1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveDebugVariables analysis. 11 // 12 // Remove all DBG_VALUE instructions referencing virtual registers and replace 13 // them with a data structure tracking where live user variables are kept - in a 14 // virtual register or in a stack slot. 15 // 16 // Allow the data structure to be updated during register allocation when values 17 // are moved between registers and stack slots. Finally emit new DBG_VALUE 18 // instructions after register allocation is complete. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "LiveDebugVariables.h" 23 #include "llvm/ADT/ArrayRef.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/IntervalMap.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/CodeGen/LexicalScopes.h" 32 #include "llvm/CodeGen/LiveInterval.h" 33 #include "llvm/CodeGen/LiveIntervals.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineDominators.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/SlotIndexes.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetOpcodes.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/VirtRegMap.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/MC/MCRegisterInfo.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <iterator> 61 #include <memory> 62 #include <utility> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "livedebugvars" 67 68 static cl::opt<bool> 69 EnableLDV("live-debug-variables", cl::init(true), 70 cl::desc("Enable the live debug variables pass"), cl::Hidden); 71 72 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); 73 74 char LiveDebugVariables::ID = 0; 75 76 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE, 77 "Debug Variable Analysis", false, false) 78 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 79 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 80 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE, 81 "Debug Variable Analysis", false, false) 82 83 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { 84 AU.addRequired<MachineDominatorTree>(); 85 AU.addRequiredTransitive<LiveIntervals>(); 86 AU.setPreservesAll(); 87 MachineFunctionPass::getAnalysisUsage(AU); 88 } 89 90 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) { 91 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 92 } 93 94 enum : unsigned { UndefLocNo = ~0U }; 95 96 /// Describes a location by number along with some flags about the original 97 /// usage of the location. 98 class DbgValueLocation { 99 public: 100 DbgValueLocation(unsigned LocNo, bool WasIndirect) 101 : LocNo(LocNo), WasIndirect(WasIndirect) { 102 static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing"); 103 assert(locNo() == LocNo && "location truncation"); 104 } 105 106 DbgValueLocation() : LocNo(0), WasIndirect(0) {} 107 108 unsigned locNo() const { 109 // Fix up the undef location number, which gets truncated. 110 return LocNo == INT_MAX ? UndefLocNo : LocNo; 111 } 112 bool wasIndirect() const { return WasIndirect; } 113 bool isUndef() const { return locNo() == UndefLocNo; } 114 115 DbgValueLocation changeLocNo(unsigned NewLocNo) const { 116 return DbgValueLocation(NewLocNo, WasIndirect); 117 } 118 119 friend inline bool operator==(const DbgValueLocation &LHS, 120 const DbgValueLocation &RHS) { 121 return LHS.LocNo == RHS.LocNo && LHS.WasIndirect == RHS.WasIndirect; 122 } 123 124 friend inline bool operator!=(const DbgValueLocation &LHS, 125 const DbgValueLocation &RHS) { 126 return !(LHS == RHS); 127 } 128 129 private: 130 unsigned LocNo : 31; 131 unsigned WasIndirect : 1; 132 }; 133 134 /// LocMap - Map of where a user value is live, and its location. 135 using LocMap = IntervalMap<SlotIndex, DbgValueLocation, 4>; 136 137 namespace { 138 139 class LDVImpl; 140 141 /// UserValue - A user value is a part of a debug info user variable. 142 /// 143 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 144 /// holds part of a user variable. The part is identified by a byte offset. 145 /// 146 /// UserValues are grouped into equivalence classes for easier searching. Two 147 /// user values are related if they refer to the same variable, or if they are 148 /// held by the same virtual register. The equivalence class is the transitive 149 /// closure of that relation. 150 class UserValue { 151 const DILocalVariable *Variable; ///< The debug info variable we are part of. 152 const DIExpression *Expression; ///< Any complex address expression. 153 DebugLoc dl; ///< The debug location for the variable. This is 154 ///< used by dwarf writer to find lexical scope. 155 UserValue *leader; ///< Equivalence class leader. 156 UserValue *next = nullptr; ///< Next value in equivalence class, or null. 157 158 /// Numbered locations referenced by locmap. 159 SmallVector<MachineOperand, 4> locations; 160 161 /// Map of slot indices where this value is live. 162 LocMap locInts; 163 164 /// Set of interval start indexes that have been trimmed to the 165 /// lexical scope. 166 SmallSet<SlotIndex, 2> trimmedDefs; 167 168 /// insertDebugValue - Insert a DBG_VALUE into MBB at Idx for LocNo. 169 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 170 SlotIndex StopIdx, 171 DbgValueLocation Loc, bool Spilled, LiveIntervals &LIS, 172 const TargetInstrInfo &TII, 173 const TargetRegisterInfo &TRI); 174 175 /// splitLocation - Replace OldLocNo ranges with NewRegs ranges where NewRegs 176 /// is live. Returns true if any changes were made. 177 bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 178 LiveIntervals &LIS); 179 180 public: 181 /// UserValue - Create a new UserValue. 