInterval *DstLI = CopyValues[j].first;
694       const VNInfo *DstVNI = CopyValues[j].second;
695       if (DstLI->getVNInfoAt(Idx) != DstVNI)
696         continue;
697       // Check that there isn't already a def at Idx
698       LocMap::iterator I = locInts.find(Idx);
699       if (I.valid() && I.start() <= Idx)
700         continue;
701       DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #"
702                    << DstVNI->id << " in " << *DstLI << '\n');
703       MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def);
704       assert(CopyMI && CopyMI->isCopy() && "Bad copy value");
705       unsigned LocNo = getLocationNo(CopyMI->getOperand(0));
706       DbgValueLocation NewLoc(LocNo, WasIndirect);
707       I.insert(Idx, Idx.getNextSlot(), NewLoc);
708       NewDefs.push_back(std::make_pair(Idx, NewLoc));
709       break;
710     }
711   }
712 }
713 
714 void UserValue::computeIntervals(MachineRegisterInfo &MRI,
715                                  const TargetRegisterInfo &TRI,
716                                  LiveIntervals &LIS, LexicalScopes &LS) {
717   SmallVector<std::pair<SlotIndex, DbgValueLocation>, 16> Defs;
718 
719   // Collect all defs to be extended (Skipping undefs).
720   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I)
721     if (!I.value().isUndef())
722       Defs.push_back(std::make_pair(I.start(), I.value()));
723 
724   // Extend all defs, and possibly add new ones along the way.
725   for (unsigned i = 0; i != Defs.size(); ++i) {
726     SlotIndex Idx = Defs[i].first;
727     DbgValueLocation Loc = Defs[i].second;
728     const MachineOperand &LocMO = locations[Loc.locNo()];
729 
730     if (!LocMO.isReg()) {
731       extendDef(Idx, Loc, nullptr, nullptr, nullptr, LIS);
732       continue;
733     }
734 
735     // Register locations are constrained to where the register value is live.
736     if (TargetRegisterInfo::isVirtualRegister(LocMO.getReg())) {
737       LiveInterval *LI = nullptr;
738       const VNInfo *VNI = nullptr;
739       if (LIS.hasInterval(LocMO.getReg())) {
740         LI = &LIS.getInterval(LocMO.getReg());
741         VNI = LI->getVNInfoAt(Idx);
742       }
743       SmallVector<SlotIndex, 16> Kills;
744       extendDef(Idx, Loc, LI, VNI, &Kills, LIS);
745       if (LI)
746         addDefsFromCopies(LI, Loc.locNo(), Loc.wasIndirect(), Kills, Defs, MRI,
747                           LIS);
748       continue;
749     }
750 
751     // For physregs, we only mark the start slot idx. DwarfDebug will see it
752     // as if the DBG_VALUE is valid up until the end of the basic block, or
753     // the next def of the physical register. So we do not need to extend the
754     // range. It might actually happen that the DBG_VALUE is the last use of
755     // the physical register (e.g. if this is an unused input argument to a
756     // function).
757   }
758 
759   // Erase all the undefs.
760   for (LocMap::iterator I = locInts.begin(); I.valid();)
761     if (I.value().isUndef())
762       I.erase();
763     else
764       ++I;
765 
766   // The computed intervals may extend beyond the range of the debug
767   // location's lexical scope. In this case, splitting of an interval
768   // can result in an interval outside of the scope being created,
769   // causing extra unnecessary DBG_VALUEs to be emitted. To prevent
770   // this, trim the intervals to the lexical scope.
771 
772   LexicalScope *Scope = LS.findLexicalScope(dl);
773   if (!Scope)
774     return;
775 
776   SlotIndex PrevEnd;
777   LocMap::iterator I = locInts.begin();
778 
779   // Iterate over the lexical scope ranges. Each time round the loop
780   // we check the intervals for overlap with the end of the previous
781   // range and the start of the next. The first range is handled as
782   // a special case where there is no PrevEnd.
783   for (const InsnRange &Range : Scope->getRanges()) {
784     SlotIndex RStart = LIS.getInstructionIndex(*Range.first);
785     SlotIndex REnd = LIS.getInstructionIndex(*Range.second);
786 
787     // At the start of each iteration I has been advanced so that
788     // I.stop() >= PrevEnd. Check for overlap.
