xref: /llvm-project/llvm/lib/CodeGen/LiveDebugVariables.cpp (revision b98807df05cb4cd728e744c3349a9dfd341f6f61)
1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the LiveDebugVariables analysis.
10 //
11 // Remove all DBG_VALUE instructions referencing virtual registers and replace
12 // them with a data structure tracking where live user variables are kept - in a
13 // virtual register or in a stack slot.
14 //
15 // Allow the data structure to be updated during register allocation when values
16 // are moved between registers and stack slots. Finally emit new DBG_VALUE
17 // instructions after register allocation is complete.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #include "LiveDebugVariables.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/IntervalMap.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/CodeGen/LexicalScopes.h"
32 #include "llvm/CodeGen/LiveInterval.h"
33 #include "llvm/CodeGen/LiveIntervals.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineDominators.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/SlotIndexes.h"
42 #include "llvm/CodeGen/TargetInstrInfo.h"
43 #include "llvm/CodeGen/TargetOpcodes.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/VirtRegMap.h"
47 #include "llvm/Config/llvm-config.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/MC/MCRegisterInfo.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <iterator>
62 #include <memory>
63 #include <utility>
64 
65 using namespace llvm;
66 
67 #define DEBUG_TYPE "livedebugvars"
68 
69 static cl::opt<bool>
70 EnableLDV("live-debug-variables", cl::init(true),
71           cl::desc("Enable the live debug variables pass"), cl::Hidden);
72 
73 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted");
74 STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted");
75 
76 char LiveDebugVariables::ID = 0;
77 
78 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE,
79                 "Debug Variable Analysis", false, false)
80 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
81 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
82 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE,
83                 "Debug Variable Analysis", false, false)
84 
85 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const {
86   AU.addRequired<MachineDominatorTree>();
87   AU.addRequiredTransitive<LiveIntervals>();
88   AU.setPreservesAll();
89   MachineFunctionPass::getAnalysisUsage(AU);
90 }
91 
92 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) {
93   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
94 }
95 
96 enum : unsigned { UndefLocNo = ~0U };
97 
98 namespace {
99 /// Describes a debug variable value by location number and expression along
100 /// with some flags about the original usage of the location.
101 class DbgVariableValue {
102 public:
103   DbgVariableValue(ArrayRef<unsigned> NewLocs, bool WasIndirect, bool WasList,
104                    const DIExpression &Expr)
105       : WasIndirect(WasIndirect), WasList(WasList), Expression(&Expr) {
106     assert(!(WasIndirect && WasList) &&
107            "DBG_VALUE_LISTs should not be indirect.");
108     SmallVector<unsigned> LocNoVec;
109     for (unsigned LocNo : NewLocs) {
110       auto It = find(LocNoVec, LocNo);
111       if (It == LocNoVec.end())
112         LocNoVec.push_back(LocNo);
113       else {
114         // Loc duplicates an element in LocNos; replace references to Op
115         // with references to the duplicating element.
116         unsigned OpIdx = LocNoVec.size();
117         unsigned DuplicatingIdx = std::distance(LocNoVec.begin(), It);
118         Expression =
119             DIExpression::replaceArg(Expression, OpIdx, DuplicatingIdx);
120       }
121     }
122     // A debug value referencing 64+ unique machine locations is very likely
123     // to be the result of a bug earlier in the pipeline. If by some means this
124     // limit is validly reached, then we can add a byte to the size of
125     // LocNoCount.
126     assert(LocNoVec.size() < 64 &&
127            "debug value containing 64+ unique machine locations is not "
128            "supported by Live Debug Variables");
129     LocNoCount = LocNoVec.size();
130     if (LocNoCount > 0) {
131       LocNos.reset(new unsigned[LocNoCount]());
132       std::copy(LocNoVec.begin(), LocNoVec.end(), loc_nos_begin());
133     }
134   }
135 
136   DbgVariableValue() : LocNoCount(0), WasIndirect(0), WasList(0) {}
137   DbgVariableValue(const DbgVariableValue &Other)
138       : LocNoCount(Other.LocNoCount), WasIndirect(Other.getWasIndirect()),
139         WasList(Other.getWasList()), Expression(Other.getExpression()) {
140     if (Other.getLocNoCount()) {
141       LocNos.reset(new unsigned[Other.getLocNoCount()]);
142       std::copy(Other.loc_nos_begin(), Other.loc_nos_end(), loc_nos_begin());
143     }
144   }
145 
146   DbgVariableValue &operator=(const DbgVariableValue &Other) {
147     if (this == &Other)
148       return *this;
149     if (Other.getLocNoCount()) {
150       LocNos.reset(new unsigned[Other.getLocNoCount()]);
151       std::copy(Other.loc_nos_begin(), Other.loc_nos_end(), loc_nos_begin());
152     } else {
153       LocNos.release();
154     }
155     LocNoCount = Other.getLocNoCount();
156     WasIndirect = Other.getWasIndirect();
157     WasList = Other.getWasList();
158     Expression = Other.getExpression();
159     return *this;
160   }
161 
162   const DIExpression *getExpression() const { return Expression; }
163   uint8_t getLocNoCount() const { return LocNoCount; }
164   bool containsLocNo(unsigned LocNo) const {
165     return is_contained(loc_nos(), LocNo);
166   }
167   bool getWasIndirect() const { return WasIndirect; }
168   bool getWasList() const { return WasList; }
169   bool isUndef() const { return LocNoCount == 0 || containsLocNo(UndefLocNo); }
170 
171   DbgVariableValue decrementLocNosAfterPivot(unsigned Pivot) const {
172     SmallVector<unsigned, 4> NewLocNos;
173     for (unsigned LocNo : loc_nos())
174       NewLocNos.push_back(LocNo != UndefLocNo && LocNo > Pivot ? LocNo - 1
175                                                                : LocNo);
176     return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression);
177   }
178 
179   DbgVariableValue remapLocNos(ArrayRef<unsigned> LocNoMap) const {
180     SmallVector<unsigned> NewLocNos;
181     for (unsigned LocNo : loc_nos())
182       // Undef values don't exist in locations (and thus not in LocNoMap
183       // either) so skip over them. See getLocationNo().
184       NewLocNos.push_back(LocNo == UndefLocNo ? UndefLocNo : LocNoMap[LocNo]);
185     return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression);
186   }
187 
188   DbgVariableValue changeLocNo(unsigned OldLocNo, unsigned NewLocNo) const {
189     SmallVector<unsigned> NewLocNos;
190     NewLocNos.assign(loc_nos_begin(), loc_nos_end());
191     auto OldLocIt = find(NewLocNos, OldLocNo);
192     assert(OldLocIt != NewLocNos.end() && "Old location must be present.");
193     *OldLocIt = NewLocNo;
194     return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression);
195   }
196 
197   bool hasLocNoGreaterThan(unsigned LocNo) const {
198     return any_of(loc_nos(),
199                   [LocNo](unsigned ThisLocNo) { return ThisLocNo > LocNo; });
200   }
201 
202   void printLocNos(llvm::raw_ostream &OS) const {
203     for (const unsigned &Loc : loc_nos())
204       OS << (&Loc == loc_nos_begin() ? " " : ", ") << Loc;
205   }
206 
207   friend inline bool operator==(const DbgVariableValue &LHS,
208                                 const DbgVariableValue &RHS) {
209     if (std::tie(LHS.LocNoCount, LHS.WasIndirect, LHS.WasList,
210                  LHS.Expression) !=
211         std::tie(RHS.LocNoCount, RHS.WasIndirect, RHS.WasList, RHS.Expression))
212       return false;
213     return std::equal(LHS.loc_nos_begin(), LHS.loc_nos_end(),
214                       RHS.loc_nos_begin());
215   }
216 
217   friend inline bool operator!=(const DbgVariableValue &LHS,
218                                 const DbgVariableValue &RHS) {
219     return !(LHS == RHS);
220   }
221 
222   unsigned *loc_nos_begin() { return LocNos.get(); }
223   const unsigned *loc_nos_begin() const { return LocNos.get(); }
224   unsigned *loc_nos_end() { return LocNos.get() + LocNoCount; }
225   const unsigned *loc_nos_end() const { return LocNos.get() + LocNoCount; }
226   ArrayRef<unsigned> loc_nos() const {
227     return ArrayRef<unsigned>(LocNos.get(), LocNoCount);
228   }
229 
230 private:
231   // IntervalMap requires the value object to be very small, to the extent
232   // that we do not have enough room for an std::vector. Using a C-style array
233   // (with a unique_ptr wrapper for convenience) allows us to optimize for this
234   // specific case by packing the array size into only 6 bits (it is highly
235   // unlikely that any debug value will need 64+ locations).
236   std::unique_ptr<unsigned[]> LocNos;
237   uint8_t LocNoCount : 6;
238   bool WasIndirect : 1;
239   bool WasList : 1;
240   const DIExpression *Expression = nullptr;
241 };
242 } // namespace
243 
244 /// Map of where a user value is live to that value.