182 UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L, 183 LocMap::Allocator &alloc) 184 : Variable(var), Expression(expr), dl(std::move(L)), leader(this), 185 locInts(alloc) {} 186 187 /// getLeader - Get the leader of this value's equivalence class. 188 UserValue *getLeader() { 189 UserValue *l = leader; 190 while (l != l->leader) 191 l = l->leader; 192 return leader = l; 193 } 194 195 /// getNext - Return the next UserValue in the equivalence class. 196 UserValue *getNext() const { return next; } 197 198 /// match - Does this UserValue match the parameters? 199 bool match(const DILocalVariable *Var, const DIExpression *Expr, 200 const DILocation *IA) const { 201 // FIXME: The fragment should be part of the equivalence class, but not 202 // other things in the expression like stack values. 203 return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA; 204 } 205 206 /// merge - Merge equivalence classes. 207 static UserValue *merge(UserValue *L1, UserValue *L2) { 208 L2 = L2->getLeader(); 209 if (!L1) 210 return L2; 211 L1 = L1->getLeader(); 212 if (L1 == L2) 213 return L1; 214 // Splice L2 before L1's members. 215 UserValue *End = L2; 216 while (End->next) { 217 End->leader = L1; 218 End = End->next; 219 } 220 End->leader = L1; 221 End->next = L1->next; 222 L1->next = L2; 223 return L1; 224 } 225 226 /// getLocationNo - Return the location number that matches Loc. 227 unsigned getLocationNo(const MachineOperand &LocMO) { 228 if (LocMO.isReg()) { 229 if (LocMO.getReg() == 0) 230 return UndefLocNo; 231 // For register locations we dont care about use/def and other flags. 232 for (unsigned i = 0, e = locations.size(); i != e; ++i) 233 if (locations[i].isReg() && 234 locations[i].getReg() == LocMO.getReg() && 235 locations[i].getSubReg() == LocMO.getSubReg()) 236 return i; 237 } else 238 for (unsigned i = 0, e = locations.size(); i != e; ++i) 239 if (LocMO.isIdenticalTo(locations[i])) 240 return i; 241 locations.push_back(LocMO); 242 // We are storing a MachineOperand outside a MachineInstr. 243 locations.back().clearParent(); 244 // Don't store def operands. 245 if (locations.back().isReg()) { 246 if (locations.back().isDef()) 247 locations.back().setIsDead(false); 248 locations.back().setIsUse(); 249 } 250 return locations.size() - 1; 251 } 252 253 /// mapVirtRegs - Ensure that all virtual register locations are mapped. 254 void mapVirtRegs(LDVImpl *LDV); 255 256 /// addDef - Add a definition point to this value. 257 void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect) { 258 DbgValueLocation Loc(getLocationNo(LocMO), IsIndirect); 259 // Add a singular (Idx,Idx) -> Loc mapping. 260 LocMap::iterator I = locInts.find(Idx); 261 if (!I.valid() || I.start() != Idx) 262 I.insert(Idx, Idx.getNextSlot(), Loc); 263 else 264 // A later DBG_VALUE at the same SlotIndex overrides the old location. 265 I.setValue(Loc); 266 } 267 268 /// extendDef - Extend the current definition as far as possible down. 269 /// Stop when meeting an existing def or when leaving the live 270 /// range of VNI. 271 /// End points where VNI is no longer live are added to Kills. 272 /// @param Idx Starting point for the definition. 273 /// @param Loc Location number to propagate. 274 /// @param LR Restrict liveness to where LR has the value VNI. May be null. 275 /// @param VNI When LR is not null, this is the value to restrict to. 276 /// @param Kills Append end points of VNI's live range to Kills. 277 /// @param LIS Live intervals analysis. 278 void extendDef(SlotIndex Idx, DbgValueLocation Loc, 279 LiveRange *LR, const VNInfo *VNI, 280 SmallVectorImpl<SlotIndex> *Kills, 281 LiveIntervals &LIS); 282 283 /// addDefsFromCopies - The value in LI/LocNo may be copies to other 284 /// registers. Determine if any of the copies are available at the kill 285 /// points, and add defs if possible. 286 /// @param LI Scan for copies of the value in LI->reg. 287 /// @param LocNo Location number of LI->reg. 288 /// @param WasIndirect Indicates if the original use of LI->reg was indirect 289 /// @param Kills Points where the range of LocNo could be extended. 290 /// @param NewDefs Append (Idx, LocNo) of inserted defs here. 291 void addDefsFromCopies( 292 LiveInterval *LI, unsigned LocNo, bool WasIndirect, 293 const SmallVectorImpl<SlotIndex> &Kills, 294 SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs, 295 MachineRegisterInfo &MRI, LiveIntervals &LIS); 296 297 /// computeIntervals - Compute the live intervals of all locations after 298 /// collecting all their def points. 299 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, 300 LiveIntervals &LIS, LexicalScopes &LS); 301 302 /// splitRegister - Replace OldReg ranges with NewRegs ranges where NewRegs is 303 /// live. Returns true if any changes were made. 304 bool splitRegister(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 305 LiveIntervals &LIS); 306 307 /// rewriteLocations - Rewrite virtual register locations according to the 308 /// provided virtual register map. Record which locations were spilled. 309 void rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI, 310 BitVector &SpilledLocations); 311 312 /// emitDebugValues - Recreate DBG_VALUE instruction from data structures. 313 void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 314 const TargetInstrInfo &TII, 315 const TargetRegisterInfo &TRI, 316 const BitVector &SpilledLocations); 317 318 /// getDebugLoc - Return DebugLoc of this UserValue. 