1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the LiveDebugVariables analysis. 10 // 11 // Remove all DBG_VALUE instructions referencing virtual registers and replace 12 // them with a data structure tracking where live user variables are kept - in a 13 // virtual register or in a stack slot. 14 // 15 // Allow the data structure to be updated during register allocation when values 16 // are moved between registers and stack slots. Finally emit new DBG_VALUE 17 // instructions after register allocation is complete. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "LiveDebugVariables.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/IntervalMap.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/CodeGen/LexicalScopes.h" 32 #include "llvm/CodeGen/LiveInterval.h" 33 #include "llvm/CodeGen/LiveIntervals.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineDominators.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/SlotIndexes.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetOpcodes.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/VirtRegMap.h" 47 #include "llvm/Config/llvm-config.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/MC/MCRegisterInfo.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <iterator> 62 #include <memory> 63 #include <utility> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "livedebugvars" 68 69 static cl::opt<bool> 70 EnableLDV("live-debug-variables", cl::init(true), 71 cl::desc("Enable the live debug variables pass"), cl::Hidden); 72 73 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); 74 STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted"); 75 76 char LiveDebugVariables::ID = 0; 77 78 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE, 79 "Debug Variable Analysis", false, false) 80 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 81 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 82 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE, 83 "Debug Variable Analysis", false, false) 84 85 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { 86 AU.addRequired<MachineDominatorTree>(); 87 AU.addRequiredTransitive<LiveIntervals>(); 88 AU.setPreservesAll(); 89 MachineFunctionPass::getAnalysisUsage(AU); 90 } 91 92 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) { 93 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 94 } 95 96 enum : unsigned { UndefLocNo = ~0U }; 97 98 namespace { 99 /// Describes a debug variable value by location number and expression along 100 /// with some flags about the original usage of the location. 101 class DbgVariableValue { 102 public: 103 DbgVariableValue(ArrayRef<unsigned> NewLocs, bool WasIndirect, bool WasList, 104 const DIExpression &Expr) 105 : WasIndirect(WasIndirect), WasList(WasList), Expression(&Expr) { 106 assert(!(WasIndirect && WasList) && 107 "DBG_VALUE_LISTs should not be indirect."); 108 SmallVector<unsigned> LocNoVec; 109 for (unsigned LocNo : NewLocs) { 110 auto It = find(LocNoVec, LocNo); 111 if (It == LocNoVec.end()) 112 LocNoVec.push_back(LocNo); 113 else { 114 // Loc duplicates an element in LocNos; replace references to Op 115 // with references to the duplicating element. 116 unsigned OpIdx = LocNoVec.size(); 117 unsigned DuplicatingIdx = std::distance(LocNoVec.begin(), It); 118 Expression = 119 DIExpression::replaceArg(Expression, OpIdx, DuplicatingIdx); 120 } 121 } 122 // FIXME: Debug values referencing 64+ unique machine locations are rare and 123 // currently unsupported for performance reasons. If we can verify that 124 // performance is acceptable for such debug values, we can increase the 125 // bit-width of LocNoCount to 14 to enable up to 16384 unique machine 126 // locations. We will also need to verify that this does not cause issues 127 // with LiveDebugVariables' use of IntervalMap. 128 if (LocNoVec.size() < 64) { 129 LocNoCount = LocNoVec.size(); 130 if (LocNoCount > 0) { 131 LocNos = std::make_unique<unsigned[]>(LocNoCount); 132 std::copy(LocNoVec.begin(), LocNoVec.end(), loc_nos_begin()); 133 } 134 } else { 135 LLVM_DEBUG(dbgs() << "Found debug value with 64+ unique machine " 136 "locations, dropping...\n"); 137 LocNoCount = 1; 138 // Turn this into an undef debug value list; right now, the simplest form 139 // of this is an expression with one arg, and an undef debug operand. 140 Expression = 141 DIExpression::get(Expr.getContext(), {dwarf::DW_OP_LLVM_arg, 0, 142 dwarf::DW_OP_stack_value}); 143 if (auto FragmentInfoOpt = Expr.getFragmentInfo()) 144 Expression = *DIExpression::createFragmentExpression( 145 Expression, FragmentInfoOpt->OffsetInBits, 146 FragmentInfoOpt->SizeInBits); 147 LocNos = std::make_unique<unsigned[]>(LocNoCount); 148 LocNos[0] = UndefLocNo; 149 } 150 } 151 152 DbgVariableValue() : LocNoCount(0), WasIndirect(0), WasList(0) {} 153 DbgVariableValue(const DbgVariableValue &Other) 154 : LocNoCount(Other.LocNoCount), WasIndirect(Other.getWasIndirect()), 155 WasList(Other.getWasList()), Expression(Other.getExpression()) { 156 if (Other.getLocNoCount()) { 157 LocNos.reset(new unsigned[Other.getLocNoCount()]); 158 std::copy(Other.loc_nos_begin(), Other.loc_nos_end(), loc_nos_begin()); 159 } 160 } 161 162 DbgVariableValue &operator=(const DbgVariableValue &Other) { 163 if (this == &Other) 164 return *this; 165 if (Other.getLocNoCount()) { 166 LocNos.reset(new unsigned[Other.getLocNoCount()]); 167 std::copy(Other.loc_nos_begin(), Other.loc_nos_end(), loc_nos_begin()); 168 } else { 169 LocNos.release(); 170 } 171 LocNoCount = Other.getLocNoCount(); 172 WasIndirect = Other.getWasIndirect(); 173 WasList = Other.getWasList(); 174 Expression = Other.getExpression(); 175 return *this; 176 } 177 178 const DIExpression *getExpression() const { return Expression; } 179 uint8_t getLocNoCount() const { return LocNoCount; } 180 bool containsLocNo(unsigned LocNo) const { 181 return is_contained(loc_nos(), LocNo); 182 } 183 bool getWasIndirect() const { return WasIndirect; } 184 bool getWasList() const { return WasList; } 185 bool isUndef() const { return LocNoCount == 0 || containsLocNo(UndefLocNo); } 186 187 DbgVariableValue decrementLocNosAfterPivot(unsigned Pivot) const { 188 SmallVector<unsigned, 4> NewLocNos; 189 for (unsigned LocNo : loc_nos()) 190 NewLocNos.push_back(LocNo != UndefLocNo && LocNo > Pivot ? LocNo - 1 191 : LocNo); 192 return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); 193 } 194 195 DbgVariableValue remapLocNos(ArrayRef<unsigned> LocNoMap) const { 196 SmallVector<unsigned> NewLocNos; 197 for (unsigned LocNo : loc_nos()) 198 // Undef values don't exist in locations (and thus not in LocNoMap 199 // either) so skip over them. See getLocationNo(). 200 NewLocNos.push_back(LocNo == UndefLocNo ? UndefLocNo : LocNoMap[LocNo]); 201 return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); 202 } 203 204 DbgVariableValue changeLocNo(unsigned OldLocNo, unsigned NewLocNo) const { 205 SmallVector<unsigned> NewLocNos; 206 NewLocNos.assign(loc_nos_begin(), loc_nos_end()); 207 auto OldLocIt = find(NewLocNos, OldLocNo); 208 assert(OldLocIt != NewLocNos.end() && "Old location must be present."); 209 *OldLocIt = NewLocNo; 210 return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); 211 } 212 213 bool hasLocNoGreaterThan(unsigned LocNo) const { 214 return any_of(loc_nos(), 215 [LocNo](unsigned ThisLocNo) { return ThisLocNo > LocNo; }); 216 } 217 218 void printLocNos(llvm::raw_ostream &OS) const { 219 for (const unsigned &Loc : loc_nos()) 220 OS << (&Loc == loc_nos_begin() ? " " : ", ") << Loc; 221 } 222 223 friend inline bool operator==(const DbgVariableValue &LHS, 224 const DbgVariableValue &RHS) { 225 if (std::tie(LHS.LocNoCount, LHS.WasIndirect, LHS.WasList, 226 LHS.Expression) != 227 std::tie(RHS.LocNoCount, RHS.WasIndirect, RHS.WasList, RHS.Expression)) 228 return false; 229 return std::equal(LHS.loc_nos_begin(), LHS.loc_nos_end(), 230 RHS.loc_nos_begin()); 231 } 232 233 friend inline bool operator!