245 using LocMap = IntervalMap<SlotIndex, DbgVariableValue, 4>;
246 
247 /// Map of stack slot offsets for spilled locations.
248 /// Non-spilled locations are not added to the map.
249 using SpillOffsetMap = DenseMap<unsigned, unsigned>;
250 
251 /// Cache to save the location where it can be used as the starting
252 /// position as input for calling MachineBasicBlock::SkipPHIsLabelsAndDebug.
253 /// This is to prevent MachineBasicBlock::SkipPHIsLabelsAndDebug from
254 /// repeatedly searching the same set of PHIs/Labels/Debug instructions
255 /// if it is called many times for the same block.
256 using BlockSkipInstsMap =
257     DenseMap<MachineBasicBlock *, MachineBasicBlock::iterator>;
258 
259 namespace {
260 
261 class LDVImpl;
262 
263 /// A user value is a part of a debug info user variable.
264 ///
265 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
266 /// holds part of a user variable. The part is identified by a byte offset.
267 ///
268 /// UserValues are grouped into equivalence classes for easier searching. Two
269 /// user values are related if they are held by the same virtual register. The
270 /// equivalence class is the transitive closure of that relation.
271 class UserValue {
272   const DILocalVariable *Variable; ///< The debug info variable we are part of.
273   /// The part of the variable we describe.
274   const Optional<DIExpression::FragmentInfo> Fragment;
275   DebugLoc dl;            ///< The debug location for the variable. This is
276                           ///< used by dwarf writer to find lexical scope.
277   UserValue *leader;      ///< Equivalence class leader.
278   UserValue *next = nullptr; ///< Next value in equivalence class, or null.
279 
280   /// Numbered locations referenced by locmap.
281   SmallVector<MachineOperand, 4> locations;
282 
283   /// Map of slot indices where this value is live.
284   LocMap locInts;
285 
286   /// Set of interval start indexes that have been trimmed to the
287   /// lexical scope.
288   SmallSet<SlotIndex, 2> trimmedDefs;
289 
290   /// Insert a DBG_VALUE into MBB at Idx for DbgValue.
291   void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
292                         SlotIndex StopIdx, DbgVariableValue DbgValue,
293                         ArrayRef<bool> LocSpills,
294                         ArrayRef<unsigned> SpillOffsets, LiveIntervals &LIS,
295                         const TargetInstrInfo &TII,
296                         const TargetRegisterInfo &TRI,
297                         BlockSkipInstsMap &BBSkipInstsMap);
298 
299   /// Replace OldLocNo ranges with NewRegs ranges where NewRegs
300   /// is live. Returns true if any changes were made.
301   bool splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs,
302                      LiveIntervals &LIS);
303 
304 public:
305   /// Create a new UserValue.
306   UserValue(const DILocalVariable *var,
307             Optional<DIExpression::FragmentInfo> Fragment, DebugLoc L,
308             LocMap::Allocator &alloc)
309       : Variable(var), Fragment(Fragment), dl(std::move(L)), leader(this),
310         locInts(alloc) {}
311 
312   /// Get the leader of this value's equivalence class.
313   UserValue *getLeader() {
314     UserValue *l = leader;
315     while (l != l->leader)
316       l = l->leader;
317     return leader = l;
318   }
319 
320   /// Return the next UserValue in the equivalence class.
321   UserValue *getNext() const { return next; }
322 
323   /// Merge equivalence classes.
324   static UserValue *merge(UserValue *L1, UserValue *L2) {
325     L2 = L2->getLeader();
326     if (!L1)
327       return L2;
328     L1 = L1->getLeader();
329     if (L1 == L2)
330       return L1;
331     // Splice L2 before L1's members.
332     UserValue *End = L2;
333     while (End->next) {
334       End->leader = L1;
335       End = End->next;
336     }
337     End->leader = L1;
338     End->next = L1->next;
339     L1->next = L2;
340     return L1;
341   }
342 
343   /// Return the location number that matches Loc.
344   ///
345   /// For undef values we always return location number UndefLocNo without
346   /// inserting anything in locations. Since locations is a vector and the
347   /// location number is the position in the vector and UndefLocNo is ~0,
348   /// we would need a very big vector to put the value at the right position.
349   unsigned getLocationNo(const MachineOperand &LocMO) {
350     if (LocMO.isReg()) {
351       if (LocMO.getReg() == 0)
352         return UndefLocNo;
353       // For register locations we dont care about use/def and other flags.
354       for (unsigned i = 0, e = locations.size(); i != e; ++i)
355         if (locations[i].isReg() &&
356             locations[i].getReg() == LocMO.getReg() &&
357             locations[i].getSubReg() == LocMO.getSubReg())
358           return i;
359     } else
360       for (unsigned i = 0, e = locations.size(); i != e; ++i)
361         if (LocMO.isIdenticalTo(locations[i]))
362           return i;
363     locations.push_back(LocMO);
364     // We are storing a MachineOperand outside a MachineInstr.
365     locations.back().clearParent();
366     // Don't store def operands.
367     if (locations.back().isReg()) {
368       if (locations.back().isDef())
369         locations.back().setIsDead(false);
370       locations.back().setIsUse();
371     }
372     return locations.size() - 1;
373   }
374 
375   /// Remove (recycle) a location number. If \p LocNo still is used by the
376   /// locInts nothing is done.
377   void removeLocationIfUnused(unsigned LocNo) {
378     // Bail out if LocNo still is used.
379     for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
380       const DbgVariableValue &DbgValue = I.value();
381       if (DbgValue.containsLocNo(LocNo))
382         return;
383     }
384     // Remove the entry in the locations vector, and adjust all references to
385     // location numbers above the removed entry.
386     locations.erase(locations.begin() + LocNo);
387     for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
388       const DbgVariableValue &DbgValue = I.value();
389       if (DbgValue.hasLocNoGreaterThan(LocNo))
390         I.setValueUnchecked(DbgValue.decrementLocNosAfterPivot(LocNo));
391     }
392   }
393 
394   /// Ensure that all virtual register locations are mapped.
395   void mapVirtRegs(LDVImpl *LDV);
396 
397   /// Add a definition point to this user value.
398   void addDef(SlotIndex Idx, ArrayRef<MachineOperand> LocMOs, bool IsIndirect,
399               bool IsList, const DIExpression &Expr) {
400     SmallVector<unsigned> Locs;
401     for (MachineOperand Op : LocMOs)
402       Locs.push_back(getLocationNo(Op));
403     DbgVariableValue DbgValue(Locs, IsIndirect, IsList, Expr);
404     // Add a singular (Idx,Idx) -> value mapping.
405     LocMap::iterator I = locInts.find(Idx);
406     if (!I.valid() || I.start() != Idx)
407       I.insert(Idx, Idx.getNextSlot(), std::move(DbgValue));
408     else
409       // A later DBG_VALUE at the same SlotIndex overrides the old location.
410       I.setValue(std::move(DbgValue));
411   }
412 
413   /// Extend the current definition as far as possible down.
414   ///
415   /// Stop when meeting an existing def or when leaving the live
416   /// range of VNI. End points where VNI is no longer live are added to Kills.
417   ///
418   /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a
419   /// data-flow analysis to propagate them beyond basic block boundaries.
420   ///
421   /// \param Idx Starting point for the definition.
422   /// \param DbgValue value to propagate.
423   /// \param LiveIntervalInfo For each location number key in this map,
424   /// restricts liveness to where the LiveRange has the value equal to the\
425   /// VNInfo.
426   /// \param [out] Kills Append end points of VNI's live range to Kills.
427   /// \param LIS Live intervals analysis.
428   void extendDef(SlotIndex Idx, DbgVariableValue DbgValue,
429                  SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>>
430                      &LiveIntervalInfo,
431                  Optional<std::pair<SlotIndex, SmallVector<unsigned>>> &Kills,
432                  LiveIntervals &LIS);
433 
434   /// The value in LI may be copies to other registers. Determine if
435   /// any of the copies are available at the kill points, and add defs if
436   /// possible.
437   ///
438   /// \param DbgValue Location number of LI->reg, and DIExpression.
439   /// \param LocIntervals Scan for copies of the value for each location in the
440   /// corresponding LiveInterval->reg.
441   /// \param KilledAt The point where the range of DbgValue could be extended.
442   /// \param [in,out] NewDefs Append (Idx, DbgValue) of inserted defs here.
443   void addDefsFromCopies(
444       DbgVariableValue DbgValue,
445       SmallVectorImpl<std::pair<unsigned, LiveInterval *>> &LocIntervals,
446       SlotIndex KilledAt,
447       SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs,
448       MachineRegisterInfo &MRI, LiveIntervals &LIS);
449 
450   /// Compute the live intervals of all locations after collecting all their
451   /// def points.