319 DebugLoc getDebugLoc() { return dl;} 320 321 void print(raw_ostream &, const TargetRegisterInfo *); 322 }; 323 324 /// LDVImpl - Implementation of the LiveDebugVariables pass. 325 class LDVImpl { 326 LiveDebugVariables &pass; 327 LocMap::Allocator allocator; 328 MachineFunction *MF = nullptr; 329 LiveIntervals *LIS; 330 const TargetRegisterInfo *TRI; 331 332 /// Whether emitDebugValues is called. 333 bool EmitDone = false; 334 335 /// Whether the machine function is modified during the pass. 336 bool ModifiedMF = false; 337 338 /// userValues - All allocated UserValue instances. 339 SmallVector<std::unique_ptr<UserValue>, 8> userValues; 340 341 /// Map virtual register to eq class leader. 342 using VRMap = DenseMap<unsigned, UserValue *>; 343 VRMap virtRegToEqClass; 344 345 /// Map user variable to eq class leader. 346 using UVMap = DenseMap<const DILocalVariable *, UserValue *>; 347 UVMap userVarMap; 348 349 /// getUserValue - Find or create a UserValue. 350 UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr, 351 const DebugLoc &DL); 352 353 /// lookupVirtReg - Find the EC leader for VirtReg or null. 354 UserValue *lookupVirtReg(unsigned VirtReg); 355 356 /// handleDebugValue - Add DBG_VALUE instruction to our maps. 357 /// @param MI DBG_VALUE instruction 358 /// @param Idx Last valid SLotIndex before instruction. 359 /// @return True if the DBG_VALUE instruction should be deleted. 360 bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); 361 362 /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding 363 /// a UserValue def for each instruction. 364 /// @param mf MachineFunction to be scanned. 365 /// @return True if any debug values were found. 366 bool collectDebugValues(MachineFunction &mf); 367 368 /// computeIntervals - Compute the live intervals of all user values after 369 /// collecting all their def points. 370 void computeIntervals(); 371 372 public: 373 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} 374 375 bool runOnMachineFunction(MachineFunction &mf); 376 377 /// clear - Release all memory. 378 void clear() { 379 MF = nullptr; 380 userValues.clear(); 381 virtRegToEqClass.clear(); 382 userVarMap.clear(); 383 // Make sure we call emitDebugValues if the machine function was modified. 384 assert((!ModifiedMF || EmitDone) && 385 "Dbg values are not emitted in LDV"); 386 EmitDone = false; 387 ModifiedMF = false; 388 } 389 390 /// mapVirtReg - Map virtual register to an equivalence class. 391 void mapVirtReg(unsigned VirtReg, UserValue *EC); 392 393 /// splitRegister - Replace all references to OldReg with NewRegs. 394 void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs); 395 396 /// emitDebugValues - Recreate DBG_VALUE instruction from data structures. 397 void emitDebugValues(VirtRegMap *VRM); 398 399 void print(raw_ostream&); 400 }; 401 402 } // end anonymous namespace 403 404 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 405 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, 406 const LLVMContext &Ctx) { 407 if (!DL) 408 return; 409 410 auto *Scope = cast<DIScope>(DL.getScope()); 411 // Omit the directory, because it's likely to be long and uninteresting. 412 CommentOS << Scope->getFilename(); 413 CommentOS << ':' << DL.getLine(); 414 if (DL.getCol() != 0) 415 CommentOS << ':' << DL.getCol(); 416 417 DebugLoc InlinedAtDL = DL.getInlinedAt(); 418 if (!InlinedAtDL) 419 return; 420 421 CommentOS << " @[ "; 422 printDebugLoc(InlinedAtDL, CommentOS, Ctx); 423 CommentOS << " ]"; 424 } 425 426 static void printExtendedName(raw_ostream &OS, const DILocalVariable *V, 427 const DILocation *DL) { 428 const LLVMContext &Ctx = V->getContext(); 429 StringRef Res = V->getName(); 430 if (!Res.empty()) 431 OS << Res << "," << V->getLine(); 432 if (auto *InlinedAt = DL->getInlinedAt()) { 433 if (DebugLoc InlinedAtDL = InlinedAt) { 434 OS << " @["; 435 printDebugLoc(InlinedAtDL, OS, Ctx); 436 OS << "]"; 437 } 438 } 439 } 440 441 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 442 auto *DV = cast<DILocalVariable>(Variable); 443 OS << "!\""; 444 printExtendedName(OS, DV, dl); 445 446 OS << "\"\t"; 447 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 448 OS << " [" << I.start() << ';' << I.stop() << "):"; 449 if (I.value().isUndef()) 450 OS << "undef"; 451 else { 452 OS << I.value().locNo(); 453 if (I.value().wasIndirect()) 454 OS << " ind"; 455 } 456 } 457 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 458 OS << " Loc" << i << '='; 459 locations[i].print(OS, TRI); 460 } 461 OS << '\n'; 462 } 463 464 void LDVImpl::print(raw_ostream &OS) { 465 OS << "********** DEBUG VARIABLES **********\n"; 466 for (unsigned i = 0, e = userValues.size(); i != e; ++i) 467 userValues[i]->print(OS, TRI); 468 } 469 #endif 470 471 void UserValue::mapVirtRegs(LDVImpl *LDV) { 472 for (unsigned i = 0, e = locations.size(); i != e; ++i) 473 if (locations[i].isReg() && 474 TargetRegisterInfo::isVirtualRegister(locations[i].getReg())) 475 LDV->mapVirtReg(locations[i].getReg(), this); 476 } 477 478 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var, 479 const DIExpression *Expr, const DebugLoc &DL) { 480 UserValue *&Leader = userVarMap[Var]; 481 if (Leader) { 482 UserValue *UV = Leader->getLeader(); 483 Leader = UV; 484 for (; UV; UV = UV->getNext()) 485 if (UV->match(Var, Expr, DL->getInlinedAt())) 486 return UV; 487 } 488 489 userValues.push_back( 490 llvm::make_unique<UserValue>(Var, Expr, DL, allocator)); 491 UserValue *UV = userValues.back().get(); 492 Leader = UserValue::merge(Leader, UV); 493 return UV; 494 } 495 496 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) { 497 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs"); 498 UserValue *&Leader = virtRegToEqClass[VirtReg]; 499 Leader = UserValue::merge(Leader, EC); 500 } 501 502 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) { 503 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) 504 return UV->getLeader(); 505 return nullptr; 506 } 507 508 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) { 509 // DBG_VALUE loc, offset, variable 510 if (MI.getNumOperands() != 4 || 511 !