=(const DbgVariableValue &LHS, 234 const DbgVariableValue &RHS) { 235 return !(LHS == RHS); 236 } 237 238 unsigned *loc_nos_begin() { return LocNos.get(); } 239 const unsigned *loc_nos_begin() const { return LocNos.get(); } 240 unsigned *loc_nos_end() { return LocNos.get() + LocNoCount; } 241 const unsigned *loc_nos_end() const { return LocNos.get() + LocNoCount; } 242 ArrayRef<unsigned> loc_nos() const { 243 return ArrayRef<unsigned>(LocNos.get(), LocNoCount); 244 } 245 246 private: 247 // IntervalMap requires the value object to be very small, to the extent 248 // that we do not have enough room for an std::vector. Using a C-style array 249 // (with a unique_ptr wrapper for convenience) allows us to optimize for this 250 // specific case by packing the array size into only 6 bits (it is highly 251 // unlikely that any debug value will need 64+ locations). 252 std::unique_ptr<unsigned[]> LocNos; 253 uint8_t LocNoCount : 6; 254 bool WasIndirect : 1; 255 bool WasList : 1; 256 const DIExpression *Expression = nullptr; 257 }; 258 } // namespace 259 260 /// Map of where a user value is live to that value. 261 using LocMap = IntervalMap<SlotIndex, DbgVariableValue, 4>; 262 263 /// Map of stack slot offsets for spilled locations. 264 /// Non-spilled locations are not added to the map. 265 using SpillOffsetMap = DenseMap<unsigned, unsigned>; 266 267 /// Cache to save the location where it can be used as the starting 268 /// position as input for calling MachineBasicBlock::SkipPHIsLabelsAndDebug. 269 /// This is to prevent MachineBasicBlock::SkipPHIsLabelsAndDebug from 270 /// repeatedly searching the same set of PHIs/Labels/Debug instructions 271 /// if it is called many times for the same block. 272 using BlockSkipInstsMap = 273 DenseMap<MachineBasicBlock *, MachineBasicBlock::iterator>; 274 275 namespace { 276 277 class LDVImpl; 278 279 /// A user value is a part of a debug info user variable. 280 /// 281 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 282 /// holds part of a user variable. The part is identified by a byte offset. 283 /// 284 /// UserValues are grouped into equivalence classes for easier searching. Two 285 /// user values are related if they are held by the same virtual register. The 286 /// equivalence class is the transitive closure of that relation. 287 class UserValue { 288 const DILocalVariable *Variable; ///< The debug info variable we are part of. 289 /// The part of the variable we describe. 290 const Optional<DIExpression::FragmentInfo> Fragment; 291 DebugLoc dl; ///< The debug location for the variable. This is 292 ///< used by dwarf writer to find lexical scope. 293 UserValue *leader; ///< Equivalence class leader. 294 UserValue *next = nullptr; ///< Next value in equivalence class, or null. 295 296 /// Numbered locations referenced by locmap. 297 SmallVector<MachineOperand, 4> locations; 298 299 /// Map of slot indices where this value is live. 300 LocMap locInts; 301 302 /// Set of interval start indexes that have been trimmed to the 303 /// lexical scope. 304 SmallSet<SlotIndex, 2> trimmedDefs; 305 306 /// Insert a DBG_VALUE into MBB at Idx for DbgValue. 307 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 308 SlotIndex StopIdx, DbgVariableValue DbgValue, 309 ArrayRef<bool> LocSpills, 310 ArrayRef<unsigned> SpillOffsets, LiveIntervals &LIS, 311 const TargetInstrInfo &TII, 312 const TargetRegisterInfo &TRI, 313 BlockSkipInstsMap &BBSkipInstsMap); 314 315 /// Replace OldLocNo ranges with NewRegs ranges where NewRegs 316 /// is live. Returns true if any changes were made. 317 bool splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs, 318 LiveIntervals &LIS); 319 320 public: 321 /// Create a new UserValue. 322 UserValue(const DILocalVariable *var, 323 Optional<DIExpression::FragmentInfo> Fragment, DebugLoc L, 324 LocMap::Allocator &alloc) 325 : Variable(var), Fragment(Fragment), dl(std::move(L)), leader(this), 326 locInts(alloc) {} 327 328 /// Get the leader of this value's equivalence class. 329 UserValue *getLeader() { 330 UserValue *l = leader; 331 while (l != l->leader) 332 l = l->leader; 333 return leader = l; 334 } 335 336 /// Return the next UserValue in the equivalence class. 337 UserValue *getNext() const { return next; } 338 339 /// Merge equivalence classes. 340 static UserValue *merge(UserValue *L1, UserValue *L2) { 341 L2 = L2->getLeader(); 342 if (!L1) 343 return L2; 344 L1 = L1->getLeader(); 345 if (L1 == L2) 346 return L1; 347 // Splice L2 before L1's members. 348 UserValue *End = L2; 349 while (End->next) { 350 End->leader = L1; 351 End = End->next; 352 } 353 End->leader = L1; 354 End->next = L1->next; 355 L1->next = L2; 356 return L1; 357 } 358 359 /// Return the location number that matches Loc. 360 /// 361 /// For undef values we always return location number UndefLocNo without 362 /// inserting anything in locations. Since locations is a vector and the 363 /// location number is the position in the vector and UndefLocNo is ~0, 364 /// we would need a very big vector to put the value at the right position. 365 unsigned getLocationNo(const MachineOperand &LocMO) { 366 if (LocMO.isReg()) { 367 if (LocMO.getReg() == 0) 368 return UndefLocNo; 369 // For register locations we dont care about use/def and other flags. 370 for (unsigned i = 0, e = locations.size(); i != e; ++i) 371 if (locations[i].isReg() && 372 locations[i].getReg() == LocMO.getReg() && 373 locations[i].getSubReg() == LocMO.getSubReg()) 374 return i; 375 } else 376 for (unsigned i = 0, e = locations.size(); i != e; ++i) 377 if (LocMO.isIdenticalTo(locations[i])) 378 return i; 379 locations.push_back(LocMO); 380 // We are storing a MachineOperand outside a MachineInstr. 381 locations.back().clearParent(); 382 // Don't store def operands. 383 if (locations.back().isReg()) { 384 if (locations.back().isDef()) 385 locations.back().setIsDead(false); 386 locations.back().setIsUse(); 387 } 388 return locations.size() - 1; 389 } 390 391 /// Remove (recycle) a location number. If \p LocNo still is used by the 392 /// locInts nothing is done. 393 void removeLocationIfUnused(unsigned LocNo) { 394 // Bail out if LocNo still is used. 395 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 396 const DbgVariableValue &DbgValue = I.value(); 397 if (DbgValue.containsLocNo(LocNo)) 398 return; 399 } 400 // Remove the entry in the locations vector, and adjust all references to 401 // location numbers above the removed entry. 402 locations.erase(locations.begin() + LocNo); 403 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 404 const DbgVariableValue &DbgValue = I.value(); 405 if (DbgValue.hasLocNoGreaterThan(LocNo)) 406 I.setValueUnchecked(DbgValue.decrementLocNosAfterPivot(LocNo)); 407 } 408 } 409 410 /// Ensure that all virtual register locations are mapped. 411 void mapVirtRegs(LDVImpl *LDV); 412 413 /// Add a definition point to this user value. 414 void addDef(SlotIndex Idx, ArrayRef<MachineOperand> LocMOs, bool IsIndirect, 415 bool IsList, const DIExpression &Expr) { 416 SmallVector<unsigned> Locs; 417 for (MachineOperand Op : LocMOs) 418 Locs.push_back(getLocationNo(Op)); 419 DbgVariableValue DbgValue(Locs, IsIndirect, IsList, Expr); 420 // Add a singular (Idx,Idx) -> value mapping. 421 LocMap::iterator I = locInts.find(Idx); 422 if (!I.valid() || I.start() != Idx) 423 I.insert(Idx, Idx.getNextSlot(), std::move(DbgValue)); 424 else 425 // A later DBG_VALUE at the same SlotIndex overrides the old location. 426 I.setValue(std::move(DbgValue)); 427 } 428 429 /// Extend the current definition as far as possible down. 430 /// 431 /// Stop when meeting an existing def or when leaving the live 432 /// range of VNI. End points where VNI is no longer live are added to Kills. 433 /// 434 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a 435 /// data-flow analysis to propagate them beyond basic block boundaries. 