452   void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
453                         LiveIntervals &LIS, LexicalScopes &LS);
454 
455   /// Replace OldReg ranges with NewRegs ranges where NewRegs is
456   /// live. Returns true if any changes were made.
457   bool splitRegister(Register OldReg, ArrayRef<Register> NewRegs,
458                      LiveIntervals &LIS);
459 
460   /// Rewrite virtual register locations according to the provided virtual
461   /// register map. Record the stack slot offsets for the locations that
462   /// were spilled.
463   void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
464                         const TargetInstrInfo &TII,
465                         const TargetRegisterInfo &TRI,
466                         SpillOffsetMap &SpillOffsets);
467 
468   /// Recreate DBG_VALUE instruction from data structures.
469   void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
470                        const TargetInstrInfo &TII,
471                        const TargetRegisterInfo &TRI,
472                        const SpillOffsetMap &SpillOffsets,
473                        BlockSkipInstsMap &BBSkipInstsMap);
474 
475   /// Return DebugLoc of this UserValue.
476   DebugLoc getDebugLoc() { return dl;}
477 
478   void print(raw_ostream &, const TargetRegisterInfo *);
479 };
480 
481 /// A user label is a part of a debug info user label.
482 class UserLabel {
483   const DILabel *Label; ///< The debug info label we are part of.
484   DebugLoc dl;          ///< The debug location for the label. This is
485                         ///< used by dwarf writer to find lexical scope.
486   SlotIndex loc;        ///< Slot used by the debug label.
487 
488   /// Insert a DBG_LABEL into MBB at Idx.
489   void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx,
490                         LiveIntervals &LIS, const TargetInstrInfo &TII,
491                         BlockSkipInstsMap &BBSkipInstsMap);
492 
493 public:
494   /// Create a new UserLabel.
495   UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx)
496       : Label(label), dl(std::move(L)), loc(Idx) {}
497 
498   /// Does this UserLabel match the parameters?
499   bool matches(const DILabel *L, const DILocation *IA,
500              const SlotIndex Index) const {
501     return Label == L && dl->getInlinedAt() == IA && loc == Index;
502   }
503 
504   /// Recreate DBG_LABEL instruction from data structures.
505   void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII,
506                       BlockSkipInstsMap &BBSkipInstsMap);
507 
508   /// Return DebugLoc of this UserLabel.
509   DebugLoc getDebugLoc() { return dl; }
510 
511   void print(raw_ostream &, const TargetRegisterInfo *);
512 };
513 
514 /// Implementation of the LiveDebugVariables pass.
515 class LDVImpl {
516   LiveDebugVariables &pass;
517   LocMap::Allocator allocator;
518   MachineFunction *MF = nullptr;
519   LiveIntervals *LIS;
520   const TargetRegisterInfo *TRI;
521 
522   using StashedInstrRef =
523       std::tuple<unsigned, unsigned, const DILocalVariable *,
524                  const DIExpression *, DebugLoc>;
525   std::map<SlotIndex, std::vector<StashedInstrRef>> StashedInstrReferences;
526 
527   /// Whether emitDebugValues is called.
528   bool EmitDone = false;
529 
530   /// Whether the machine function is modified during the pass.
531   bool ModifiedMF = false;
532 
533   /// All allocated UserValue instances.
534   SmallVector<std::unique_ptr<UserValue>, 8> userValues;
535 
536   /// All allocated UserLabel instances.
537   SmallVector<std::unique_ptr<UserLabel>, 2> userLabels;
538 
539   /// Map virtual register to eq class leader.
540   using VRMap = DenseMap<unsigned, UserValue *>;
541   VRMap virtRegToEqClass;
542 
543   /// Map to find existing UserValue instances.
544   using UVMap = DenseMap<DebugVariable, UserValue *>;
545   UVMap userVarMap;
546 
547   /// Find or create a UserValue.
548   UserValue *getUserValue(const DILocalVariable *Var,
549                           Optional<DIExpression::FragmentInfo> Fragment,
550                           const DebugLoc &DL);
551 
552   /// Find the EC leader for VirtReg or null.
553   UserValue *lookupVirtReg(Register VirtReg);
554 
555   /// Add DBG_VALUE instruction to our maps.
556   ///
557   /// \param MI DBG_VALUE instruction
558   /// \param Idx Last valid SLotIndex before instruction.
559   ///
560   /// \returns True if the DBG_VALUE instruction should be deleted.
561   bool handleDebugValue(MachineInstr &MI, SlotIndex Idx);
562 
563   /// Track a DBG_INSTR_REF. This needs to be removed from the MachineFunction
564   /// during regalloc -- but there's no need to maintain live ranges, as we
565   /// refer to a value rather than a location.
566   ///
567   /// \param MI DBG_INSTR_REF instruction
568   /// \param Idx Last valid SlotIndex before instruction
569   ///
570   /// \returns True if the DBG_VALUE instruction should be deleted.
571   bool handleDebugInstrRef(MachineInstr &MI, SlotIndex Idx);
572 
573   /// Add DBG_LABEL instruction to UserLabel.
574   ///
575   /// \param MI DBG_LABEL instruction
576   /// \param Idx Last valid SlotIndex before instruction.
577   ///
578   /// \returns True if the DBG_LABEL instruction should be deleted.
579   bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx);
580 
581   /// Collect and erase all DBG_VALUE instructions, adding a UserValue def
582   /// for each instruction.
583   ///
584   /// \param mf MachineFunction to be scanned.
585   ///
586   /// \returns True if any debug values were found.
587   bool collectDebugValues(MachineFunction &mf);
588 
589   /// Compute the live intervals of all user values after collecting all
590   /// their def points.
591   void computeIntervals();
592 
593 public:
594   LDVImpl(LiveDebugVariables *ps) : pass(*ps) {}
595 
596   bool runOnMachineFunction(MachineFunction &mf);
597 
598   /// Release all memory.
599   void clear() {
600     MF = nullptr;
601     StashedInstrReferences.clear();
602     userValues.clear();
603     userLabels.clear();
604     virtRegToEqClass.clear();
605     userVarMap.clear();
606     // Make sure we call emitDebugValues if the machine function was modified.
607     assert((!ModifiedMF || EmitDone) &&
608            "Dbg values are not emitted in LDV");
609     EmitDone = false;
610     ModifiedMF = false;
611   }
612 
613   /// Map virtual register to an equivalence class.
614   void mapVirtReg(Register VirtReg, UserValue *EC);
615 
616   /// Replace all references to OldReg with NewRegs.
617   void splitRegister(Register OldReg, ArrayRef<Register> NewRegs);
618 
619   /// Recreate DBG_VALUE instruction from data structures.
620   void emitDebugValues(VirtRegMap *VRM);
621 
622   void print(raw_ostream&);
623 };
624 
625 } // end anonymous namespace
626 
627 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
628 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS,
629                           const LLVMContext &Ctx) {
630   if (!DL)
631     return;
632 
633   auto *Scope = cast<DIScope>(DL.getScope());
634   // Omit the directory, because it's likely to be long and uninteresting.
635   CommentOS << Scope->getFilename();
636   CommentOS << ':' << DL.getLine();
637   if (DL.getCol() != 0)
638     CommentOS << ':' << DL.getCol();
639 
640   DebugLoc InlinedAtDL = DL.getInlinedAt();
641   if (!InlinedAtDL)
642     return;
643 
644   CommentOS << " @[ ";
645   printDebugLoc(InlinedAtDL, CommentOS, Ctx);
646   CommentOS << " ]";
647 }
648 
649 static void printExtendedName(raw_ostream &OS, const DINode *Node,
650                               const DILocation *DL) {
651   const LLVMContext &Ctx = Node->getContext();
652   StringRef Res;
653   unsigned Line = 0;
654   if (const auto *V = dyn_cast<const DILocalVariable>(Node)) {
655     Res = V->getName();
656     Line = V->getLine();
657   } else if (const auto *L = dyn_cast<const DILabel>(Node)) {
658     Res = L->getName();
659     Line = L->getLine();
660   }
661 
662   if (!Res.empty())
663     OS << Res << "," << Line;
664   auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr;
665   if (InlinedAt) {
666     if (DebugLoc InlinedAtDL = InlinedAt) {
667       OS << " @[";
668       printDebugLoc(InlinedAtDL, OS, Ctx);
669       OS << "]";
670     }
671   }
672 }
673 
674 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
675   OS << "!\"";
676   printExtendedName(OS, Variable, dl);
677 
678   OS << "\"\t";
679   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
680     OS << " [" << I.start() << ';' << I.stop() << "):";
681     if (I.value().isUndef())
682       OS << " undef";
683     else {
684       I.value().printLocNos(OS);
685       if (I.value().getWasIndirect())
686         OS << " ind";
687       else if (I.value().getWasList())
688         OS << " list";
689     }
690   }
691   for (unsigned i = 0, e = locations.size(); i != e; ++i) {
692     OS << " Loc" << i << '=';
693     locations[i].print(OS, TRI);
694   }
695   OS << '\n';
696 }
697 
698 void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
699   OS << "!\"";
700   printExtendedName(OS, Label, dl);
701 
702   OS << "\"\t";
703   OS << loc;
704   OS << '\n';
705 }
706 
707 void LDVImpl::print(raw_ostream &OS) {
708   OS << "********** DEBUG VARIABLES **********\n";
709   for (auto &userValue : userValues)
710     userValue->print(OS, TRI);
711   OS << "********** DEBUG LABELS **********\n";
712   for (auto &userLabel : userLabels)
713     userLabel->print(OS, TRI);
714 }
715 #endif
716 
717 void UserValue::mapVirtRegs(LDVImpl *LDV) {
718   for (unsigned i = 0, e = locations.size(); i != e; ++i)
719     if (locations[i].isReg() &&
720         Register::isVirtualRegister(locations[i].getReg()))
721       LDV->mapVirtReg(locations[i].getReg(), this);
722 }
723 
724 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var,
725                                  Optional<DIExpression::FragmentInfo> Fragment,
726                                  const DebugLoc &DL) {
727   // FIXME: Handle partially overlapping fragments. See
728   // https://reviews.llvm.org/D70121#1849741.