789     if (PrevEnd && I.start() < PrevEnd) {
790       SlotIndex IStop = I.stop();
791       DbgValueLocation Loc = I.value();
792 
793       // Stop overlaps previous end - trim the end of the interval to
794       // the scope range.
795       I.setStopUnchecked(PrevEnd);
796       ++I;
797 
798       // If the interval also overlaps the start of the "next" (i.e.
799       // current) range create a new interval for the remainder (which
800       // may be further trimmed).
801       if (RStart < IStop)
802         I.insert(RStart, IStop, Loc);
803     }
804 
805     // Advance I so that I.stop() >= RStart, and check for overlap.
806     I.advanceTo(RStart);
807     if (!I.valid())
808       return;
809 
810     if (I.start() < RStart) {
811       // Interval start overlaps range - trim to the scope range.
812       I.setStartUnchecked(RStart);
813       // Remember that this interval was trimmed.
814       trimmedDefs.insert(RStart);
815     }
816 
817     // The end of a lexical scope range is the last instruction in the
818     // range. To convert to an interval we need the index of the
819     // instruction after it.
820     REnd = REnd.getNextIndex();
821 
822     // Advance I to first interval outside current range.
823     I.advanceTo(REnd);
824     if (!I.valid())
825       return;
826 
827     PrevEnd = REnd;
828   }
829 
830   // Check for overlap with end of final range.
831   if (PrevEnd && I.start() < PrevEnd)
832     I.setStopUnchecked(PrevEnd);
833 }
834 
835 void LDVImpl::computeIntervals() {
836   LexicalScopes LS;
837   LS.initialize(*MF);
838 
839   for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
840     userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS);
841     userValues[i]->mapVirtRegs(this);
842   }
843 }
844 
845 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) {
846   clear();
847   MF = &mf;
848   LIS = &pass.getAnalysis<LiveIntervals>();
849   TRI = mf.getSubtarget().getRegisterInfo();
850   DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
851                << mf.getName() << " **********\n");
852 
853   bool Changed = collectDebugValues(mf);
854   computeIntervals();
855   DEBUG(print(dbgs()));
856   ModifiedMF = Changed;
857   return Changed;
858 }
859 
860 static void removeDebugValues(MachineFunction &mf) {
861   for (MachineBasicBlock &MBB : mf) {
862     for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) {
863       if (!MBBI->isDebugValue()) {
864         ++MBBI;
865         continue;
866       }
867       MBBI = MBB.erase(MBBI);
868     }
869   }
870 }
871 
872 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
873   if (!EnableLDV)
874     return false;
875   if (!mf.getFunction().getSubprogram()) {
876     removeDebugValues(mf);
877     return false;
878   }
879   if (!pImpl)
880     pImpl = new LDVImpl(this);
881   return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf);
882 }
883 
884 void LiveDebugVariables::releaseMemory() {
885   if (pImpl)
886     static_cast<LDVImpl*>(pImpl)->clear();
887 }
888 
889 LiveDebugVariables::~LiveDebugVariables() {
890   if (pImpl)
891     delete static_cast<LDVImpl*>(pImpl);
892 }
893 
894 //===----------------------------------------------------------------------===//
895 //                           Live Range Splitting
896 //===----------------------------------------------------------------------===//
897 
898 bool
899 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
900                          LiveIntervals& LIS) {
901   DEBUG({
902     dbgs() << "Splitting Loc" << OldLocNo << '\t';
903     print(dbgs(), nullptr);
904   });
905   bool DidChange = false;
906   LocMap::iterator LocMapI;
907   LocMapI.setMap(locInts);
908   for (unsigned i = 0; i != NewRegs.size(); ++i) {
909     LiveInterval *LI = &LIS.getInterval(NewRegs[i]);
910     if (LI->empty())
911       continue;
912 
913     // Don't allocate the new LocNo until it is needed.
914     unsigned NewLocNo = UndefLocNo;
915 
916     // Iterate over the overlaps between locInts and LI.
917     LocMapI.find(LI->beginIndex());
918     if (!LocMapI.valid())
919       continue;
920     LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start());
921     LiveInterval::iterator LIE = LI->end();
922     while (LocMapI.valid() && LII != LIE) {
923       // At this point, we know that LocMapI.stop() > LII->start.
924       LII = LI->advanceTo(LII, LocMapI.start());
925       if (LII == LIE)
926         break;
927 
928       // Now LII->end > LocMapI.start(). Do we have an overlap?