436 /// 437 /// \param Idx Starting point for the definition. 438 /// \param DbgValue value to propagate. 439 /// \param LiveIntervalInfo For each location number key in this map, 440 /// restricts liveness to where the LiveRange has the value equal to the\ 441 /// VNInfo. 442 /// \param [out] Kills Append end points of VNI's live range to Kills. 443 /// \param LIS Live intervals analysis. 444 void extendDef(SlotIndex Idx, DbgVariableValue DbgValue, 445 SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> 446 &LiveIntervalInfo, 447 Optional<std::pair<SlotIndex, SmallVector<unsigned>>> &Kills, 448 LiveIntervals &LIS); 449 450 /// The value in LI may be copies to other registers. Determine if 451 /// any of the copies are available at the kill points, and add defs if 452 /// possible. 453 /// 454 /// \param DbgValue Location number of LI->reg, and DIExpression. 455 /// \param LocIntervals Scan for copies of the value for each location in the 456 /// corresponding LiveInterval->reg. 457 /// \param KilledAt The point where the range of DbgValue could be extended. 458 /// \param [in,out] NewDefs Append (Idx, DbgValue) of inserted defs here. 459 void addDefsFromCopies( 460 DbgVariableValue DbgValue, 461 SmallVectorImpl<std::pair<unsigned, LiveInterval *>> &LocIntervals, 462 SlotIndex KilledAt, 463 SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs, 464 MachineRegisterInfo &MRI, LiveIntervals &LIS); 465 466 /// Compute the live intervals of all locations after collecting all their 467 /// def points. 468 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, 469 LiveIntervals &LIS, LexicalScopes &LS); 470 471 /// Replace OldReg ranges with NewRegs ranges where NewRegs is 472 /// live. Returns true if any changes were made. 473 bool splitRegister(Register OldReg, ArrayRef<Register> NewRegs, 474 LiveIntervals &LIS); 475 476 /// Rewrite virtual register locations according to the provided virtual 477 /// register map. Record the stack slot offsets for the locations that 478 /// were spilled. 479 void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, 480 const TargetInstrInfo &TII, 481 const TargetRegisterInfo &TRI, 482 SpillOffsetMap &SpillOffsets); 483 484 /// Recreate DBG_VALUE instruction from data structures. 485 void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 486 const TargetInstrInfo &TII, 487 const TargetRegisterInfo &TRI, 488 const SpillOffsetMap &SpillOffsets, 489 BlockSkipInstsMap &BBSkipInstsMap); 490 491 /// Return DebugLoc of this UserValue. 492 DebugLoc getDebugLoc() { return dl;} 493 494 void print(raw_ostream &, const TargetRegisterInfo *); 495 }; 496 497 /// A user label is a part of a debug info user label. 498 class UserLabel { 499 const DILabel *Label; ///< The debug info label we are part of. 500 DebugLoc dl; ///< The debug location for the label. This is 501 ///< used by dwarf writer to find lexical scope. 502 SlotIndex loc; ///< Slot used by the debug label. 503 504 /// Insert a DBG_LABEL into MBB at Idx. 505 void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, 506 LiveIntervals &LIS, const TargetInstrInfo &TII, 507 BlockSkipInstsMap &BBSkipInstsMap); 508 509 public: 510 /// Create a new UserLabel. 511 UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx) 512 : Label(label), dl(std::move(L)), loc(Idx) {} 513 514 /// Does this UserLabel match the parameters? 515 bool matches(const DILabel *L, const DILocation *IA, 516 const SlotIndex Index) const { 517 return Label == L && dl->getInlinedAt() == IA && loc == Index; 518 } 519 520 /// Recreate DBG_LABEL instruction from data structures. 521 void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII, 522 BlockSkipInstsMap &BBSkipInstsMap); 523 524 /// Return DebugLoc of this UserLabel. 525 DebugLoc getDebugLoc() { return dl; } 526 527 void print(raw_ostream &, const TargetRegisterInfo *); 528 }; 529 530 /// Implementation of the LiveDebugVariables pass. 531 class LDVImpl { 532 LiveDebugVariables &pass; 533 LocMap::Allocator allocator; 534 MachineFunction *MF = nullptr; 535 LiveIntervals *LIS; 536 const TargetRegisterInfo *TRI; 537 538 using StashedInstrRef = 539 std::tuple<unsigned, unsigned, const DILocalVariable *, 540 const DIExpression *, DebugLoc>; 541 std::map<SlotIndex, std::vector<StashedInstrRef>> StashedInstrReferences; 542 543 /// Whether emitDebugValues is called. 544 bool EmitDone = false; 545 546 /// Whether the machine function is modified during the pass. 547 bool ModifiedMF = false; 548 549 /// All allocated UserValue instances. 550 SmallVector<std::unique_ptr<UserValue>, 8> userValues; 551 552 /// All allocated UserLabel instances. 553 SmallVector<std::unique_ptr<UserLabel>, 2> userLabels; 554 555 /// Map virtual register to eq class leader. 556 using VRMap = DenseMap<unsigned, UserValue *>; 557 VRMap virtRegToEqClass; 558 559 /// Map to find existing UserValue instances. 560 using UVMap = DenseMap<DebugVariable, UserValue *>; 561 UVMap userVarMap; 562 563 /// Find or create a UserValue. 564 UserValue *getUserValue(const DILocalVariable *Var, 565 Optional<DIExpression::FragmentInfo> Fragment, 566 const DebugLoc &DL); 567 568 /// Find the EC leader for VirtReg or null. 569 UserValue *lookupVirtReg(Register VirtReg); 570 571 /// Add DBG_VALUE instruction to our maps. 572 /// 573 /// \param MI DBG_VALUE instruction 574 /// \param Idx Last valid SLotIndex before instruction. 575 /// 576 /// \returns True if the DBG_VALUE instruction should be deleted. 577 bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); 578 579 /// Track a DBG_INSTR_REF. This needs to be removed from the MachineFunction 580 /// during regalloc -- but there's no need to maintain live ranges, as we 581 /// refer to a value rather than a location. 582 /// 583 /// \param MI DBG_INSTR_REF instruction 584 /// \param Idx Last valid SlotIndex before instruction 585 /// 586 /// \returns True if the DBG_VALUE instruction should be deleted. 587 bool handleDebugInstrRef(MachineInstr &MI, SlotIndex Idx); 588 589 /// Add DBG_LABEL instruction to UserLabel. 590 /// 591 /// \param MI DBG_LABEL instruction 592 /// \param Idx Last valid SlotIndex before instruction. 593 /// 594 /// \returns True if the DBG_LABEL instruction should be deleted. 595 bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx); 596 597 /// Collect and erase all DBG_VALUE instructions, adding a UserValue def 598 /// for each instruction. 599 /// 600 /// \param mf MachineFunction to be scanned. 601 /// 602 /// \returns True if any debug values were found. 603 bool collectDebugValues(MachineFunction &mf); 604 605 /// Compute the live intervals of all user values after collecting all 606 /// their def points. 607 void computeIntervals(); 608 609 public: 610 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} 611 612 bool runOnMachineFunction(MachineFunction &mf); 613 614 /// Release all memory. 615 void clear() { 616 MF = nullptr; 617 StashedInstrReferences.clear(); 618 userValues.clear(); 619 userLabels.clear(); 620 virtRegToEqClass.clear(); 621 userVarMap.clear(); 622 // Make sure we call emitDebugValues if the machine function was modified. 623 assert((!ModifiedMF || EmitDone) && 624 "Dbg values are not emitted in LDV"); 625 EmitDone = false; 626 ModifiedMF = false; 627 } 628 629 /// Map virtual register to an equivalence class. 630 void mapVirtReg(Register VirtReg, UserValue *EC); 631 632 /// Replace all references to OldReg with NewRegs. 633 void splitRegister(Register OldReg, ArrayRef<Register> NewRegs); 634 635 /// Recreate DBG_VALUE instruction from data structures. 636 void emitDebugValues(VirtRegMap *VRM); 637 638 void print(raw_ostream&); 639 }; 640 641 } // end anonymous namespace 642 643 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 644 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, 645 const LLVMContext &Ctx) { 646 if (!DL) 647 return; 648 649 auto *Scope = cast<DIScope>(DL.getScope()); 650 // Omit the directory, because it's likely to be long and uninteresting. 