729   DebugVariable ID(Var, Fragment, DL->getInlinedAt());
730   UserValue *&UV = userVarMap[ID];
731   if (!UV) {
732     userValues.push_back(
733         std::make_unique<UserValue>(Var, Fragment, DL, allocator));
734     UV = userValues.back().get();
735   }
736   return UV;
737 }
738 
739 void LDVImpl::mapVirtReg(Register VirtReg, UserValue *EC) {
740   assert(Register::isVirtualRegister(VirtReg) && "Only map VirtRegs");
741   UserValue *&Leader = virtRegToEqClass[VirtReg];
742   Leader = UserValue::merge(Leader, EC);
743 }
744 
745 UserValue *LDVImpl::lookupVirtReg(Register VirtReg) {
746   if (UserValue *UV = virtRegToEqClass.lookup(VirtReg))
747     return UV->getLeader();
748   return nullptr;
749 }
750 
751 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) {
752   // DBG_VALUE loc, offset, variable, expr
753   // DBG_VALUE_LIST variable, expr, locs...
754   if (!MI.isDebugValue()) {
755     LLVM_DEBUG(dbgs() << "Can't handle non-DBG_VALUE*: " << MI);
756     return false;
757   }
758   if (!MI.getDebugVariableOp().isMetadata()) {
759     LLVM_DEBUG(dbgs() << "Can't handle DBG_VALUE* with invalid variable: "
760                       << MI);
761     return false;
762   }
763   if (MI.isNonListDebugValue() &&
764       (MI.getNumOperands() != 4 ||
765        !(MI.getDebugOffset().isImm() || MI.getDebugOffset().isReg()))) {
766     LLVM_DEBUG(dbgs() << "Can't handle malformed DBG_VALUE: " << MI);
767     return false;
768   }
769 
770   // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual
771   // register that hasn't been defined yet. If we do not remove those here, then
772   // the re-insertion of the DBG_VALUE instruction after register allocation
773   // will be incorrect.
774   // TODO: If earlier passes are corrected to generate sane debug information
775   // (and if the machine verifier is improved to catch this), then these checks
776   // could be removed or replaced by asserts.
777   bool Discard = false;
778   for (const MachineOperand &Op : MI.debug_operands()) {
779     if (Op.isReg() && Register::isVirtualRegister(Op.getReg())) {
780       const Register Reg = Op.getReg();
781       if (!LIS->hasInterval(Reg)) {
782         // The DBG_VALUE is described by a virtual register that does not have a
783         // live interval. Discard the DBG_VALUE.
784         Discard = true;
785         LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx
786                           << " " << MI);
787       } else {
788         // The DBG_VALUE is only valid if either Reg is live out from Idx, or
789         // Reg is defined dead at Idx (where Idx is the slot index for the
790         // instruction preceding the DBG_VALUE).
791         const LiveInterval &LI = LIS->getInterval(Reg);
792         LiveQueryResult LRQ = LI.Query(Idx);
793         if (!LRQ.valueOutOrDead()) {
794           // We have found a DBG_VALUE with the value in a virtual register that
795           // is not live. Discard the DBG_VALUE.
796           Discard = true;
797           LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx
798                             << " " << MI);
799         }
800       }
801     }
802   }
803 
804   // Get or create the UserValue for (variable,offset) here.
805   bool IsIndirect = MI.isDebugOffsetImm();
806   if (IsIndirect)
807     assert(MI.getDebugOffset().getImm() == 0 &&
808            "DBG_VALUE with nonzero offset");
809   bool IsList = MI.isDebugValueList();
810   const DILocalVariable *Var = MI.getDebugVariable();
811   const DIExpression *Expr = MI.getDebugExpression();
812   UserValue *UV = getUserValue(Var, Expr->getFragmentInfo(), MI.getDebugLoc());
813   if (!Discard)
814     UV->addDef(Idx,
815                ArrayRef<MachineOperand>(MI.debug_operands().begin(),
816                                         MI.debug_operands().end()),
817                IsIndirect, IsList, *Expr);
818   else {
819     MachineOperand MO = MachineOperand::CreateReg(0U, false);
820     MO.setIsDebug();
821     // We should still pass a list the same size as MI.debug_operands() even if
822     // all MOs are undef, so that DbgVariableValue can correctly adjust the
823     // expression while removing the duplicated undefs.
824     SmallVector<MachineOperand, 4> UndefMOs(MI.getNumDebugOperands(), MO);
825     UV->addDef(Idx, UndefMOs, false, IsList, *Expr);
826   }
827   return true;
828 }
829 
830 bool LDVImpl::handleDebugInstrRef(MachineInstr &MI, SlotIndex Idx) {
831   assert(MI.isDebugRef());
832   unsigned InstrNum = MI.getOperand(0).getImm();
833   unsigned OperandNum = MI.getOperand(1).getImm();
834   auto *Var = MI.getDebugVariable();
835   auto *Expr = MI.getDebugExpression();
836   auto &DL = MI.getDebugLoc();
837   StashedInstrRef Stashed =
838       std::make_tuple(InstrNum, OperandNum, Var, Expr, DL);
839   StashedInstrReferences[Idx].push_back(Stashed);
840   return true;
841 }
842 
843 bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) {
844   // DBG_LABEL label
845   if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) {
846     LLVM_DEBUG(dbgs() << "Can't handle " << MI);
847     return false;
848   }
849 
850   // Get or create the UserLabel for label here.
851   const DILabel *Label = MI.getDebugLabel();
852   const DebugLoc &DL = MI.getDebugLoc();
853   bool Found = false;
854   for (auto const &L : userLabels) {
855     if (L->matches(Label, DL->getInlinedAt(), Idx)) {
856       Found = true;
857       break;
858     }
859   }
860   if (!Found)
861     userLabels.push_back(std::make_unique<UserLabel>(Label, DL, Idx));
862 
863   return true;
864 }
865 
866 bool LDVImpl::collectDebugValues(MachineFunction &mf) {
867   bool Changed = false;
868   for (MachineBasicBlock &MBB : mf) {
869     for (MachineBasicBlock::iterator MBBI = MBB.begin(), MBBE = MBB.end();
870          MBBI != MBBE;) {
871       // Use the first debug instruction in the sequence to get a SlotIndex
872       // for following consecutive debug instructions.
873       if (!MBBI->isDebugOrPseudoInstr()) {
874         ++MBBI;
875         continue;
876       }
877       // Debug instructions has no slot index. Use the previous
878       // non-debug instruction's SlotIndex as its SlotIndex.
879       SlotIndex Idx =
880           MBBI == MBB.begin()
881               ? LIS->getMBBStartIdx(&MBB)
882               : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot();
883       // Handle consecutive debug instructions with the same slot index.
884       do {
885         // Only handle DBG_VALUE in handleDebugValue(). Skip all other
886         // kinds of debug instructions.
887         if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) ||
888             (MBBI->isDebugRef() && handleDebugInstrRef(*MBBI, Idx)) ||
889             (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) {
890           MBBI = MBB.erase(MBBI);
891           Changed = true;
892         } else
893           ++MBBI;
894       } while (MBBI != MBBE && MBBI->isDebugOrPseudoInstr());
895     }
896   }
897   return Changed;
898 }
899 
900 void UserValue::extendDef(
901     SlotIndex Idx, DbgVariableValue DbgValue,
902     SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>>
903         &LiveIntervalInfo,
904     Optional<std::pair<SlotIndex, SmallVector<unsigned>>> &Kills,
905     LiveIntervals &LIS) {
906   SlotIndex Start = Idx;
907   MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
908   SlotIndex Stop = LIS.getMBBEndIdx(MBB);
909   LocMap::iterator I = locInts.find(Start);
910 
911   // Limit to the intersection of the VNIs' live ranges.