929       if (LocMapI.value().locNo() == OldLocNo && LII->start < LocMapI.stop()) {
930         // Overlapping correct location. Allocate NewLocNo now.
931         if (NewLocNo == UndefLocNo) {
932           MachineOperand MO = MachineOperand::CreateReg(LI->reg, false);
933           MO.setSubReg(locations[OldLocNo].getSubReg());
934           NewLocNo = getLocationNo(MO);
935           DidChange = true;
936         }
937 
938         SlotIndex LStart = LocMapI.start();
939         SlotIndex LStop  = LocMapI.stop();
940         DbgValueLocation OldLoc = LocMapI.value();
941 
942         // Trim LocMapI down to the LII overlap.
943         if (LStart < LII->start)
944           LocMapI.setStartUnchecked(LII->start);
945         if (LStop > LII->end)
946           LocMapI.setStopUnchecked(LII->end);
947 
948         // Change the value in the overlap. This may trigger coalescing.
949         LocMapI.setValue(OldLoc.changeLocNo(NewLocNo));
950 
951         // Re-insert any removed OldLocNo ranges.
952         if (LStart < LocMapI.start()) {
953           LocMapI.insert(LStart, LocMapI.start(), OldLoc);
954           ++LocMapI;
955           assert(LocMapI.valid() && "Unexpected coalescing");
956         }
957         if (LStop > LocMapI.stop()) {
958           ++LocMapI;
959           LocMapI.insert(LII->end, LStop, OldLoc);
960           --LocMapI;
961         }
962       }
963 
964       // Advance to the next overlap.
965       if (LII->end < LocMapI.stop()) {
966         if (++LII == LIE)
967           break;
968         LocMapI.advanceTo(LII->start);
969       } else {
970         ++LocMapI;
971         if (!LocMapI.valid())
972           break;
973         LII = LI->advanceTo(LII, LocMapI.start());
974       }
975     }
976   }
977 
978   // Finally, remove any remaining OldLocNo intervals and OldLocNo itself.
979   locations.erase(locations.begin() + OldLocNo);
980   LocMapI.goToBegin();
981   while (LocMapI.valid()) {
982     DbgValueLocation v = LocMapI.value();
983     if (v.locNo() == OldLocNo) {
984       DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';'
985                    << LocMapI.stop() << ")\n");
986       LocMapI.erase();
987     } else {
988       if (v.locNo() > OldLocNo)
989         LocMapI.setValueUnchecked(v.changeLocNo(v.locNo() - 1));
990       ++LocMapI;
991     }
992   }
993 
994   DEBUG({dbgs() << "Split result: \t"; print(dbgs(), nullptr);});
995   return DidChange;
996 }
997 
998 bool
999 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
1000                          LiveIntervals &LIS) {
1001   bool DidChange = false;
1002   // Split locations referring to OldReg. Iterate backwards so splitLocation can
1003   // safely erase unused locations.
1004   for (unsigned i = locations.size(); i ; --i) {
1005     unsigned LocNo = i-1;
1006     const MachineOperand *Loc = &locations[LocNo];
1007     if (!Loc->isReg() || Loc->getReg() != OldReg)
1008       continue;
1009     DidChange |= splitLocation(LocNo, NewRegs, LIS);
1010   }
1011   return DidChange;
1012 }
1013 
1014 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) {
1015   bool DidChange = false;
1016   for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext())
1017     DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS);
1018 
1019   if (!DidChange)
1020     return;
1021 
1022   // Map all of the new virtual registers.
1023   UserValue *UV = lookupVirtReg(OldReg);
1024   for (unsigned i = 0; i != NewRegs.size(); ++i)
1025     mapVirtReg(NewRegs[i], UV);
1026 }
1027 
1028 void LiveDebugVariables::
1029 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) {
1030   if (pImpl)
1031     static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs);
1032 }
1033 
1034 void UserValue::rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI,
1035                                  BitVector &SpilledLocations) {
1036   // Build a set of new locations with new numbers so we can coalesce our
1037   // IntervalMap if two vreg intervals collapse to the same physical location.
1038   // Use MapVector instead of SetVector because MapVector::insert returns the
1039   // position of the previously or newly inserted element. The boolean value
1040   // tracks if the location was produced by a spill.