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) || 512 !MI.getOperand(2).isMetadata()) { 513 DEBUG(dbgs() << "Can't handle " << MI); 514 return false; 515 } 516 517 // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual 518 // register that hasn't been defined yet. If we do not remove those here, then 519 // the re-insertion of the DBG_VALUE instruction after register allocation 520 // will be incorrect. 521 // TODO: If earlier passes are corrected to generate sane debug information 522 // (and if the machine verifier is improved to catch this), then these checks 523 // could be removed or replaced by asserts. 524 bool Discard = false; 525 if (MI.getOperand(0).isReg() && 526 TargetRegisterInfo::isVirtualRegister(MI.getOperand(0).getReg())) { 527 const unsigned Reg = MI.getOperand(0).getReg(); 528 if (!LIS->hasInterval(Reg)) { 529 // The DBG_VALUE is described by a virtual register that does not have a 530 // live interval. Discard the DBG_VALUE. 531 Discard = true; 532 DEBUG(dbgs() << "Discarding debug info (no LIS interval): " 533 << Idx << " " << MI); 534 } else { 535 // The DBG_VALUE is only valid if either Reg is live out from Idx, or Reg 536 // is defined dead at Idx (where Idx is the slot index for the instruction 537 // preceeding the DBG_VALUE). 538 const LiveInterval &LI = LIS->getInterval(Reg); 539 LiveQueryResult LRQ = LI.Query(Idx); 540 if (!LRQ.valueOutOrDead()) { 541 // We have found a DBG_VALUE with the value in a virtual register that 542 // is not live. Discard the DBG_VALUE. 543 Discard = true; 544 DEBUG(dbgs() << "Discarding debug info (reg not live): " 545 << Idx << " " << MI); 546 } 547 } 548 } 549 550 // Get or create the UserValue for (variable,offset) here. 551 bool IsIndirect = MI.getOperand(1).isImm(); 552 if (IsIndirect) 553 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); 554 const DILocalVariable *Var = MI.getDebugVariable(); 555 const DIExpression *Expr = MI.getDebugExpression(); 556 UserValue *UV = 557 getUserValue(Var, Expr, MI.getDebugLoc()); 558 if (!Discard) 559 UV->addDef(Idx, MI.getOperand(0), IsIndirect); 560 else 561 UV->addDef(Idx, MachineOperand::CreateReg(0U, RegState::Debug), false); 562 return true; 563 } 564 565 bool LDVImpl::collectDebugValues(MachineFunction &mf) { 566 bool Changed = false; 567 for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE; 568 ++MFI) { 569 MachineBasicBlock *MBB = &*MFI; 570 for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end(); 571 MBBI != MBBE;) { 572 if (!MBBI->isDebugValue()) { 573 ++MBBI; 574 continue; 575 } 576 // DBG_VALUE has no slot index, use the previous instruction instead. 577 SlotIndex Idx = 578 MBBI == MBB->begin() 579 ? LIS->getMBBStartIdx(MBB) 580 : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); 581 // Handle consecutive DBG_VALUE instructions with the same slot index. 582 do { 583 if (handleDebugValue(*MBBI, Idx)) { 584 MBBI = MBB->erase(MBBI); 585 Changed = true; 586 } else 587 ++MBBI; 588 } while (MBBI != MBBE && MBBI->isDebugValue()); 589 } 590 } 591 return Changed; 592 } 593 594 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a 595 /// data-flow analysis to propagate them beyond basic block boundaries. 596 void UserValue::extendDef(SlotIndex Idx, DbgValueLocation Loc, LiveRange *LR, 597 const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills, 598 LiveIntervals &LIS) { 599 SlotIndex Start = Idx; 600 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 601 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 602 LocMap::iterator I = locInts.find(Start); 603 604 // Limit to VNI's live range. 605 bool ToEnd = true; 606 if (LR && VNI) { 607 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); 608 if (!Segment || Segment->valno != VNI) { 609 if (Kills) 610 Kills->push_back(Start); 611 return; 612 } 613 if (Segment->end < Stop) { 614 Stop = Segment->end; 615 ToEnd = false; 616 } 617 } 618 619 // There could already be a short def at Start. 620 if (I.valid() && I.start() <= Start) { 621 // Stop when meeting a different location or an already extended interval. 622 Start = Start.getNextSlot(); 623 if (I.value() != Loc || I.stop() != Start) 624 return; 625 // This is a one-slot placeholder. Just skip it. 626 ++I; 627 } 628 629 // Limited by the next def. 630 if (I.valid() && I.start() < Stop) { 631 Stop = I.start(); 632 ToEnd = false; 633 } 634 // Limited by VNI's live range. 