651 CommentOS << Scope->getFilename(); 652 CommentOS << ':' << DL.getLine(); 653 if (DL.getCol() != 0) 654 CommentOS << ':' << DL.getCol(); 655 656 DebugLoc InlinedAtDL = DL.getInlinedAt(); 657 if (!InlinedAtDL) 658 return; 659 660 CommentOS << " @[ "; 661 printDebugLoc(InlinedAtDL, CommentOS, Ctx); 662 CommentOS << " ]"; 663 } 664 665 static void printExtendedName(raw_ostream &OS, const DINode *Node, 666 const DILocation *DL) { 667 const LLVMContext &Ctx = Node->getContext(); 668 StringRef Res; 669 unsigned Line = 0; 670 if (const auto *V = dyn_cast<const DILocalVariable>(Node)) { 671 Res = V->getName(); 672 Line = V->getLine(); 673 } else if (const auto *L = dyn_cast<const DILabel>(Node)) { 674 Res = L->getName(); 675 Line = L->getLine(); 676 } 677 678 if (!Res.empty()) 679 OS << Res << "," << Line; 680 auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr; 681 if (InlinedAt) { 682 if (DebugLoc InlinedAtDL = InlinedAt) { 683 OS << " @["; 684 printDebugLoc(InlinedAtDL, OS, Ctx); 685 OS << "]"; 686 } 687 } 688 } 689 690 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 691 OS << "!\""; 692 printExtendedName(OS, Variable, dl); 693 694 OS << "\"\t"; 695 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 696 OS << " [" << I.start() << ';' << I.stop() << "):"; 697 if (I.value().isUndef()) 698 OS << " undef"; 699 else { 700 I.value().printLocNos(OS); 701 if (I.value().getWasIndirect()) 702 OS << " ind"; 703 else if (I.value().getWasList()) 704 OS << " list"; 705 } 706 } 707 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 708 OS << " Loc" << i << '='; 709 locations[i].print(OS, TRI); 710 } 711 OS << '\n'; 712 } 713 714 void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 715 OS << "!\""; 716 printExtendedName(OS, Label, dl); 717 718 OS << "\"\t"; 719 OS << loc; 720 OS << '\n'; 721 } 722 723 void LDVImpl::print(raw_ostream &OS) { 724 OS << "********** DEBUG VARIABLES **********\n"; 725 for (auto &userValue : userValues) 726 userValue->print(OS, TRI); 727 OS << "********** DEBUG LABELS **********\n"; 728 for (auto &userLabel : userLabels) 729 userLabel->print(OS, TRI); 730 } 731 #endif 732 733 void UserValue::mapVirtRegs(LDVImpl *LDV) { 734 for (unsigned i = 0, e = locations.size(); i != e; ++i) 735 if (locations[i].isReg() && 736 Register::isVirtualRegister(locations[i].getReg())) 737 LDV->mapVirtReg(locations[i].getReg(), this); 738 } 739 740 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var, 741 Optional<DIExpression::FragmentInfo> Fragment, 742 const DebugLoc &DL) { 743 // FIXME: Handle partially overlapping fragments. See 744 // https://reviews.llvm.org/D70121#1849741. 745 DebugVariable ID(Var, Fragment, DL->getInlinedAt()); 746 UserValue *&UV = userVarMap[ID]; 747 if (!UV) { 748 userValues.push_back( 749 std::make_unique<UserValue>(Var, Fragment, DL, allocator)); 750 UV = userValues.back().get(); 751 } 752 return UV; 753 } 754 755 void LDVImpl::mapVirtReg(Register VirtReg, UserValue *EC) { 756 assert(Register::isVirtualRegister(VirtReg) && "Only map VirtRegs"); 757 UserValue *&Leader = virtRegToEqClass[VirtReg]; 758 Leader = UserValue::merge(Leader, EC); 759 } 760 761 UserValue *LDVImpl::lookupVirtReg(Register VirtReg) { 762 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) 763 return UV->getLeader(); 764 return nullptr; 765 } 766 767 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) { 768 // DBG_VALUE loc, offset, variable, expr 769 // DBG_VALUE_LIST variable, expr, locs... 770 if (!MI.isDebugValue()) { 771 LLVM_DEBUG(dbgs() << "Can't handle non-DBG_VALUE*: " << MI); 772 return false; 773 } 774 if (!MI.getDebugVariableOp().isMetadata()) { 775 LLVM_DEBUG(dbgs() << "Can't handle DBG_VALUE* with invalid variable: " 776 << MI); 777 return false; 778 } 779 if (MI.isNonListDebugValue() && 780 (MI.getNumOperands() != 4 || 781 !(MI.getDebugOffset().isImm() || MI.getDebugOffset().isReg()))) { 782 LLVM_DEBUG(dbgs() << "Can't handle malformed DBG_VALUE: " << MI); 783 return false; 784 } 785 786 // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual 787 // register that hasn't been defined yet. If we do not remove those here, then 788 // the re-insertion of the DBG_VALUE instruction after register allocation 789 // will be incorrect. 790 // TODO: If earlier passes are corrected to generate sane debug information 791 // (and if the machine verifier is improved to catch this), then these checks 792 // could be removed or replaced by asserts. 793 bool Discard = false; 794 for (const MachineOperand &Op : MI.debug_operands()) { 795 if (Op.isReg() && Register::isVirtualRegister(Op.getReg())) { 796 const Register Reg = Op.getReg(); 797 if (!LIS->hasInterval(Reg)) { 798 // The DBG_VALUE is described by a virtual register that does not have a 799 // live interval. Discard the DBG_VALUE. 800 Discard = true; 801 LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx 802 << " " << MI); 803 } else { 804 // The DBG_VALUE is only valid if either Reg is live out from Idx, or 805 // Reg is defined dead at Idx (where Idx is the slot index for the 806 // instruction preceding the DBG_VALUE). 807 const LiveInterval &LI = LIS->getInterval(Reg); 808 LiveQueryResult LRQ = LI.Query(Idx); 809 if (!LRQ.valueOutOrDead()) { 810 // We have found a DBG_VALUE with the value in a virtual register that 811 // is not live. Discard the DBG_VALUE. 812 Discard = true; 813 LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx 814 << " " << MI); 815 } 816 } 817 } 818 } 819 820 // Get or create the UserValue for (variable,offset) here. 821 bool IsIndirect = MI.isDebugOffsetImm(); 822 if (IsIndirect) 823 assert(MI.getDebugOffset().getImm() == 0 && 824 "DBG_VALUE with nonzero offset"); 825 bool IsList = MI.isDebugValueList(); 826 const DILocalVariable *Var = MI.getDebugVariable(); 827 const DIExpression *Expr = MI.getDebugExpression(); 828 UserValue *UV = getUserValue(Var, Expr->getFragmentInfo(), MI.getDebugLoc()); 829 if (!Discard) 830 UV->addDef(Idx, 831 ArrayRef<MachineOperand>(MI.debug_operands().begin(), 832 MI.debug_operands().end()), 833 IsIndirect, IsList, *Expr); 834 else { 835 MachineOperand MO = MachineOperand::CreateReg(0U, false); 836 MO.setIsDebug(); 837 // We should still pass a list the same size as MI.debug_operands() even if 838 // all MOs are undef, so that DbgVariableValue can correctly adjust the 839 // expression while removing the duplicated undefs. 840 SmallVector<MachineOperand, 4> UndefMOs(MI.getNumDebugOperands(), MO); 841 UV->addDef(Idx, UndefMOs, false, IsList, *Expr); 842 } 843 return true; 844 } 845 846 bool LDVImpl::handleDebugInstrRef(MachineInstr &MI, SlotIndex Idx) { 847 assert(MI.isDebugRef()); 848 unsigned InstrNum = MI.getOperand(0).getImm(); 849 unsigned OperandNum = MI.getOperand(1).getImm(); 850 auto *Var = MI.getDebugVariable(); 851 auto *Expr = MI.getDebugExpression(); 852 auto &DL = MI.getDebugLoc(); 853 StashedInstrRef Stashed = 854 std::make_tuple(InstrNum, OperandNum, Var, Expr, DL); 855 StashedInstrReferences[Idx].push_back(Stashed); 856 return true; 857 } 858 859 bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) { 860 // DBG_LABEL label 861 if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) { 862 LLVM_DEBUG(dbgs() << "Can't handle " << MI); 863 return false; 864 } 865 866 // Get or create the UserLabel for label here. 867 const DILabel *Label = MI.getDebugLabel(); 868 const DebugLoc &DL = MI.getDebugLoc(); 869 bool Found = false; 870 for (auto const &L : userLabels) { 871 if (L->matches(Label, DL->getInlinedAt(), Idx)) { 872 Found = true; 873 break; 874 } 875 } 876 if (!Found) 877 userLabels.push_back(std::make_unique<UserLabel>(Label, DL, Idx)); 878 879 return true; 880 } 881 882 bool LDVImpl::collectDebugValues(MachineFunction &mf) { 883 bool Changed = false; 884 for (MachineBasicBlock &MBB : mf) { 885 for (MachineBasicBlock::iterator MBBI = MBB.begin(), MBBE = MBB.end(); 886 MBBI != MBBE;) { 887 // Use the first debug instruction in the sequence to get a SlotIndex 888 // for following consecutive debug instructions. 