1041   // FIXME: This will be problematic if we ever support direct and indirect
1042   // frame index locations, i.e. expressing both variables in memory and
1043   // 'int x, *px = &x'. The "spilled" bit must become part of the location.
1044   MapVector<MachineOperand, bool> NewLocations;
1045   SmallVector<unsigned, 4> LocNoMap(locations.size());
1046   for (unsigned I = 0, E = locations.size(); I != E; ++I) {
1047     bool Spilled = false;
1048     MachineOperand Loc = locations[I];
1049     // Only virtual registers are rewritten.
1050     if (Loc.isReg() && Loc.getReg() &&
1051         TargetRegisterInfo::isVirtualRegister(Loc.getReg())) {
1052       unsigned VirtReg = Loc.getReg();
1053       if (VRM.isAssignedReg(VirtReg) &&
1054           TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) {
1055         // This can create a %noreg operand in rare cases when the sub-register
1056         // index is no longer available. That means the user value is in a
1057         // non-existent sub-register, and %noreg is exactly what we want.
1058         Loc.substPhysReg(VRM.getPhys(VirtReg), TRI);
1059       } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) {
1060         // FIXME: Translate SubIdx to a stackslot offset.
1061         Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg));
1062         Spilled = true;
1063       } else {
1064         Loc.setReg(0);
1065         Loc.setSubReg(0);
1066       }
1067     }
1068 
1069     // Insert this location if it doesn't already exist and record a mapping
1070     // from the old number to the new number.
1071     auto InsertResult = NewLocations.insert({Loc, Spilled});
1072     unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first);
1073     LocNoMap[I] = NewLocNo;
1074   }
1075 
1076   // Rewrite the locations and record which ones were spill slots.
1077   locations.clear();
1078   SpilledLocations.clear();
1079   SpilledLocations.resize(NewLocations.size());
1080   for (auto &Pair : NewLocations) {
1081     locations.push_back(Pair.first);
1082     if (Pair.second) {
1083       unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair);
1084       SpilledLocations.set(NewLocNo);
1085     }
1086   }
1087 
1088   // Update the interval map, but only coalesce left, since intervals to the
1089   // right use the old location numbers. This should merge two contiguous
1090   // DBG_VALUE intervals with different vregs that were allocated to the same
1091   // physical register.
1092   for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
1093     DbgValueLocation Loc = I.value();
1094     unsigned NewLocNo = LocNoMap[Loc.locNo()];
1095     I.setValueUnchecked(Loc.changeLocNo(NewLocNo));
1096     I.setStart(I.start());
1097   }
1098 }
1099 
1100 /// Find an iterator for inserting a DBG_VALUE instruction.
1101 static MachineBasicBlock::iterator
1102 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx,
1103                    LiveIntervals &LIS) {
1104   SlotIndex Start = LIS.getMBBStartIdx(MBB);
1105   Idx = Idx.getBaseIndex();
1106 
1107   // Try to find an insert location by going backwards from Idx.
1108   MachineInstr *MI;
1109   while (!(MI = LIS.getInstructionFromIndex(Idx))) {
1110     // We've reached the beginning of MBB.
1111     if (Idx == Start) {
1112       MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
1113       return I;
1114     }
1115     Idx = Idx.getPrevIndex();
1116   }
1117 
1118   // Don't insert anything after the first terminator, though.
1119   return MI->isTerminator() ? MBB->getFirstTerminator() :
1120                               std::next(MachineBasicBlock::iterator(MI));
1121 }
1122 
1123 /// Find an iterator for inserting the next DBG_VALUE instruction
1124 /// (or end if no more insert locations found).
1125 static MachineBasicBlock::iterator
1126 findNextInsertLocation(MachineBasicBlock *MBB,
1127                        MachineBasicBlock::iterator I,
1128                        SlotIndex StopIdx, MachineOperand &LocMO,
1129                        LiveIntervals &LIS,
1130                        const TargetRegisterInfo &TRI) {
1131   if (!LocMO.isReg())
1132     return MBB->instr_end();
1133   unsigned Reg = LocMO.getReg();
1134 
1135   // Find the next instruction in the MBB that define the register Reg.
1136   while (I != MBB->end() && !I->isTerminator()) {
1137     if (!LIS.isNotInMIMap(*I) &&
1138         SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I)))
1139       break;
1140     if (I->definesRegister(Reg, &TRI))
1141       // The insert location is directly after the instruction/bundle.