635 else if (!ToEnd && Kills) 636 Kills->push_back(Stop); 637 638 if (Start < Stop) 639 I.insert(Start, Stop, Loc); 640 } 641 642 void UserValue::addDefsFromCopies( 643 LiveInterval *LI, unsigned LocNo, bool WasIndirect, 644 const SmallVectorImpl<SlotIndex> &Kills, 645 SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs, 646 MachineRegisterInfo &MRI, LiveIntervals &LIS) { 647 if (Kills.empty()) 648 return; 649 // Don't track copies from physregs, there are too many uses. 650 if (!TargetRegisterInfo::isVirtualRegister(LI->reg)) 651 return; 652 653 // Collect all the (vreg, valno) pairs that are copies of LI. 654 SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues; 655 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) { 656 MachineInstr *MI = MO.getParent(); 657 // Copies of the full value. 658 if (MO.getSubReg() || !MI->isCopy()) 659 continue; 660 unsigned DstReg = MI->getOperand(0).getReg(); 661 662 // Don't follow copies to physregs. These are usually setting up call 663 // arguments, and the argument registers are always call clobbered. We are 664 // better off in the source register which could be a callee-saved register, 665 // or it could be spilled. 666 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 667 continue; 668 669 // Is LocNo extended to reach this copy? If not, another def may be blocking 670 // it, or we are looking at a wrong value of LI. 671 SlotIndex Idx = LIS.getInstructionIndex(*MI); 672 LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); 673 if (!I.valid() || I.value().locNo() != LocNo) 674 continue; 675 676 if (!LIS.hasInterval(DstReg)) 677 continue; 678 LiveInterval *DstLI = &LIS.getInterval(DstReg); 679 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); 680 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); 681 CopyValues.push_back(std::make_pair(DstLI, DstVNI)); 682 } 683 684 if (CopyValues.empty()) 685 return; 686 687 DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI << '\n'); 688 689 // Try to add defs of the copied values for each kill point. 690 for (unsigned i = 0, e = Kills.size(); i != e; ++i) { 691 SlotIndex Idx = Kills[i]; 692 for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) { 693 LiveInterval *DstLI = CopyValues[j].first; 694 const VNInfo *DstVNI = CopyValues[j].second; 695 if (DstLI->getVNInfoAt(Idx) != DstVNI) 696 continue; 697 // Check that there isn't already a def at Idx 698 LocMap::iterator I = locInts.find(Idx); 699 if (I.valid() && I.start() <= Idx) 700 continue; 701 DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #" 702 << DstVNI->id << " in " << *DstLI << '\n'); 703 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); 704 assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); 705 unsigned LocNo = getLocationNo(CopyMI->getOperand(0)); 706 DbgValueLocation NewLoc(LocNo, WasIndirect); 707 I.insert(Idx, Idx.getNextSlot(), NewLoc); 708 NewDefs.push_back(std::make_pair(Idx, NewLoc)); 709 break; 710 } 711 } 712 } 713 714 void UserValue::computeIntervals(MachineRegisterInfo &MRI, 715 const TargetRegisterInfo &TRI, 716 LiveIntervals &LIS, LexicalScopes &LS) { 717 SmallVector<std::pair<SlotIndex, DbgValueLocation>, 16> Defs; 718 719 // Collect all defs to be extended (Skipping undefs). 720 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 721 if (!I.value().isUndef()) 722 Defs.push_back(std::make_pair(I.start(), I.value())); 723 724 // Extend all defs, and possibly add new ones along the way. 725 for (unsigned i = 0; i != Defs.size(); ++i) { 726 SlotIndex Idx = Defs[i].first; 727 DbgValueLocation Loc = Defs[i].second; 728 const MachineOperand &LocMO = locations[Loc.locNo()]; 729 730 if (!LocMO.isReg()) { 731 extendDef(Idx, Loc, nullptr, nullptr, nullptr, LIS); 732 continue; 733 } 734 735 // Register locations are constrained to where the register value is live. 736 if (TargetRegisterInfo::isVirtualRegister(LocMO.getReg())) { 737 LiveInterval *LI = nullptr; 738 const VNInfo *VNI = nullptr; 739 if (LIS.hasInterval(LocMO.getReg())) { 740 LI = &LIS.getInterval(LocMO.getReg()); 741 VNI = LI->getVNInfoAt(Idx); 742 } 743 SmallVector<SlotIndex, 16> Kills; 744 extendDef(Idx, Loc, LI, VNI, &Kills, LIS); 745 if (LI) 746 addDefsFromCopies(LI, Loc.locNo(), Loc.wasIndirect(), Kills, Defs, MRI, 747 LIS); 748 continue; 749 } 750 751 // For physregs, we only mark the start slot idx. DwarfDebug will see it 752 // as if the DBG_VALUE is valid up until the end of the basic block, or 753 // the next def of the physical register. So we do not need to extend the 754 // range. It might actually happen that the DBG_VALUE is the last use of 755 // the physical register (e.g. if this is an unused input argument to a 756 // function). 757 } 758 759 // Erase all the undefs. 760 for (LocMap::iterator I = locInts.begin(); I.valid();) 761 if (I.value().isUndef()) 762 I.erase(); 763 else 764 ++I; 765 766 // The computed intervals may extend beyond the range of the debug 767 // location's lexical scope. In this case, splitting of an interval 768 // can result in an interval outside of the scope being created, 769 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent 770 // this, trim the intervals to the lexical scope. 771 772 LexicalScope *Scope = LS.findLexicalScope(dl); 773 if (!Scope) 774 return; 775 776 SlotIndex PrevEnd; 777 LocMap::iterator I = locInts.begin(); 778 779 // Iterate over the lexical scope ranges. Each time round the loop 780 // we check the intervals for overlap with the end of the previous 781 // range and the start of the next. The first range is handled as 782 // a special case where there is no PrevEnd. 783 for (const InsnRange &Range : Scope->getRanges()) { 784 SlotIndex RStart = LIS.getInstructionIndex(*Range.first); 785 SlotIndex REnd = LIS.getInstructionIndex(*Range.second); 786 787 // At the start of each iteration I has been advanced so that 788 // I.stop() >= PrevEnd. Check for overlap. 