889 if (!MBBI->isDebugOrPseudoInstr()) { 890 ++MBBI; 891 continue; 892 } 893 // Debug instructions has no slot index. Use the previous 894 // non-debug instruction's SlotIndex as its SlotIndex. 895 SlotIndex Idx = 896 MBBI == MBB.begin() 897 ? LIS->getMBBStartIdx(&MBB) 898 : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); 899 // Handle consecutive debug instructions with the same slot index. 900 do { 901 // Only handle DBG_VALUE in handleDebugValue(). Skip all other 902 // kinds of debug instructions. 903 if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) || 904 (MBBI->isDebugRef() && handleDebugInstrRef(*MBBI, Idx)) || 905 (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) { 906 MBBI = MBB.erase(MBBI); 907 Changed = true; 908 } else 909 ++MBBI; 910 } while (MBBI != MBBE && MBBI->isDebugOrPseudoInstr()); 911 } 912 } 913 return Changed; 914 } 915 916 void UserValue::extendDef( 917 SlotIndex Idx, DbgVariableValue DbgValue, 918 SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> 919 &LiveIntervalInfo, 920 Optional<std::pair<SlotIndex, SmallVector<unsigned>>> &Kills, 921 LiveIntervals &LIS) { 922 SlotIndex Start = Idx; 923 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 924 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 925 LocMap::iterator I = locInts.find(Start); 926 927 // Limit to the intersection of the VNIs' live ranges. 928 for (auto &LII : LiveIntervalInfo) { 929 LiveRange *LR = LII.second.first; 930 assert(LR && LII.second.second && "Missing range info for Idx."); 931 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); 932 assert(Segment && Segment->valno == LII.second.second && 933 "Invalid VNInfo for Idx given?"); 934 if (Segment->end < Stop) { 935 Stop = Segment->end; 936 Kills = {Stop, {LII.first}}; 937 } else if (Segment->end == Stop && Kills.hasValue()) { 938 // If multiple locations end at the same place, track all of them in 939 // Kills. 940 Kills->second.push_back(LII.first); 941 } 942 } 943 944 // There could already be a short def at Start. 945 if (I.valid() && I.start() <= Start) { 946 // Stop when meeting a different location or an already extended interval. 947 Start = Start.getNextSlot(); 948 if (I.value() != DbgValue || I.stop() != Start) { 949 // Clear `Kills`, as we have a new def available. 950 Kills = None; 951 return; 952 } 953 // This is a one-slot placeholder. Just skip it. 954 ++I; 955 } 956 957 // Limited by the next def. 958 if (I.valid() && I.start() < Stop) { 959 Stop = I.start(); 960 // Clear `Kills`, as we have a new def available. 961 Kills = None; 962 } 963 964 if (Start < Stop) { 965 DbgVariableValue ExtDbgValue(DbgValue); 966 I.insert(Start, Stop, std::move(ExtDbgValue)); 967 } 968 } 969 970 void UserValue::addDefsFromCopies( 971 DbgVariableValue DbgValue, 972 SmallVectorImpl<std::pair<unsigned, LiveInterval *>> &LocIntervals, 973 SlotIndex KilledAt, 974 SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs, 975 MachineRegisterInfo &MRI, LiveIntervals &LIS) { 976 // Don't track copies from physregs, there are too many uses. 977 if (any_of(LocIntervals, [](auto LocI) { 978 return !Register::isVirtualRegister(LocI.second->reg()); 979 })) 980 return; 981 982 // Collect all the (vreg, valno) pairs that are copies of LI. 983 SmallDenseMap<unsigned, 984 SmallVector<std::pair<LiveInterval *, const VNInfo *>, 4>> 985 CopyValues; 986 for (auto &LocInterval : LocIntervals) { 987 unsigned LocNo = LocInterval.first; 988 LiveInterval *LI = LocInterval.second; 989 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg())) { 990 MachineInstr *MI = MO.getParent(); 991 // Copies of the full value. 992 if (MO.getSubReg() || !MI->isCopy()) 993 continue; 994 Register DstReg = MI->getOperand(0).getReg(); 995 996 // Don't follow copies to physregs. These are usually setting up call 997 // arguments, and the argument registers are always call clobbered. We are 998 // better off in the source register which could be a callee-saved 999 // register, or it could be spilled. 1000 if (!Register::isVirtualRegister(DstReg)) 1001 continue; 1002 1003 // Is the value extended to reach this copy? If not, another def may be 1004 // blocking it, or we are looking at a wrong value of LI. 1005 SlotIndex Idx = LIS.getInstructionIndex(*MI); 1006 LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); 1007 if (!I.valid() || I.value() != DbgValue) 1008 continue; 1009 1010 if (!LIS.hasInterval(DstReg)) 1011 continue; 1012 LiveInterval *DstLI = &LIS.getInterval(DstReg); 1013 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); 1014 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); 1015 CopyValues[LocNo].push_back(std::make_pair(DstLI, DstVNI)); 1016 } 1017 } 1018 1019 if (CopyValues.empty()) 1020 return; 1021 1022 #if !defined(NDEBUG) 1023 for (auto &LocInterval : LocIntervals) 1024 LLVM_DEBUG(dbgs() << "Got " << CopyValues[LocInterval.first].size() 1025 << " copies of " << *LocInterval.second << '\n'); 1026 #endif 1027 1028 // Try to add defs of the copied values for the kill point. Check that there 1029 // isn't already a def at Idx. 1030 LocMap::iterator I = locInts.find(KilledAt); 1031 if (I.valid() && I.start() <= KilledAt) 1032 return; 1033 DbgVariableValue NewValue(DbgValue); 1034 for (auto &LocInterval : LocIntervals) { 1035 unsigned LocNo = LocInterval.first; 1036 bool FoundCopy = false; 1037 for (auto &LIAndVNI : CopyValues[LocNo]) { 1038 LiveInterval *DstLI = LIAndVNI.first; 1039 const VNInfo *DstVNI = LIAndVNI.second; 1040 if (DstLI->getVNInfoAt(KilledAt) != DstVNI) 1041 continue; 1042 LLVM_DEBUG(dbgs() << "Kill at " << KilledAt << " covered by valno #" 1043 << DstVNI->id << " in " << *DstLI << '\n'); 1044 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); 1045 assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); 1046 unsigned NewLocNo = getLocationNo(CopyMI->getOperand(0)); 1047 NewValue = NewValue.changeLocNo(LocNo, NewLocNo); 1048 FoundCopy = true; 1049 break; 1050 } 1051 // If there are any killed locations we can't find a copy for, we can't 1052 // extend the variable value. 1053 if (!FoundCopy) 1054 return; 1055 } 1056 I.insert(KilledAt, KilledAt.getNextSlot(), NewValue); 1057 NewDefs.push_back(std::make_pair(KilledAt, NewValue)); 1058 } 1059 1060 void UserValue::computeIntervals(MachineRegisterInfo &MRI, 1061 const TargetRegisterInfo &TRI, 1062 LiveIntervals &LIS, LexicalScopes &LS) { 1063 SmallVector<std::pair<SlotIndex, DbgVariableValue>, 16> Defs; 1064 1065 // Collect all defs to be extended (Skipping undefs). 1066 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 1067 if (!I.value().isUndef()) 1068 Defs.push_back(std::make_pair(I.start(), I.value())); 1069 1070 // Extend all defs, and possibly add new ones along the way. 1071 for (unsigned i = 0; i != Defs.size(); ++i) { 1072 SlotIndex Idx = Defs[i].first; 1073 DbgVariableValue DbgValue = Defs[i].second; 1074 SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> LIs; 1075 SmallVector<const VNInfo *, 4> VNIs; 1076 bool ShouldExtendDef = false; 1077 for (unsigned LocNo : DbgValue.loc_nos()) { 1078 const MachineOperand &LocMO = locations[LocNo]; 1079 if (!LocMO.isReg() || !Register::isVirtualRegister(LocMO.getReg())) { 1080 ShouldExtendDef |= !LocMO.isReg(); 1081 continue; 1082 } 1083 ShouldExtendDef = true; 1084 LiveInterval *LI = nullptr; 1085 const VNInfo *VNI = nullptr; 1086 if (LIS.hasInterval(LocMO.getReg())) { 1087 LI = &LIS.getInterval(LocMO.getReg()); 1088 VNI = LI->getVNInfoAt(Idx); 1089 } 1090 if (LI && VNI) 1091 LIs[LocNo] = {LI, VNI}; 1092 } 1093 if (ShouldExtendDef) { 1094 Optional<std::pair<SlotIndex, SmallVector<unsigned>>> Kills; 1095 extendDef(Idx, DbgValue, LIs, Kills, LIS); 1096 1097 if (Kills) { 1098 SmallVector<std::pair<unsigned, LiveInterval *>, 2> KilledLocIntervals; 1099 bool AnySubreg = false; 1100 for (unsigned LocNo : Kills->second) { 1101 const MachineOperand &LocMO = this->locations[LocNo]; 1102 if (LocMO.getSubReg()) { 1103 AnySubreg = true; 1104 break; 1105 } 1106 LiveInterval *LI = &LIS.getInterval(LocMO.getReg()); 1107 KilledLocIntervals.push_back({LocNo, LI}); 1108 } 1109 1110 // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that 1111 // if the original location for example is %vreg0:sub_hi, and we find a 1112 // full register copy in addDefsFromCopies (at the moment it only 1113 // handles full register copies), then we must add the sub1 sub-register 1114 // index to the new location. However, that is only possible if the new 1115 // virtual register is of the same regclass (or if there is an 1116 // equivalent sub-register in that regclass). For now, simply skip 1117 // handling copies if a sub-register is involved. 