912   for (auto &LII : LiveIntervalInfo) {
913     LiveRange *LR = LII.second.first;
914     assert(LR && LII.second.second && "Missing range info for Idx.");
915     LiveInterval::Segment *Segment = LR->getSegmentContaining(Start);
916     assert(Segment && Segment->valno == LII.second.second &&
917            "Invalid VNInfo for Idx given?");
918     if (Segment->end < Stop) {
919       Stop = Segment->end;
920       Kills = {Stop, {LII.first}};
921     } else if (Segment->end == Stop && Kills.hasValue()) {
922       // If multiple locations end at the same place, track all of them in
923       // Kills.
924       Kills->second.push_back(LII.first);
925     }
926   }
927 
928   // There could already be a short def at Start.
929   if (I.valid() && I.start() <= Start) {
930     // Stop when meeting a different location or an already extended interval.
931     Start = Start.getNextSlot();
932     if (I.value() != DbgValue || I.stop() != Start) {
933       // Clear `Kills`, as we have a new def available.
934       Kills = None;
935       return;
936     }
937     // This is a one-slot placeholder. Just skip it.
938     ++I;
939   }
940 
941   // Limited by the next def.
942   if (I.valid() && I.start() < Stop) {
943     Stop = I.start();
944     // Clear `Kills`, as we have a new def available.
945     Kills = None;
946   }
947 
948   if (Start < Stop) {
949     DbgVariableValue ExtDbgValue(DbgValue);
950     I.insert(Start, Stop, std::move(ExtDbgValue));
951   }
952 }
953 
954 void UserValue::addDefsFromCopies(
955     DbgVariableValue DbgValue,
956     SmallVectorImpl<std::pair<unsigned, LiveInterval *>> &LocIntervals,
957     SlotIndex KilledAt,
958     SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs,
959     MachineRegisterInfo &MRI, LiveIntervals &LIS) {
960   // Don't track copies from physregs, there are too many uses.
961   if (any_of(LocIntervals, [](auto LocI) {
962         return !Register::isVirtualRegister(LocI.second->reg());
963       }))
964     return;
965 
966   // Collect all the (vreg, valno) pairs that are copies of LI.
967   SmallDenseMap<unsigned,
968                 SmallVector<std::pair<LiveInterval *, const VNInfo *>, 4>>
969       CopyValues;
970   for (auto &LocInterval : LocIntervals) {
971     unsigned LocNo = LocInterval.first;
972     LiveInterval *LI = LocInterval.second;
973     for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg())) {
974       MachineInstr *MI = MO.getParent();
975       // Copies of the full value.
976       if (MO.getSubReg() || !MI->isCopy())
977         continue;
978       Register DstReg = MI->getOperand(0).getReg();
979 
980       // Don't follow copies to physregs. These are usually setting up call
981       // arguments, and the argument registers are always call clobbered. We are
982       // better off in the source register which could be a callee-saved
983       // register, or it could be spilled.
984       if (!Register::isVirtualRegister(DstReg))
985         continue;
986 
987       // Is the value extended to reach this copy? If not, another def may be
988       // blocking it, or we are looking at a wrong value of LI.
989       SlotIndex Idx = LIS.getInstructionIndex(*MI);
990       LocMap::iterator I = locInts.find(Idx.getRegSlot(true));
991       if (!I.valid() || I.value() != DbgValue)
992         continue;
993 
994       if (!LIS.hasInterval(DstReg))
995         continue;
996       LiveInterval *DstLI = &LIS.getInterval(DstReg);
997       const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot());
998       assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value");
999       CopyValues[LocNo].push_back(std::make_pair(DstLI, DstVNI));
1000     }
1001   }
1002 
1003   if (CopyValues.empty())
1004     return;
1005 
1006 #if !defined(NDEBUG)
1007   for (auto &LocInterval : LocIntervals)
1008     LLVM_DEBUG(dbgs() << "Got " << CopyValues[LocInterval.first].size()
1009                       << " copies of " << *LocInterval.second << '\n');
1010 #endif
1011 
1012   // Try to add defs of the copied values for the kill point. Check that there
1013   // isn't already a def at Idx.
1014   LocMap::iterator I = locInts.find(KilledAt);
1015   if (I.valid() && I.start() <= KilledAt)
1016     return;
1017   DbgVariableValue NewValue(DbgValue);
1018   for (auto &LocInterval : LocIntervals) {
1019     unsigned LocNo = LocInterval.first;
1020     bool FoundCopy = false;
1021     for (auto &LIAndVNI : CopyValues[LocNo]) {
1022       LiveInterval *DstLI = LIAndVNI.first;
1023       const VNInfo *DstVNI = LIAndVNI.second;
1024       if (DstLI->getVNInfoAt(KilledAt) != DstVNI)
1025         continue;
1026       LLVM_DEBUG(dbgs() << "Kill at " << KilledAt << " covered by valno #"
1027                         << DstVNI->id << " in " << *DstLI << '\n');
1028       MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def);
1029       assert(CopyMI && CopyMI->isCopy() && "Bad copy value");
1030       unsigned NewLocNo = getLocationNo(CopyMI->getOperand(0));
1031       NewValue = NewValue.changeLocNo(LocNo, NewLocNo);
1032       FoundCopy = true;
1033       break;
1034     }
1035     // If there are any killed locations we can't find a copy for, we can't
1036     // extend the variable value.
1037     if (!FoundCopy)
1038       return;
1039   }
1040   I.insert(KilledAt, KilledAt.getNextSlot(), NewValue);
1041   NewDefs.push_back(std::make_pair(KilledAt, NewValue));
1042 }
1043 
1044 void UserValue::computeIntervals(MachineRegisterInfo &MRI,
1045                                  const TargetRegisterInfo &TRI,
1046                                  LiveIntervals &LIS, LexicalScopes &LS) {
1047   SmallVector<std::pair<SlotIndex, DbgVariableValue>, 16> Defs;
1048 
1049   // Collect all defs to be extended (Skipping undefs).
1050   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I)
1051     if (!I.value().isUndef())
1052       Defs.push_back(std::make_pair(I.start(), I.value()));
1053 
1054   // Extend all defs, and possibly add new ones along the way.
1055   for (unsigned i = 0; i != Defs.size(); ++i) {
1056     SlotIndex Idx = Defs[i].first;
1057     DbgVariableValue DbgValue = Defs[i].second;
1058     SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> LIs;
1059     SmallVector<const VNInfo *, 4> VNIs;
1060     bool ShouldExtendDef = false;
1061     for (unsigned LocNo : DbgValue.loc_nos()) {
1062       const MachineOperand &LocMO = locations[LocNo];
1063       if (!LocMO.isReg() || !Register::isVirtualRegister(LocMO.getReg())) {
1064         ShouldExtendDef |= !LocMO.isReg();
1065         continue;
1066       }
1067       ShouldExtendDef = true;
1068       LiveInterval *LI = nullptr;
1069       const VNInfo *VNI = nullptr;
1070       if (LIS.hasInterval(LocMO.getReg())) {
1071         LI = &LIS.getInterval(LocMO.getReg());
1072         VNI = LI->getVNInfoAt(Idx);
1073       }
1074       if (LI && VNI)
1075         LIs[LocNo] = {LI, VNI};
1076     }
1077     if (ShouldExtendDef) {
1078       Optional<std::pair<SlotIndex, SmallVector<unsigned>>> Kills;
1079       extendDef(Idx, DbgValue, LIs, Kills, LIS);
1080 
1081       if (Kills) {
1082         SmallVector<std::pair<unsigned, LiveInterval *>, 2> KilledLocIntervals;
1083         bool AnySubreg = false;
1084         for (unsigned LocNo : Kills->second) {
1085           const MachineOperand &LocMO = this->locations[LocNo];
1086           if (LocMO.getSubReg()) {
1087             AnySubreg = true;
1088             break;
1089           }
1090           LiveInterval *LI = &LIS.getInterval(LocMO.getReg());
1091           KilledLocIntervals.push_back({LocNo, LI});
1092         }
1093 
1094         // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that
1095         // if the original location for example is %vreg0:sub_hi, and we find a
1096         // full register copy in addDefsFromCopies (at the moment it only
1097         // handles full register copies), then we must add the sub1 sub-register
1098         // index to the new location. However, that is only possible if the new
1099         // virtual register is of the same regclass (or if there is an
1100         // equivalent sub-register in that regclass). For now, simply skip
1101         // handling copies if a sub-register is involved.
1102         if (!AnySubreg)
1103           addDefsFromCopies(DbgValue, KilledLocIntervals, Kills->first, Defs,
1104                             MRI, LIS);
1105       }
1106     }
1107 
1108     // For physregs, we only mark the start slot idx. DwarfDebug will see it
1109     // as if the DBG_VALUE is valid up until the end of the basic block, or
1110     // the next def of the physical register. So we do not need to extend the
1111     // range. It might actually happen that the DBG_VALUE is the last use of
1112     // the physical register (e.g. if this is an unused input argument to a
1113     // function).