1142       return std::next(I);
1143     ++I;
1144   }
1145   return MBB->end();
1146 }
1147 
1148 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
1149                                  SlotIndex StopIdx,
1150                                  DbgValueLocation Loc, bool Spilled,
1151                                  LiveIntervals &LIS,
1152                                  const TargetInstrInfo &TII,
1153                                  const TargetRegisterInfo &TRI) {
1154   SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB);
1155   // Only search within the current MBB.
1156   StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx;
1157   MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS);
1158   MachineOperand &MO = locations[Loc.locNo()];
1159   ++NumInsertedDebugValues;
1160 
1161   assert(cast<DILocalVariable>(Variable)
1162              ->isValidLocationForIntrinsic(getDebugLoc()) &&
1163          "Expected inlined-at fields to agree");
1164 
1165   // If the location was spilled, the new DBG_VALUE will be indirect. If the
1166   // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate
1167   // that the original virtual register was a pointer.
1168   const DIExpression *Expr = Expression;
1169   bool IsIndirect = Loc.wasIndirect();
1170   if (Spilled) {
1171     if (IsIndirect)
1172       Expr = DIExpression::prepend(Expr, DIExpression::WithDeref);
1173     IsIndirect = true;
1174   }
1175 
1176   assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index");
1177 
1178   do {
1179     MachineInstrBuilder MIB =
1180       BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE))
1181           .add(MO);
1182     if (IsIndirect)
1183       MIB.addImm(0U);
1184     else
1185       MIB.addReg(0U, RegState::Debug);
1186     MIB.addMetadata(Variable).addMetadata(Expr);
1187 
1188     // Continue and insert DBG_VALUES after every redefinition of register
1189     // associated with the debug value within the range
1190     I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI);
1191   } while (I != MBB->end());
1192 }
1193 
1194 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
1195                                 const TargetInstrInfo &TII,
1196                                 const TargetRegisterInfo &TRI,
1197                                 const BitVector &SpilledLocations) {
1198   MachineFunction::iterator MFEnd = VRM->getMachineFunction().end();
1199 
1200   for (LocMap::const_iterator I = locInts.begin(); I.valid();) {
1201     SlotIndex Start = I.start();
1202     SlotIndex Stop = I.stop();
1203     DbgValueLocation Loc = I.value();
1204     bool Spilled = !Loc.isUndef() ? SpilledLocations.test(Loc.locNo()) : false;
1205 
1206     // If the interval start was trimmed to the lexical scope insert the
1207     // DBG_VALUE at the previous index (otherwise it appears after the
1208     // first instruction in the range).
1209     if (trimmedDefs.count(Start))
1210       Start = Start.getPrevIndex();
1211 
1212     DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << Loc.locNo());
1213     MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1214     SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB);
1215 
1216     DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1217     insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, LIS, TII, TRI);
1218     // This interval may span multiple basic blocks.
1219     // Insert a DBG_VALUE into each one.
1220     while (Stop > MBBEnd) {
1221       // Move to the next block.
1222       Start = MBBEnd;
1223       if (++MBB == MFEnd)
1224         break;
1225       MBBEnd = LIS.getMBBEndIdx(&*MBB);
1226       DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1227       insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, LIS, TII, TRI);
1228     }
1229     DEBUG(dbgs() << '\n');
1230     if (MBB == MFEnd)
1231       break;
1232 
1233     ++I;
1234   }
1235 }
1236 
1237 void LDVImpl::emitDebugValues(VirtRegMap *VRM) {
1238   DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
1239   if (!MF)
1240     return;
1241   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1242   BitVector SpilledLocations;
1243   for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
1244     DEBUG(userValues[i]->print(dbgs(), TRI));
1245     userValues[i]->rewriteLocations(*VRM, *TRI, SpilledLocations);
1246     userValues[i]->emitDebugValues(VRM, *LIS, *TII, *TRI, SpilledLocations);
1247   }
1248   EmitDone = true;
1249 }
1250 
1251 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) {
1252   if (pImpl)
1253     static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM);
1254 }
1255 
1256 bool LiveDebugVariables::doInitialization(Module &M) {
1257   return Pass::doInitialization(M);
1258 }
1259 
1260 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1261 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const {
1262   if (pImpl)
1263     static_cast<LDVImpl*>(pImpl)->print(dbgs());
1264 }
1265 #endif
1266