1118 if (!AnySubreg) 1119 addDefsFromCopies(DbgValue, KilledLocIntervals, Kills->first, Defs, 1120 MRI, LIS); 1121 } 1122 } 1123 1124 // For physregs, we only mark the start slot idx. DwarfDebug will see it 1125 // as if the DBG_VALUE is valid up until the end of the basic block, or 1126 // the next def of the physical register. So we do not need to extend the 1127 // range. It might actually happen that the DBG_VALUE is the last use of 1128 // the physical register (e.g. if this is an unused input argument to a 1129 // function). 1130 } 1131 1132 // The computed intervals may extend beyond the range of the debug 1133 // location's lexical scope. In this case, splitting of an interval 1134 // can result in an interval outside of the scope being created, 1135 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent 1136 // this, trim the intervals to the lexical scope. 1137 1138 LexicalScope *Scope = LS.findLexicalScope(dl); 1139 if (!Scope) 1140 return; 1141 1142 SlotIndex PrevEnd; 1143 LocMap::iterator I = locInts.begin(); 1144 1145 // Iterate over the lexical scope ranges. Each time round the loop 1146 // we check the intervals for overlap with the end of the previous 1147 // range and the start of the next. The first range is handled as 1148 // a special case where there is no PrevEnd. 1149 for (const InsnRange &Range : Scope->getRanges()) { 1150 SlotIndex RStart = LIS.getInstructionIndex(*Range.first); 1151 SlotIndex REnd = LIS.getInstructionIndex(*Range.second); 1152 1153 // Variable locations at the first instruction of a block should be 1154 // based on the block's SlotIndex, not the first instruction's index. 1155 if (Range.first == Range.first->getParent()->begin()) 1156 RStart = LIS.getSlotIndexes()->getIndexBefore(*Range.first); 1157 1158 // At the start of each iteration I has been advanced so that 1159 // I.stop() >= PrevEnd. Check for overlap. 1160 if (PrevEnd && I.start() < PrevEnd) { 1161 SlotIndex IStop = I.stop(); 1162 DbgVariableValue DbgValue = I.value(); 1163 1164 // Stop overlaps previous end - trim the end of the interval to 1165 // the scope range. 1166 I.setStopUnchecked(PrevEnd); 1167 ++I; 1168 1169 // If the interval also overlaps the start of the "next" (i.e. 1170 // current) range create a new interval for the remainder (which 1171 // may be further trimmed). 1172 if (RStart < IStop) 1173 I.insert(RStart, IStop, DbgValue); 1174 } 1175 1176 // Advance I so that I.stop() >= RStart, and check for overlap. 1177 I.advanceTo(RStart); 1178 if (!I.valid()) 1179 return; 1180 1181 if (I.start() < RStart) { 1182 // Interval start overlaps range - trim to the scope range. 1183 I.setStartUnchecked(RStart); 1184 // Remember that this interval was trimmed. 1185 trimmedDefs.insert(RStart); 1186 } 1187 1188 // The end of a lexical scope range is the last instruction in the 1189 // range. To convert to an interval we need the index of the 1190 // instruction after it. 1191 REnd = REnd.getNextIndex(); 1192 1193 // Advance I to first interval outside current range. 1194 I.advanceTo(REnd); 1195 if (!I.valid()) 1196 return; 1197 1198 PrevEnd = REnd; 1199 } 1200 1201 // Check for overlap with end of final range. 1202 if (PrevEnd && I.start() < PrevEnd) 1203 I.setStopUnchecked(PrevEnd); 1204 } 1205 1206 void LDVImpl::computeIntervals() { 1207 LexicalScopes LS; 1208 LS.initialize(*MF); 1209 1210 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 1211 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS); 1212 userValues[i]->mapVirtRegs(this); 1213 } 1214 } 1215 1216 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) { 1217 clear(); 1218 MF = &mf; 1219 LIS = &pass.getAnalysis<LiveIntervals>(); 1220 TRI = mf.getSubtarget().getRegisterInfo(); 1221 LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 1222 << mf.getName() << " **********\n"); 1223 1224 bool Changed = collectDebugValues(mf); 1225 computeIntervals(); 1226 LLVM_DEBUG(print(dbgs())); 1227 ModifiedMF = Changed; 1228 return Changed; 1229 } 1230 1231 static void removeDebugInstrs(MachineFunction &mf) { 1232 for (MachineBasicBlock &MBB : mf) { 1233 for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) { 1234 if (!MBBI->isDebugInstr()) { 1235 ++MBBI; 1236 continue; 1237 } 1238 MBBI = MBB.erase(MBBI); 1239 } 1240 } 1241 } 1242 1243 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { 1244 if (!EnableLDV) 1245 return false; 1246 if (!mf.getFunction().getSubprogram()) { 1247 removeDebugInstrs(mf); 1248 return false; 1249 } 1250 if (!pImpl) 1251 pImpl = new LDVImpl(this); 1252 return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf); 1253 } 1254 1255 void LiveDebugVariables::releaseMemory() { 1256 if (pImpl) 1257 static_cast<LDVImpl*>(pImpl)->clear(); 1258 } 1259 1260 LiveDebugVariables::~LiveDebugVariables() { 1261 if (pImpl) 1262 delete static_cast<LDVImpl*>(pImpl); 1263 } 1264 1265 //===----------------------------------------------------------------------===// 1266 // Live Range Splitting 1267 //===----------------------------------------------------------------------===// 1268 1269 bool 1270 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs, 1271 LiveIntervals& LIS) { 1272 LLVM_DEBUG({ 1273 dbgs() << "Splitting Loc" << OldLocNo << '\t'; 1274 print(dbgs(), nullptr); 1275 }); 1276 bool DidChange = false; 1277 LocMap::iterator LocMapI; 1278 LocMapI.setMap(locInts); 1279 for (unsigned i = 0; i != NewRegs.size(); ++i) { 1280 LiveInterval *LI = &LIS.getInterval(NewRegs[i]); 1281 if (LI->empty()) 1282 continue; 1283 1284 // Don't allocate the new LocNo until it is needed. 1285 unsigned NewLocNo = UndefLocNo; 1286 1287 // Iterate over the overlaps between locInts and LI. 1288 LocMapI.find(LI->beginIndex()); 1289 if (!LocMapI.valid()) 1290 continue; 1291 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); 1292 LiveInterval::iterator LIE = LI->end(); 1293 while (LocMapI.valid() && LII != LIE) { 1294 // At this point, we know that LocMapI.stop() > LII->start. 1295 LII = LI->advanceTo(LII, LocMapI.start()); 1296 if (LII == LIE) 1297 break; 1298 1299 // Now LII->end > LocMapI.start(). Do we have an overlap? 1300 if (LocMapI.value().containsLocNo(OldLocNo) && 1301 LII->start < LocMapI.stop()) { 1302 // Overlapping correct location. Allocate NewLocNo now. 1303 if (NewLocNo == UndefLocNo) { 1304 MachineOperand MO = MachineOperand::CreateReg(LI->reg(), false); 1305 MO.setSubReg(locations[OldLocNo].getSubReg()); 1306 NewLocNo = getLocationNo(MO); 1307 DidChange = true; 1308 } 1309 1310 SlotIndex LStart = LocMapI.start(); 1311 SlotIndex LStop = LocMapI.stop(); 1312 DbgVariableValue OldDbgValue = LocMapI.value(); 1313 1314 // Trim LocMapI down to the LII overlap. 1315 if (LStart < LII->start) 1316 LocMapI.setStartUnchecked(LII->start); 1317 if (LStop > LII->end) 1318 LocMapI.setStopUnchecked(LII->end); 1319 1320 // Change the value in the overlap. This may trigger coalescing. 