1114   }
1115 
1116   // The computed intervals may extend beyond the range of the debug
1117   // location's lexical scope. In this case, splitting of an interval
1118   // can result in an interval outside of the scope being created,
1119   // causing extra unnecessary DBG_VALUEs to be emitted. To prevent
1120   // this, trim the intervals to the lexical scope.
1121 
1122   LexicalScope *Scope = LS.findLexicalScope(dl);
1123   if (!Scope)
1124     return;
1125 
1126   SlotIndex PrevEnd;
1127   LocMap::iterator I = locInts.begin();
1128 
1129   // Iterate over the lexical scope ranges. Each time round the loop
1130   // we check the intervals for overlap with the end of the previous
1131   // range and the start of the next. The first range is handled as
1132   // a special case where there is no PrevEnd.
1133   for (const InsnRange &Range : Scope->getRanges()) {
1134     SlotIndex RStart = LIS.getInstructionIndex(*Range.first);
1135     SlotIndex REnd = LIS.getInstructionIndex(*Range.second);
1136 
1137     // Variable locations at the first instruction of a block should be
1138     // based on the block's SlotIndex, not the first instruction's index.
1139     if (Range.first == Range.first->getParent()->begin())
1140       RStart = LIS.getSlotIndexes()->getIndexBefore(*Range.first);
1141 
1142     // At the start of each iteration I has been advanced so that
1143     // I.stop() >= PrevEnd. Check for overlap.
1144     if (PrevEnd && I.start() < PrevEnd) {
1145       SlotIndex IStop = I.stop();
1146       DbgVariableValue DbgValue = I.value();
1147 
1148       // Stop overlaps previous end - trim the end of the interval to
1149       // the scope range.
1150       I.setStopUnchecked(PrevEnd);
1151       ++I;
1152 
1153       // If the interval also overlaps the start of the "next" (i.e.
1154       // current) range create a new interval for the remainder (which
1155       // may be further trimmed).
1156       if (RStart < IStop)
1157         I.insert(RStart, IStop, DbgValue);
1158     }
1159 
1160     // Advance I so that I.stop() >= RStart, and check for overlap.
1161     I.advanceTo(RStart);
1162     if (!I.valid())
1163       return;
1164 
1165     if (I.start() < RStart) {
1166       // Interval start overlaps range - trim to the scope range.
1167       I.setStartUnchecked(RStart);
1168       // Remember that this interval was trimmed.
1169       trimmedDefs.insert(RStart);
1170     }
1171 
1172     // The end of a lexical scope range is the last instruction in the
1173     // range. To convert to an interval we need the index of the
1174     // instruction after it.
1175     REnd = REnd.getNextIndex();
1176 
1177     // Advance I to first interval outside current range.
1178     I.advanceTo(REnd);
1179     if (!I.valid())
1180       return;
1181 
1182     PrevEnd = REnd;
1183   }
1184 
1185   // Check for overlap with end of final range.
1186   if (PrevEnd && I.start() < PrevEnd)
1187     I.setStopUnchecked(PrevEnd);
1188 }
1189 
1190 void LDVImpl::computeIntervals() {
1191   LexicalScopes LS;
1192   LS.initialize(*MF);
1193 
1194   for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
1195     userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS);
1196     userValues[i]->mapVirtRegs(this);
1197   }
1198 }
1199 
1200 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) {
1201   clear();
1202   MF = &mf;
1203   LIS = &pass.getAnalysis<LiveIntervals>();
1204   TRI = mf.getSubtarget().getRegisterInfo();
1205   LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
1206                     << mf.getName() << " **********\n");
1207 
1208   bool Changed = collectDebugValues(mf);
1209   computeIntervals();
1210   LLVM_DEBUG(print(dbgs()));
1211   ModifiedMF = Changed;
1212   return Changed;
1213 }
1214 
1215 static void removeDebugInstrs(MachineFunction &mf) {
1216   for (MachineBasicBlock &MBB : mf) {
1217     for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) {
1218       if (!MBBI->isDebugInstr()) {
1219         ++MBBI;
1220         continue;
1221       }
1222       MBBI = MBB.erase(MBBI);
1223     }
1224   }
1225 }
1226 
1227 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
1228   if (!EnableLDV)
1229     return false;
1230   if (!mf.getFunction().getSubprogram()) {
1231     removeDebugInstrs(mf);
1232     return false;
1233   }
1234   if (!pImpl)
1235     pImpl = new LDVImpl(this);
1236   return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf);
1237 }
1238 
1239 void LiveDebugVariables::releaseMemory() {
1240   if (pImpl)
1241     static_cast<LDVImpl*>(pImpl)->clear();
1242 }
1243 
1244 LiveDebugVariables::~LiveDebugVariables() {
1245   if (pImpl)
1246     delete static_cast<LDVImpl*>(pImpl);
1247 }
1248 
1249 //===----------------------------------------------------------------------===//
1250 //                           Live Range Splitting
1251 //===----------------------------------------------------------------------===//
1252 
1253 bool
1254 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs,
1255                          LiveIntervals& LIS) {
1256   LLVM_DEBUG({
1257     dbgs() << "Splitting Loc" << OldLocNo << '\t';
1258     print(dbgs(), nullptr);
1259   });
1260   bool DidChange = false;
1261   LocMap::iterator LocMapI;
1262   LocMapI.setMap(locInts);
1263   for (unsigned i = 0; i != NewRegs.size(); ++i) {
1264     LiveInterval *LI = &LIS.getInterval(NewRegs[i]);
1265     if (LI->empty())
1266       continue;
1267 
1268     // Don't allocate the new LocNo until it is needed.
1269     unsigned NewLocNo = UndefLocNo;
1270 
1271     // Iterate over the overlaps between locInts and LI.
1272     LocMapI.find(LI->beginIndex());
1273     if (!LocMapI.valid())
1274       continue;
1275     LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start());
1276     LiveInterval::iterator LIE = LI->end();
1277     while (LocMapI.valid() && LII != LIE) {
1278       // At this point, we know that LocMapI.stop() > LII->start.
1279       LII = LI->advanceTo(LII, LocMapI.start());
1280       if (LII == LIE)
1281         break;
1282 
1283       // Now LII->end > LocMapI.start(). Do we have an overlap?
1284       if (LocMapI.value().containsLocNo(OldLocNo) &&
1285           LII->start < LocMapI.stop()) {
1286         // Overlapping correct location. Allocate NewLocNo now.
1287         if (NewLocNo == UndefLocNo) {
1288           MachineOperand MO = MachineOperand::CreateReg(LI->reg(), false);
1289           MO.setSubReg(locations[OldLocNo].getSubReg());
1290           NewLocNo = getLocationNo(MO);
1291           DidChange = true;
1292         }
1293 
1294         SlotIndex LStart = LocMapI.start();
1295         SlotIndex LStop = LocMapI.stop();
1296         DbgVariableValue OldDbgValue = LocMapI.value();
1297 
1298         // Trim LocMapI down to the LII overlap.
1299         if (LStart < LII->start)
1300           LocMapI.setStartUnchecked(LII->start);
1301         if (LStop > LII->end)
1302           LocMapI.setStopUnchecked(LII->end);
1303 
1304         // Change the value in the overlap. This may trigger coalescing.
1305         LocMapI.setValue(OldDbgValue.changeLocNo(OldLocNo, NewLocNo));
1306 
1307         // Re-insert any removed OldDbgValue ranges.
1308         if (LStart < LocMapI.start()) {
1309           LocMapI.insert(LStart, LocMapI.start(), OldDbgValue);
1310           ++LocMapI;
1311           assert(LocMapI.valid() && "Unexpected coalescing");
1312         }
1313         if (LStop > LocMapI.stop()) {
1314           ++LocMapI;
1315           LocMapI.insert(LII->end, LStop, OldDbgValue);
1316           --LocMapI;
1317         }
1318       }
1319 
1320       // Advance to the next overlap.
1321       if (LII->end < LocMapI.stop()) {
1322         if (++LII == LIE)
1323           break;
1324         LocMapI.advanceTo(LII->start);
1325       } else {
1326         ++LocMapI;
1327         if (!LocMapI.valid())
1328           break;
1329         LII = LI->advanceTo(LII, LocMapI.start());
1330       }
1331     }
1332   }
1333 
1334   // Finally, remove OldLocNo unless it is still used by some interval in the
1335   // locInts map. One case when OldLocNo still is in use is when the register
1336   // has been spilled. In such situations the spilled register is kept as a
1337   // location until rewriteLocations is called (VirtRegMap is mapping the old
1338   // register to the spill slot). So for a while we can have locations that map
1339   // to virtual registers that have been removed from both the MachineFunction
1340   // and from LiveIntervals.
1341   //
1342   // We may also just be using the location for a value with a different
1343   // expression.