789 if (PrevEnd && I.start() < PrevEnd) { 790 SlotIndex IStop = I.stop(); 791 DbgValueLocation Loc = I.value(); 792 793 // Stop overlaps previous end - trim the end of the interval to 794 // the scope range. 795 I.setStopUnchecked(PrevEnd); 796 ++I; 797 798 // If the interval also overlaps the start of the "next" (i.e. 799 // current) range create a new interval for the remainder (which 800 // may be further trimmed). 801 if (RStart < IStop) 802 I.insert(RStart, IStop, Loc); 803 } 804 805 // Advance I so that I.stop() >= RStart, and check for overlap. 806 I.advanceTo(RStart); 807 if (!I.valid()) 808 return; 809 810 if (I.start() < RStart) { 811 // Interval start overlaps range - trim to the scope range. 812 I.setStartUnchecked(RStart); 813 // Remember that this interval was trimmed. 814 trimmedDefs.insert(RStart); 815 } 816 817 // The end of a lexical scope range is the last instruction in the 818 // range. To convert to an interval we need the index of the 819 // instruction after it. 820 REnd = REnd.getNextIndex(); 821 822 // Advance I to first interval outside current range. 823 I.advanceTo(REnd); 824 if (!I.valid()) 825 return; 826 827 PrevEnd = REnd; 828 } 829 830 // Check for overlap with end of final range. 831 if (PrevEnd && I.start() < PrevEnd) 832 I.setStopUnchecked(PrevEnd); 833 } 834 835 void LDVImpl::computeIntervals() { 836 LexicalScopes LS; 837 LS.initialize(*MF); 838 839 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 840 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS); 841 userValues[i]->mapVirtRegs(this); 842 } 843 } 844 845 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) { 846 clear(); 847 MF = &mf; 848 LIS = &pass.getAnalysis<LiveIntervals>(); 849 TRI = mf.getSubtarget().getRegisterInfo(); 850 DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 851 << mf.getName() << " **********\n"); 852 853 bool Changed = collectDebugValues(mf); 854 computeIntervals(); 855 DEBUG(print(dbgs())); 856 ModifiedMF = Changed; 857 return Changed; 858 } 859 860 static void removeDebugValues(MachineFunction &mf) { 861 for (MachineBasicBlock &MBB : mf) { 862 for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) { 863 if (!MBBI->isDebugValue()) { 864 ++MBBI; 865 continue; 866 } 867 MBBI = MBB.erase(MBBI); 868 } 869 } 870 } 871 872 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { 873 if (!EnableLDV) 874 return false; 875 if (!mf.getFunction().getSubprogram()) { 876 removeDebugValues(mf); 877 return false; 878 } 879 if (!pImpl) 880 pImpl = new LDVImpl(this); 881 return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf); 882 } 883 884 void LiveDebugVariables::releaseMemory() { 885 if (pImpl) 886 static_cast<LDVImpl*>(pImpl)->clear(); 887 } 888 889 LiveDebugVariables::~LiveDebugVariables() { 890 if (pImpl) 891 delete static_cast<LDVImpl*>(pImpl); 892 } 893 894 //===----------------------------------------------------------------------===// 895 // Live Range Splitting 896 //===----------------------------------------------------------------------===// 897 898 bool 899 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 900 LiveIntervals& LIS) { 901 DEBUG({ 902 dbgs() << "Splitting Loc" << OldLocNo << '\t'; 903 print(dbgs(), nullptr); 904 }); 905 bool DidChange = false; 906 LocMap::iterator LocMapI; 907 LocMapI.setMap(locInts); 908 for (unsigned i = 0; i != NewRegs.size(); ++i) { 909 LiveInterval *LI = &LIS.getInterval(NewRegs[i]); 910 if (LI->empty()) 911 continue; 912 913 // Don't allocate the new LocNo until it is needed. 914 unsigned NewLocNo = UndefLocNo; 915 916 // Iterate over the overlaps between locInts and LI. 917 LocMapI.find(LI->beginIndex()); 918 if (!LocMapI.valid()) 919 continue; 920 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); 921 LiveInterval::iterator LIE = LI->end(); 922 while (LocMapI.valid() && LII != LIE) { 923 // At this point, we know that LocMapI.stop() > LII->start. 924 LII = LI->advanceTo(LII, LocMapI.start()); 925 if (LII == LIE) 926 break; 927 928 // Now LII->end > LocMapI.start(). Do we have an overlap? 929 if (LocMapI.value().locNo() == OldLocNo && LII->start < LocMapI.stop()) { 930 // Overlapping correct location. Allocate NewLocNo now. 931 if (NewLocNo == UndefLocNo) { 932 MachineOperand MO = MachineOperand::CreateReg(LI->reg, false); 933 MO.setSubReg(locations[OldLocNo].getSubReg()); 934 NewLocNo = getLocationNo(MO); 935 DidChange = true; 936 } 937 938 SlotIndex LStart = LocMapI.start(); 939 SlotIndex LStop = LocMapI.stop(); 940 DbgValueLocation OldLoc = LocMapI.value(); 941 942 // Trim LocMapI down to the LII overlap. 943 if (LStart < LII->start) 944 LocMapI.setStartUnchecked(LII->start); 945 if (LStop > LII->end) 946 LocMapI.setStopUnchecked(LII->end); 947 948 // Change the value in the overlap. This may trigger coalescing. 949 LocMapI.setValue(OldLoc.changeLocNo(NewLocNo)); 950 951 // Re-insert any removed OldLocNo ranges. 952 if (LStart < LocMapI.start()) { 953 LocMapI.insert(LStart, LocMapI.start(), OldLoc); 954 ++LocMapI; 955 assert(LocMapI.valid() && "Unexpected coalescing"); 956 } 957 if (LStop > LocMapI.stop()) { 958 ++LocMapI; 959 LocMapI.insert(LII->end, LStop, OldLoc); 960 --LocMapI; 961 } 962 } 963 964 // Advance to the next overlap. 