1321 LocMapI.setValue(OldDbgValue.changeLocNo(OldLocNo, NewLocNo)); 1322 1323 // Re-insert any removed OldDbgValue ranges. 1324 if (LStart < LocMapI.start()) { 1325 LocMapI.insert(LStart, LocMapI.start(), OldDbgValue); 1326 ++LocMapI; 1327 assert(LocMapI.valid() && "Unexpected coalescing"); 1328 } 1329 if (LStop > LocMapI.stop()) { 1330 ++LocMapI; 1331 LocMapI.insert(LII->end, LStop, OldDbgValue); 1332 --LocMapI; 1333 } 1334 } 1335 1336 // Advance to the next overlap. 1337 if (LII->end < LocMapI.stop()) { 1338 if (++LII == LIE) 1339 break; 1340 LocMapI.advanceTo(LII->start); 1341 } else { 1342 ++LocMapI; 1343 if (!LocMapI.valid()) 1344 break; 1345 LII = LI->advanceTo(LII, LocMapI.start()); 1346 } 1347 } 1348 } 1349 1350 // Finally, remove OldLocNo unless it is still used by some interval in the 1351 // locInts map. One case when OldLocNo still is in use is when the register 1352 // has been spilled. In such situations the spilled register is kept as a 1353 // location until rewriteLocations is called (VirtRegMap is mapping the old 1354 // register to the spill slot). So for a while we can have locations that map 1355 // to virtual registers that have been removed from both the MachineFunction 1356 // and from LiveIntervals. 1357 // 1358 // We may also just be using the location for a value with a different 1359 // expression. 1360 removeLocationIfUnused(OldLocNo); 1361 1362 LLVM_DEBUG({ 1363 dbgs() << "Split result: \t"; 1364 print(dbgs(), nullptr); 1365 }); 1366 return DidChange; 1367 } 1368 1369 bool 1370 UserValue::splitRegister(Register OldReg, ArrayRef<Register> NewRegs, 1371 LiveIntervals &LIS) { 1372 bool DidChange = false; 1373 // Split locations referring to OldReg. Iterate backwards so splitLocation can 1374 // safely erase unused locations. 1375 for (unsigned i = locations.size(); i ; --i) { 1376 unsigned LocNo = i-1; 1377 const MachineOperand *Loc = &locations[LocNo]; 1378 if (!Loc->isReg() || Loc->getReg() != OldReg) 1379 continue; 1380 DidChange |= splitLocation(LocNo, NewRegs, LIS); 1381 } 1382 return DidChange; 1383 } 1384 1385 void LDVImpl::splitRegister(Register OldReg, ArrayRef<Register> NewRegs) { 1386 bool DidChange = false; 1387 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) 1388 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); 1389 1390 if (!DidChange) 1391 return; 1392 1393 // Map all of the new virtual registers. 1394 UserValue *UV = lookupVirtReg(OldReg); 1395 for (unsigned i = 0; i != NewRegs.size(); ++i) 1396 mapVirtReg(NewRegs[i], UV); 1397 } 1398 1399 void LiveDebugVariables:: 1400 splitRegister(Register OldReg, ArrayRef<Register> NewRegs, LiveIntervals &LIS) { 1401 if (pImpl) 1402 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); 1403 } 1404 1405 void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, 1406 const TargetInstrInfo &TII, 1407 const TargetRegisterInfo &TRI, 1408 SpillOffsetMap &SpillOffsets) { 1409 // Build a set of new locations with new numbers so we can coalesce our 1410 // IntervalMap if two vreg intervals collapse to the same physical location. 1411 // Use MapVector instead of SetVector because MapVector::insert returns the 1412 // position of the previously or newly inserted element. The boolean value 1413 // tracks if the location was produced by a spill. 1414 // FIXME: This will be problematic if we ever support direct and indirect 1415 // frame index locations, i.e. expressing both variables in memory and 1416 // 'int x, *px = &x'. The "spilled" bit must become part of the location. 1417 MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations; 1418 SmallVector<unsigned, 4> LocNoMap(locations.size()); 1419 for (unsigned I = 0, E = locations.size(); I != E; ++I) { 1420 bool Spilled = false; 1421 unsigned SpillOffset = 0; 1422 MachineOperand Loc = locations[I]; 1423 // Only virtual registers are rewritten. 1424 if (Loc.isReg() && Loc.getReg() && 1425 Register::isVirtualRegister(Loc.getReg())) { 1426 Register VirtReg = Loc.getReg(); 1427 if (VRM.isAssignedReg(VirtReg) && 1428 Register::isPhysicalRegister(VRM.getPhys(VirtReg))) { 1429 // This can create a %noreg operand in rare cases when the sub-register 1430 // index is no longer available. That means the user value is in a 1431 // non-existent sub-register, and %noreg is exactly what we want. 1432 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); 1433 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { 1434 // Retrieve the stack slot offset. 1435 unsigned SpillSize; 1436 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1437 const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg); 1438 bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize, 1439 SpillOffset, MF); 1440 1441 // FIXME: Invalidate the location if the offset couldn't be calculated. 1442 (void)Success; 1443 1444 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); 1445 Spilled = true; 1446 } else { 1447 Loc.setReg(0); 1448 Loc.setSubReg(0); 1449 } 1450 } 1451 1452 // Insert this location if it doesn't already exist and record a mapping 1453 // from the old number to the new number. 1454 auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}}); 1455 unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first); 1456 LocNoMap[I] = NewLocNo; 1457 } 1458 1459 // Rewrite the locations and record the stack slot offsets for spills. 1460 locations.clear(); 1461 SpillOffsets.clear(); 1462 for (auto &Pair : NewLocations) { 1463 bool Spilled; 1464 unsigned SpillOffset; 1465 std::tie(Spilled, SpillOffset) = Pair.second; 1466 locations.push_back(Pair.first); 1467 if (Spilled) { 1468 unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair); 1469 SpillOffsets[NewLocNo] = SpillOffset; 1470 } 1471 } 1472 1473 // Update the interval map, but only coalesce left, since intervals to the 1474 // right use the old location numbers. This should merge two contiguous 1475 // DBG_VALUE intervals with different vregs that were allocated to the same 1476 // physical register. 1477 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 1478 I.setValueUnchecked(I.value().remapLocNos(LocNoMap)); 1479 I.setStart(I.start()); 1480 } 1481 } 1482 1483 /// Find an iterator for inserting a DBG_VALUE instruction. 1484 static MachineBasicBlock::iterator 1485 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, LiveIntervals &LIS, 1486 BlockSkipInstsMap &BBSkipInstsMap) { 1487 SlotIndex Start = LIS.getMBBStartIdx(MBB); 1488 Idx = Idx.getBaseIndex(); 1489 1490 // Try to find an insert location by going backwards from Idx. 1491 MachineInstr *MI; 1492 while (!(MI = LIS.getInstructionFromIndex(Idx))) { 1493 // We've reached the beginning of MBB. 1494 if (Idx == Start) { 1495 // Retrieve the last PHI/Label/Debug location found when calling 1496 // SkipPHIsLabelsAndDebug last time. Start searching from there. 1497 // 1498 // Note the iterator kept in BBSkipInstsMap is one step back based 1499 // on the iterator returned by SkipPHIsLabelsAndDebug last time. 1500 // One exception is when SkipPHIsLabelsAndDebug returns MBB->begin(), 1501 // BBSkipInstsMap won't save it. This is to consider the case that 1502 // new instructions may be inserted at the beginning of MBB after 1503 // last call of SkipPHIsLabelsAndDebug. If we save MBB->begin() in 1504 // BBSkipInstsMap, after new non-phi/non-label/non-debug instructions 1505 // are inserted at the beginning of the MBB, the iterator in 1506 // BBSkipInstsMap won't point to the beginning of the MBB anymore. 1507 // Therefore The next search in SkipPHIsLabelsAndDebug will skip those 1508 // newly added instructions and that is unwanted. 1509 MachineBasicBlock::iterator BeginIt; 1510 auto MapIt = BBSkipInstsMap.find(MBB); 1511 if (MapIt == BBSkipInstsMap.end()) 1512 BeginIt = MBB->begin(); 1513 else 1514 BeginIt = std::next(MapIt->second); 1515 auto I = MBB->SkipPHIsLabelsAndDebug(BeginIt); 1516 if (I != BeginIt) 1517 BBSkipInstsMap[MBB] = std::prev(I); 1518 return I; 1519 } 1520 Idx = Idx.getPrevIndex(); 1521 } 1522 1523 // Don't insert anything after the first terminator, though. 