1344   removeLocationIfUnused(OldLocNo);
1345 
1346   LLVM_DEBUG({
1347     dbgs() << "Split result: \t";
1348     print(dbgs(), nullptr);
1349   });
1350   return DidChange;
1351 }
1352 
1353 bool
1354 UserValue::splitRegister(Register OldReg, ArrayRef<Register> NewRegs,
1355                          LiveIntervals &LIS) {
1356   bool DidChange = false;
1357   // Split locations referring to OldReg. Iterate backwards so splitLocation can
1358   // safely erase unused locations.
1359   for (unsigned i = locations.size(); i ; --i) {
1360     unsigned LocNo = i-1;
1361     const MachineOperand *Loc = &locations[LocNo];
1362     if (!Loc->isReg() || Loc->getReg() != OldReg)
1363       continue;
1364     DidChange |= splitLocation(LocNo, NewRegs, LIS);
1365   }
1366   return DidChange;
1367 }
1368 
1369 void LDVImpl::splitRegister(Register OldReg, ArrayRef<Register> NewRegs) {
1370   bool DidChange = false;
1371   for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext())
1372     DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS);
1373 
1374   if (!DidChange)
1375     return;
1376 
1377   // Map all of the new virtual registers.
1378   UserValue *UV = lookupVirtReg(OldReg);
1379   for (unsigned i = 0; i != NewRegs.size(); ++i)
1380     mapVirtReg(NewRegs[i], UV);
1381 }
1382 
1383 void LiveDebugVariables::
1384 splitRegister(Register OldReg, ArrayRef<Register> NewRegs, LiveIntervals &LIS) {
1385   if (pImpl)
1386     static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs);
1387 }
1388 
1389 void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
1390                                  const TargetInstrInfo &TII,
1391                                  const TargetRegisterInfo &TRI,
1392                                  SpillOffsetMap &SpillOffsets) {
1393   // Build a set of new locations with new numbers so we can coalesce our
1394   // IntervalMap if two vreg intervals collapse to the same physical location.
1395   // Use MapVector instead of SetVector because MapVector::insert returns the
1396   // position of the previously or newly inserted element. The boolean value
1397   // tracks if the location was produced by a spill.
1398   // FIXME: This will be problematic if we ever support direct and indirect
1399   // frame index locations, i.e. expressing both variables in memory and
1400   // 'int x, *px = &x'. The "spilled" bit must become part of the location.
1401   MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations;
1402   SmallVector<unsigned, 4> LocNoMap(locations.size());
1403   for (unsigned I = 0, E = locations.size(); I != E; ++I) {
1404     bool Spilled = false;
1405     unsigned SpillOffset = 0;
1406     MachineOperand Loc = locations[I];
1407     // Only virtual registers are rewritten.
1408     if (Loc.isReg() && Loc.getReg() &&
1409         Register::isVirtualRegister(Loc.getReg())) {
1410       Register VirtReg = Loc.getReg();
1411       if (VRM.isAssignedReg(VirtReg) &&
1412           Register::isPhysicalRegister(VRM.getPhys(VirtReg))) {
1413         // This can create a %noreg operand in rare cases when the sub-register
1414         // index is no longer available. That means the user value is in a
1415         // non-existent sub-register, and %noreg is exactly what we want.
1416         Loc.substPhysReg(VRM.getPhys(VirtReg), TRI);
1417       } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) {
1418         // Retrieve the stack slot offset.
1419         unsigned SpillSize;
1420         const MachineRegisterInfo &MRI = MF.getRegInfo();
1421         const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg);
1422         bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize,
1423                                              SpillOffset, MF);
1424 
1425         // FIXME: Invalidate the location if the offset couldn't be calculated.
1426         (void)Success;
1427 
1428         Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg));
1429         Spilled = true;
1430       } else {
1431         Loc.setReg(0);
1432         Loc.setSubReg(0);
1433       }
1434     }
1435 
1436     // Insert this location if it doesn't already exist and record a mapping
1437     // from the old number to the new number.
1438     auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}});
1439     unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first);
1440     LocNoMap[I] = NewLocNo;
1441   }
1442 
1443   // Rewrite the locations and record the stack slot offsets for spills.
1444   locations.clear();
1445   SpillOffsets.clear();
1446   for (auto &Pair : NewLocations) {
1447     bool Spilled;
1448     unsigned SpillOffset;
1449     std::tie(Spilled, SpillOffset) = Pair.second;
1450     locations.push_back(Pair.first);
1451     if (Spilled) {
1452       unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair);
1453       SpillOffsets[NewLocNo] = SpillOffset;
1454     }
1455   }
1456 
1457   // Update the interval map, but only coalesce left, since intervals to the
1458   // right use the old location numbers. This should merge two contiguous
1459   // DBG_VALUE intervals with different vregs that were allocated to the same
1460   // physical register.
1461   for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
1462     I.setValueUnchecked(I.value().remapLocNos(LocNoMap));
1463     I.setStart(I.start());
1464   }
1465 }
1466 
1467 /// Find an iterator for inserting a DBG_VALUE instruction.
1468 static MachineBasicBlock::iterator
1469 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, LiveIntervals &LIS,
1470                    BlockSkipInstsMap &BBSkipInstsMap) {
1471   SlotIndex Start = LIS.getMBBStartIdx(MBB);
1472   Idx = Idx.getBaseIndex();
1473 
1474   // Try to find an insert location by going backwards from Idx.
1475   MachineInstr *MI;
1476   while (!(MI = LIS.getInstructionFromIndex(Idx))) {
1477     // We've reached the beginning of MBB.
1478     if (Idx == Start) {
1479       // Retrieve the last PHI/Label/Debug location found when calling
1480       // SkipPHIsLabelsAndDebug last time. Start searching from there.
1481       //
1482       // Note the iterator kept in BBSkipInstsMap is one step back based
1483       // on the iterator returned by SkipPHIsLabelsAndDebug last time.
1484       // One exception is when SkipPHIsLabelsAndDebug returns MBB->begin(),
1485       // BBSkipInstsMap won't save it. This is to consider the case that
1486       // new instructions may be inserted at the beginning of MBB after
1487       // last call of SkipPHIsLabelsAndDebug. If we save MBB->begin() in
1488       // BBSkipInstsMap, after new non-phi/non-label/non-debug instructions
1489       // are inserted at the beginning of the MBB, the iterator in
1490       // BBSkipInstsMap won't point to the beginning of the MBB anymore.
1491       // Therefore The next search in SkipPHIsLabelsAndDebug will skip those
1492       // newly added instructions and that is unwanted.
1493       MachineBasicBlock::iterator BeginIt;
1494       auto MapIt = BBSkipInstsMap.find(MBB);
1495       if (MapIt == BBSkipInstsMap.end())
1496         BeginIt = MBB->begin();
1497       else
1498         BeginIt = std::next(MapIt->second);
1499       auto I = MBB->SkipPHIsLabelsAndDebug(BeginIt);
1500       if (I != BeginIt)
1501         BBSkipInstsMap[MBB] = std::prev(I);
1502       return I;
1503     }
1504     Idx = Idx.getPrevIndex();
1505   }
1506 
1507   // Don't insert anything after the first terminator, though.
1508   return MI->isTerminator() ? MBB->getFirstTerminator() :
1509                               std::next(MachineBasicBlock::iterator(MI));
1510 }
1511 
1512 /// Find an iterator for inserting the next DBG_VALUE instruction
1513 /// (or end if no more insert locations found).
1514 static MachineBasicBlock::iterator
1515 findNextInsertLocation(MachineBasicBlock *MBB, MachineBasicBlock::iterator I,
1516                        SlotIndex StopIdx, ArrayRef<MachineOperand> LocMOs,
1517                        LiveIntervals &LIS, const TargetRegisterInfo &TRI) {
1518   SmallVector<Register, 4> Regs;
1519   for (const MachineOperand &LocMO : LocMOs)
1520     if (LocMO.isReg())
1521       Regs.push_back(LocMO.getReg());
1522   if (Regs.empty())
1523     return MBB->instr_end();
1524 
1525   // Find the next instruction in the MBB that define the register Reg.
1526   while (I != MBB->end() && !I->isTerminator()) {
1527     if (!LIS.isNotInMIMap(*I) &&
1528         SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I)))
1529       break;
1530     if (any_of(Regs, [&I, &TRI](Register &Reg) {
1531           return I->definesRegister(Reg, &TRI);
1532         }))
1533       // The insert location is directly after the instruction/bundle.
1534       return std::next(I);
1535     ++I;
1536   }
1537   return MBB->end();
1538 }
1539 
1540 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
1541                                  SlotIndex StopIdx, DbgVariableValue DbgValue,
1542                                  ArrayRef<bool> LocSpills,
1543                                  ArrayRef<unsigned> SpillOffsets,
1544                                  LiveIntervals &LIS, const TargetInstrInfo &TII,
1545                                  const TargetRegisterInfo &TRI,
1546                                  BlockSkipInstsMap &BBSkipInstsMap) {
1547   SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB);
1548   // Only search within the current MBB.