965 if (LII->end < LocMapI.stop()) { 966 if (++LII == LIE) 967 break; 968 LocMapI.advanceTo(LII->start); 969 } else { 970 ++LocMapI; 971 if (!LocMapI.valid()) 972 break; 973 LII = LI->advanceTo(LII, LocMapI.start()); 974 } 975 } 976 } 977 978 // Finally, remove any remaining OldLocNo intervals and OldLocNo itself. 979 locations.erase(locations.begin() + OldLocNo); 980 LocMapI.goToBegin(); 981 while (LocMapI.valid()) { 982 DbgValueLocation v = LocMapI.value(); 983 if (v.locNo() == OldLocNo) { 984 DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';' 985 << LocMapI.stop() << ")\n"); 986 LocMapI.erase(); 987 } else { 988 if (v.locNo() > OldLocNo) 989 LocMapI.setValueUnchecked(v.changeLocNo(v.locNo() - 1)); 990 ++LocMapI; 991 } 992 } 993 994 DEBUG({dbgs() << "Split result: \t"; print(dbgs(), nullptr);}); 995 return DidChange; 996 } 997 998 bool 999 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, 1000 LiveIntervals &LIS) { 1001 bool DidChange = false; 1002 // Split locations referring to OldReg. Iterate backwards so splitLocation can 1003 // safely erase unused locations. 1004 for (unsigned i = locations.size(); i ; --i) { 1005 unsigned LocNo = i-1; 1006 const MachineOperand *Loc = &locations[LocNo]; 1007 if (!Loc->isReg() || Loc->getReg() != OldReg) 1008 continue; 1009 DidChange |= splitLocation(LocNo, NewRegs, LIS); 1010 } 1011 return DidChange; 1012 } 1013 1014 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) { 1015 bool DidChange = false; 1016 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) 1017 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); 1018 1019 if (!DidChange) 1020 return; 1021 1022 // Map all of the new virtual registers. 1023 UserValue *UV = lookupVirtReg(OldReg); 1024 for (unsigned i = 0; i != NewRegs.size(); ++i) 1025 mapVirtReg(NewRegs[i], UV); 1026 } 1027 1028 void LiveDebugVariables:: 1029 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) { 1030 if (pImpl) 1031 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); 1032 } 1033 1034 void UserValue::rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI, 1035 BitVector &SpilledLocations) { 1036 // Build a set of new locations with new numbers so we can coalesce our 1037 // IntervalMap if two vreg intervals collapse to the same physical location. 1038 // Use MapVector instead of SetVector because MapVector::insert returns the 1039 // position of the previously or newly inserted element. The boolean value 1040 // tracks if the location was produced by a spill. 1041 // FIXME: This will be problematic if we ever support direct and indirect 1042 // frame index locations, i.e. expressing both variables in memory and 1043 // 'int x, *px = &x'. The "spilled" bit must become part of the location. 1044 MapVector<MachineOperand, bool> NewLocations; 1045 SmallVector<unsigned, 4> LocNoMap(locations.size()); 1046 for (unsigned I = 0, E = locations.size(); I != E; ++I) { 1047 bool Spilled = false; 1048 MachineOperand Loc = locations[I]; 1049 // Only virtual registers are rewritten. 1050 if (Loc.isReg() && Loc.getReg() && 1051 TargetRegisterInfo::isVirtualRegister(Loc.getReg())) { 1052 unsigned VirtReg = Loc.getReg(); 1053 if (VRM.isAssignedReg(VirtReg) && 1054 TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) { 1055 // This can create a %noreg operand in rare cases when the sub-register 1056 // index is no longer available. That means the user value is in a 1057 // non-existent sub-register, and %noreg is exactly what we want. 1058 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); 1059 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { 1060 // FIXME: Translate SubIdx to a stackslot offset. 1061 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); 1062 Spilled = true; 1063 } else { 1064 Loc.setReg(0); 1065 Loc.setSubReg(0); 1066 } 1067 } 1068 1069 // Insert this location if it doesn't already exist and record a mapping 1070 // from the old number to the new number. 1071 auto InsertResult = NewLocations.insert({Loc, Spilled}); 1072 unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first); 1073 LocNoMap[I] = NewLocNo; 1074 } 1075 1076 // Rewrite the locations and record which ones were spill slots. 1077 locations.clear(); 1078 SpilledLocations.clear(); 1079 SpilledLocations.resize(NewLocations.size()); 1080 for (auto &Pair : NewLocations) { 1081 locations.push_back(Pair.first); 1082 if (Pair.second) { 1083 unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair); 1084 SpilledLocations.set(NewLocNo); 1085 } 1086 } 1087 1088 // Update the interval map, but only coalesce left, since intervals to the 1089 // right use the old location numbers. This should merge two contiguous 1090 // DBG_VALUE intervals with different vregs that were allocated to the same 1091 // physical register. 1092 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 1093 DbgValueLocation Loc = I.value(); 1094 unsigned NewLocNo = LocNoMap[Loc.locNo()]; 1095 I.setValueUnchecked(Loc.changeLocNo(NewLocNo)); 1096 I.setStart(I.start()); 1097 } 1098 } 1099 1100 /// Find an iterator for inserting a DBG_VALUE instruction. 1101 static MachineBasicBlock::iterator 1102 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, 1103 LiveIntervals &LIS) { 1104 SlotIndex Start = LIS.getMBBStartIdx(MBB); 1105 Idx = Idx.getBaseIndex(); 1106 1107 // Try to find an insert location by going backwards from Idx. 1108 MachineInstr *MI; 1109 while (!