1549   StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx;
1550   MachineBasicBlock::iterator I =
1551       findInsertLocation(MBB, StartIdx, LIS, BBSkipInstsMap);
1552   // Undef values don't exist in locations so create new "noreg" register MOs
1553   // for them. See getLocationNo().
1554   SmallVector<MachineOperand, 8> MOs;
1555   if (DbgValue.isUndef()) {
1556     MOs.assign(DbgValue.loc_nos().size(),
1557                MachineOperand::CreateReg(
1558                    /* Reg */ 0, /* isDef */ false, /* isImp */ false,
1559                    /* isKill */ false, /* isDead */ false,
1560                    /* isUndef */ false, /* isEarlyClobber */ false,
1561                    /* SubReg */ 0, /* isDebug */ true));
1562   } else {
1563     for (unsigned LocNo : DbgValue.loc_nos())
1564       MOs.push_back(locations[LocNo]);
1565   }
1566 
1567   ++NumInsertedDebugValues;
1568 
1569   assert(cast<DILocalVariable>(Variable)
1570              ->isValidLocationForIntrinsic(getDebugLoc()) &&
1571          "Expected inlined-at fields to agree");
1572 
1573   // If the location was spilled, the new DBG_VALUE will be indirect. If the
1574   // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate
1575   // that the original virtual register was a pointer. Also, add the stack slot
1576   // offset for the spilled register to the expression.
1577   const DIExpression *Expr = DbgValue.getExpression();
1578   bool IsIndirect = DbgValue.getWasIndirect();
1579   bool IsList = DbgValue.getWasList();
1580   for (unsigned I = 0, E = LocSpills.size(); I != E; ++I) {
1581     if (LocSpills[I]) {
1582       if (!IsList) {
1583         uint8_t DIExprFlags = DIExpression::ApplyOffset;
1584         if (IsIndirect)
1585           DIExprFlags |= DIExpression::DerefAfter;
1586         Expr = DIExpression::prepend(Expr, DIExprFlags, SpillOffsets[I]);
1587         IsIndirect = true;
1588       } else {
1589         SmallVector<uint64_t, 4> Ops;
1590         DIExpression::appendOffset(Ops, SpillOffsets[I]);
1591         Ops.push_back(dwarf::DW_OP_deref);
1592         Expr = DIExpression::appendOpsToArg(Expr, Ops, I);
1593       }
1594     }
1595 
1596     assert((!LocSpills[I] || MOs[I].isFI()) &&
1597            "a spilled location must be a frame index");
1598   }
1599 
1600   unsigned DbgValueOpcode =
1601       IsList ? TargetOpcode::DBG_VALUE_LIST : TargetOpcode::DBG_VALUE;
1602   do {
1603     BuildMI(*MBB, I, getDebugLoc(), TII.get(DbgValueOpcode), IsIndirect, MOs,
1604             Variable, Expr);
1605 
1606     // Continue and insert DBG_VALUES after every redefinition of a register
1607     // associated with the debug value within the range
1608     I = findNextInsertLocation(MBB, I, StopIdx, MOs, LIS, TRI);
1609   } while (I != MBB->end());
1610 }
1611 
1612 void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx,
1613                                  LiveIntervals &LIS, const TargetInstrInfo &TII,
1614                                  BlockSkipInstsMap &BBSkipInstsMap) {
1615   MachineBasicBlock::iterator I =
1616       findInsertLocation(MBB, Idx, LIS, BBSkipInstsMap);
1617   ++NumInsertedDebugLabels;
1618   BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL))
1619       .addMetadata(Label);
1620 }
1621 
1622 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
1623                                 const TargetInstrInfo &TII,
1624                                 const TargetRegisterInfo &TRI,
1625                                 const SpillOffsetMap &SpillOffsets,
1626                                 BlockSkipInstsMap &BBSkipInstsMap) {
1627   MachineFunction::iterator MFEnd = VRM->getMachineFunction().end();
1628 
1629   for (LocMap::const_iterator I = locInts.begin(); I.valid();) {
1630     SlotIndex Start = I.start();
1631     SlotIndex Stop = I.stop();
1632     DbgVariableValue DbgValue = I.value();
1633 
1634     SmallVector<bool> SpilledLocs;
1635     SmallVector<unsigned> LocSpillOffsets;
1636     for (unsigned LocNo : DbgValue.loc_nos()) {
1637       auto SpillIt =
1638           !DbgValue.isUndef() ? SpillOffsets.find(LocNo) : SpillOffsets.end();
1639       bool Spilled = SpillIt != SpillOffsets.end();
1640       SpilledLocs.push_back(Spilled);
1641       LocSpillOffsets.push_back(Spilled ? SpillIt->second : 0);
1642     }
1643 
1644     // If the interval start was trimmed to the lexical scope insert the
1645     // DBG_VALUE at the previous index (otherwise it appears after the
1646     // first instruction in the range).
1647     if (trimmedDefs.count(Start))
1648       Start = Start.getPrevIndex();
1649 
1650     LLVM_DEBUG(auto &dbg = dbgs(); dbg << "\t[" << Start << ';' << Stop << "):";
1651                DbgValue.printLocNos(dbg));
1652     MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1653     SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB);
1654 
1655     LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1656     insertDebugValue(&*MBB, Start, Stop, DbgValue, SpilledLocs, LocSpillOffsets,
1657                      LIS, TII, TRI, BBSkipInstsMap);
1658     // This interval may span multiple basic blocks.
1659     // Insert a DBG_VALUE into each one.
1660     while (Stop > MBBEnd) {
1661       // Move to the next block.
1662       Start = MBBEnd;
1663       if (++MBB == MFEnd)
1664         break;
1665       MBBEnd = LIS.getMBBEndIdx(&*MBB);
1666       LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1667       insertDebugValue(&*MBB, Start, Stop, DbgValue, SpilledLocs,
1668                        LocSpillOffsets, LIS, TII, TRI, BBSkipInstsMap);
1669     }
1670     LLVM_DEBUG(dbgs() << '\n');
1671     if (MBB == MFEnd)
1672       break;
1673 
1674     ++I;
1675   }
1676 }
1677 
1678 void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII,
1679                                BlockSkipInstsMap &BBSkipInstsMap) {
1680   LLVM_DEBUG(dbgs() << "\t" << loc);
1681   MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator();
1682 
1683   LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB));
1684   insertDebugLabel(&*MBB, loc, LIS, TII, BBSkipInstsMap);
1685 
1686   LLVM_DEBUG(dbgs() << '\n');
1687 }
1688 
1689 void LDVImpl::emitDebugValues(VirtRegMap *VRM) {
1690   LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
1691   if (!MF)
1692     return;
1693 
1694   BlockSkipInstsMap BBSkipInstsMap;
1695   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1696   SpillOffsetMap SpillOffsets;
1697   for (auto &userValue : userValues) {
1698     LLVM_DEBUG(userValue->print(dbgs(), TRI));
1699     userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets);
1700     userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets,
1701                                BBSkipInstsMap);
1702   }
1703   LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n");
1704   for (auto &userLabel : userLabels) {
1705     LLVM_DEBUG(userLabel->print(dbgs(), TRI));
1706     userLabel->emitDebugLabel(*LIS, *TII, BBSkipInstsMap);
1707   }
1708 
1709   LLVM_DEBUG(dbgs() << "********** EMITTING INSTR REFERENCES **********\n");
1710 
1711   // Re-insert any DBG_INSTR_REFs back in the position they were. Ordering
1712   // is preserved by vector.
1713   auto Slots = LIS->getSlotIndexes();
1714   const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_INSTR_REF);
1715   for (auto &P : StashedInstrReferences) {
1716     const SlotIndex &Idx = P.first;
1717     auto *MBB = Slots->getMBBFromIndex(Idx);
1718     MachineBasicBlock::iterator insertPos =
1719         findInsertLocation(MBB, Idx, *LIS, BBSkipInstsMap);
1720     for (auto &Stashed : P.second) {
1721       auto MIB = BuildMI(*MF, std::get<4>(Stashed), RefII);
1722       MIB.addImm(std::get<0>(Stashed));
1723       MIB.addImm(std::get<1>(Stashed));
1724       MIB.addMetadata(std::get<2>(Stashed));
1725       MIB.addMetadata(std::get<3>(Stashed));
1726       MachineInstr *New = MIB;
1727       MBB->insert(insertPos, New);
1728     }
1729   }
1730 
1731   EmitDone = true;
1732   BBSkipInstsMap.clear();
1733 }
1734 
1735 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) {
1736   if (pImpl)
1737     static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM);
1738 }
1739 
1740 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1741 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const {
1742   if (pImpl)
1743     static_cast<LDVImpl*>(pImpl)->print(dbgs());
1744 }
1745 #endif
1746