(MI = LIS.getInstructionFromIndex(Idx))) { 1110 // We've reached the beginning of MBB. 1111 if (Idx == Start) { 1112 MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 1113 return I; 1114 } 1115 Idx = Idx.getPrevIndex(); 1116 } 1117 1118 // Don't insert anything after the first terminator, though. 1119 return MI->isTerminator() ? MBB->getFirstTerminator() : 1120 std::next(MachineBasicBlock::iterator(MI)); 1121 } 1122 1123 /// Find an iterator for inserting the next DBG_VALUE instruction 1124 /// (or end if no more insert locations found). 1125 static MachineBasicBlock::iterator 1126 findNextInsertLocation(MachineBasicBlock *MBB, 1127 MachineBasicBlock::iterator I, 1128 SlotIndex StopIdx, MachineOperand &LocMO, 1129 LiveIntervals &LIS, 1130 const TargetRegisterInfo &TRI) { 1131 if (!LocMO.isReg()) 1132 return MBB->instr_end(); 1133 unsigned Reg = LocMO.getReg(); 1134 1135 // Find the next instruction in the MBB that define the register Reg. 1136 while (I != MBB->end() && !I->isTerminator()) { 1137 if (!LIS.isNotInMIMap(*I) && 1138 SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I))) 1139 break; 1140 if (I->definesRegister(Reg, &TRI)) 1141 // The insert location is directly after the instruction/bundle. 1142 return std::next(I); 1143 ++I; 1144 } 1145 return MBB->end(); 1146 } 1147 1148 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 1149 SlotIndex StopIdx, 1150 DbgValueLocation Loc, bool Spilled, 1151 LiveIntervals &LIS, 1152 const TargetInstrInfo &TII, 1153 const TargetRegisterInfo &TRI) { 1154 SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB); 1155 // Only search within the current MBB. 1156 StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx; 1157 MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS); 1158 MachineOperand &MO = locations[Loc.locNo()]; 1159 ++NumInsertedDebugValues; 1160 1161 assert(cast<DILocalVariable>(Variable) 1162 ->isValidLocationForIntrinsic(getDebugLoc()) && 1163 "Expected inlined-at fields to agree"); 1164 1165 // If the location was spilled, the new DBG_VALUE will be indirect. If the 1166 // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate 1167 // that the original virtual register was a pointer. 1168 const DIExpression *Expr = Expression; 1169 bool IsIndirect = Loc.wasIndirect(); 1170 if (Spilled) { 1171 if (IsIndirect) 1172 Expr = DIExpression::prepend(Expr, DIExpression::WithDeref); 1173 IsIndirect = true; 1174 } 1175 1176 assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index"); 1177 1178 do { 1179 MachineInstrBuilder MIB = 1180 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE)) 1181 .add(MO); 1182 if (IsIndirect) 1183 MIB.addImm(0U); 1184 else 1185 MIB.addReg(0U, RegState::Debug); 1186 MIB.addMetadata(Variable).addMetadata(Expr); 1187 1188 // Continue and insert DBG_VALUES after every redefinition of register 1189 // associated with the debug value within the range 1190 I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI); 1191 } while (I != MBB->end()); 1192 } 1193 1194 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 1195 const TargetInstrInfo &TII, 1196 const TargetRegisterInfo &TRI, 1197 const BitVector &SpilledLocations) { 1198 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); 1199 1200 for (LocMap::const_iterator I = locInts.begin(); I.valid();) { 1201 SlotIndex Start = I.start(); 1202 SlotIndex Stop = I.stop(); 1203 DbgValueLocation Loc = I.value(); 1204 bool Spilled = !Loc.isUndef() ? SpilledLocations.test(Loc.locNo()) : false; 1205 1206 // If the interval start was trimmed to the lexical scope insert the 1207 // DBG_VALUE at the previous index (otherwise it appears after the 1208 // first instruction in the range). 1209 if (trimmedDefs.count(Start)) 1210 Start = Start.getPrevIndex(); 1211 1212 DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << Loc.locNo()); 1213 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1214 SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); 1215 1216 DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1217 insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, LIS, TII, TRI); 1218 // This interval may span multiple basic blocks. 1219 // Insert a DBG_VALUE into each one. 1220 while (Stop > MBBEnd) { 1221 // Move to the next block. 1222 Start = MBBEnd; 1223 if (++MBB == MFEnd) 1224 break; 1225 MBBEnd = LIS.getMBBEndIdx(&*MBB); 1226 DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1227 insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, LIS, TII, TRI); 1228 } 1229 DEBUG(dbgs() << '\n'); 1230 if (MBB == MFEnd) 1231 break; 1232 1233 ++I; 1234 } 1235 } 1236 1237 void LDVImpl::emitDebugValues(VirtRegMap *VRM) { 1238 DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); 1239 if (!MF) 1240 return; 1241 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1242 BitVector SpilledLocations; 1243 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 1244 DEBUG(userValues[i]->print(dbgs(), TRI)); 1245 userValues[i]->rewriteLocations(*VRM, *TRI, SpilledLocations); 1246 userValues[i]->emitDebugValues(VRM, *LIS, *TII, *TRI, SpilledLocations); 1247 } 1248 EmitDone = true; 1249 } 1250 1251 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { 1252 if (pImpl) 1253 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); 1254 } 1255 1256 bool LiveDebugVariables::doInitialization(Module &M) { 1257 return Pass::doInitialization(M); 1258 } 1259 1260 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1261 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { 1262 if (pImpl) 1263 static_cast<LDVImpl*>(pImpl)->print(dbgs()); 1264 } 1265 #endif 1266