1524 return MI->isTerminator() ? MBB->getFirstTerminator() : 1525 std::next(MachineBasicBlock::iterator(MI)); 1526 } 1527 1528 /// Find an iterator for inserting the next DBG_VALUE instruction 1529 /// (or end if no more insert locations found). 1530 static MachineBasicBlock::iterator 1531 findNextInsertLocation(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, 1532 SlotIndex StopIdx, ArrayRef<MachineOperand> LocMOs, 1533 LiveIntervals &LIS, const TargetRegisterInfo &TRI) { 1534 SmallVector<Register, 4> Regs; 1535 for (const MachineOperand &LocMO : LocMOs) 1536 if (LocMO.isReg()) 1537 Regs.push_back(LocMO.getReg()); 1538 if (Regs.empty()) 1539 return MBB->instr_end(); 1540 1541 // Find the next instruction in the MBB that define the register Reg. 1542 while (I != MBB->end() && !I->isTerminator()) { 1543 if (!LIS.isNotInMIMap(*I) && 1544 SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I))) 1545 break; 1546 if (any_of(Regs, [&I, &TRI](Register &Reg) { 1547 return I->definesRegister(Reg, &TRI); 1548 })) 1549 // The insert location is directly after the instruction/bundle. 1550 return std::next(I); 1551 ++I; 1552 } 1553 return MBB->end(); 1554 } 1555 1556 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 1557 SlotIndex StopIdx, DbgVariableValue DbgValue, 1558 ArrayRef<bool> LocSpills, 1559 ArrayRef<unsigned> SpillOffsets, 1560 LiveIntervals &LIS, const TargetInstrInfo &TII, 1561 const TargetRegisterInfo &TRI, 1562 BlockSkipInstsMap &BBSkipInstsMap) { 1563 SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB); 1564 // Only search within the current MBB. 1565 StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx; 1566 MachineBasicBlock::iterator I = 1567 findInsertLocation(MBB, StartIdx, LIS, BBSkipInstsMap); 1568 // Undef values don't exist in locations so create new "noreg" register MOs 1569 // for them. See getLocationNo(). 1570 SmallVector<MachineOperand, 8> MOs; 1571 if (DbgValue.isUndef()) { 1572 MOs.assign(DbgValue.loc_nos().size(), 1573 MachineOperand::CreateReg( 1574 /* Reg */ 0, /* isDef */ false, /* isImp */ false, 1575 /* isKill */ false, /* isDead */ false, 1576 /* isUndef */ false, /* isEarlyClobber */ false, 1577 /* SubReg */ 0, /* isDebug */ true)); 1578 } else { 1579 for (unsigned LocNo : DbgValue.loc_nos()) 1580 MOs.push_back(locations[LocNo]); 1581 } 1582 1583 ++NumInsertedDebugValues; 1584 1585 assert(cast<DILocalVariable>(Variable) 1586 ->isValidLocationForIntrinsic(getDebugLoc()) && 1587 "Expected inlined-at fields to agree"); 1588 1589 // If the location was spilled, the new DBG_VALUE will be indirect. If the 1590 // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate 1591 // that the original virtual register was a pointer. Also, add the stack slot 1592 // offset for the spilled register to the expression. 1593 const DIExpression *Expr = DbgValue.getExpression(); 1594 bool IsIndirect = DbgValue.getWasIndirect(); 1595 bool IsList = DbgValue.getWasList(); 1596 for (unsigned I = 0, E = LocSpills.size(); I != E; ++I) { 1597 if (LocSpills[I]) { 1598 if (!IsList) { 1599 uint8_t DIExprFlags = DIExpression::ApplyOffset; 1600 if (IsIndirect) 1601 DIExprFlags |= DIExpression::DerefAfter; 1602 Expr = DIExpression::prepend(Expr, DIExprFlags, SpillOffsets[I]); 1603 IsIndirect = true; 1604 } else { 1605 SmallVector<uint64_t, 4> Ops; 1606 DIExpression::appendOffset(Ops, SpillOffsets[I]); 1607 Ops.push_back(dwarf::DW_OP_deref); 1608 Expr = DIExpression::appendOpsToArg(Expr, Ops, I); 1609 } 1610 } 1611 1612 assert((!LocSpills[I] || MOs[I].isFI()) && 1613 "a spilled location must be a frame index"); 1614 } 1615 1616 unsigned DbgValueOpcode = 1617 IsList ? TargetOpcode::DBG_VALUE_LIST : TargetOpcode::DBG_VALUE; 1618 do { 1619 BuildMI(*MBB, I, getDebugLoc(), TII.get(DbgValueOpcode), IsIndirect, MOs, 1620 Variable, Expr); 1621 1622 // Continue and insert DBG_VALUES after every redefinition of a register 1623 // associated with the debug value within the range 1624 I = findNextInsertLocation(MBB, I, StopIdx, MOs, LIS, TRI); 1625 } while (I != MBB->end()); 1626 } 1627 1628 void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, 1629 LiveIntervals &LIS, const TargetInstrInfo &TII, 1630 BlockSkipInstsMap &BBSkipInstsMap) { 1631 MachineBasicBlock::iterator I = 1632 findInsertLocation(MBB, Idx, LIS, BBSkipInstsMap); 1633 ++NumInsertedDebugLabels; 1634 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL)) 1635 .addMetadata(Label); 1636 } 1637 1638 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 1639 const TargetInstrInfo &TII, 1640 const TargetRegisterInfo &TRI, 1641 const SpillOffsetMap &SpillOffsets, 1642 BlockSkipInstsMap &BBSkipInstsMap) { 1643 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); 1644 1645 for (LocMap::const_iterator I = locInts.begin(); I.valid();) { 1646 SlotIndex Start = I.start(); 1647 SlotIndex Stop = I.stop(); 1648 DbgVariableValue DbgValue = I.value(); 1649 1650 SmallVector<bool> SpilledLocs; 1651 SmallVector<unsigned> LocSpillOffsets; 1652 for (unsigned LocNo : DbgValue.loc_nos()) { 1653 auto SpillIt = 1654 !DbgValue.isUndef() ? SpillOffsets.find(LocNo) : SpillOffsets.end(); 1655 bool Spilled = SpillIt != SpillOffsets.end(); 1656 SpilledLocs.push_back(Spilled); 1657 LocSpillOffsets.push_back(Spilled ? SpillIt->second : 0); 1658 } 1659 1660 // If the interval start was trimmed to the lexical scope insert the 1661 // DBG_VALUE at the previous index (otherwise it appears after the 1662 // first instruction in the range). 1663 if (trimmedDefs.count(Start)) 1664 Start = Start.getPrevIndex(); 1665 1666 LLVM_DEBUG(auto &dbg = dbgs(); dbg << "\t[" << Start << ';' << Stop << "):"; 1667 DbgValue.printLocNos(dbg)); 1668 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1669 SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); 1670 1671 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1672 insertDebugValue(&*MBB, Start, Stop, DbgValue, SpilledLocs, LocSpillOffsets, 1673 LIS, TII, TRI, BBSkipInstsMap); 1674 // This interval may span multiple basic blocks. 1675 // Insert a DBG_VALUE into each one. 1676 while (Stop > MBBEnd) { 1677 // Move to the next block. 1678 Start = MBBEnd; 1679 if (++MBB == MFEnd) 1680 break; 1681 MBBEnd = LIS.getMBBEndIdx(&*MBB); 1682 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1683 insertDebugValue(&*MBB, Start, Stop, DbgValue, SpilledLocs, 1684 LocSpillOffsets, LIS, TII, TRI, BBSkipInstsMap); 1685 } 1686 LLVM_DEBUG(dbgs() << '\n'); 1687 if (MBB == MFEnd) 1688 break; 1689 1690 ++I; 1691 } 1692 } 1693 1694 void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII, 1695 BlockSkipInstsMap &BBSkipInstsMap) { 1696 LLVM_DEBUG(dbgs() << "\t" << loc); 1697 MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator(); 1698 1699 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB)); 1700 insertDebugLabel(&*MBB, loc, LIS, TII, BBSkipInstsMap); 1701 1702 LLVM_DEBUG(dbgs() << '\n'); 1703 } 1704 1705 void LDVImpl::emitDebugValues(VirtRegMap *VRM) { 1706 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); 1707 if (!MF) 1708 return; 1709 1710 BlockSkipInstsMap BBSkipInstsMap; 1711 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1712 SpillOffsetMap SpillOffsets; 1713 for (auto &userValue : userValues) { 1714 LLVM_DEBUG(userValue->print(dbgs(), TRI)); 1715 userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets); 1716 userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets, 1717 BBSkipInstsMap); 1718 } 1719 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n"); 1720 for (auto &userLabel : userLabels) { 1721 LLVM_DEBUG(userLabel->print(dbgs(), TRI)); 1722 userLabel->emitDebugLabel(*LIS, *TII, BBSkipInstsMap); 1723 } 1724 1725 LLVM_DEBUG(dbgs() << "********** EMITTING INSTR REFERENCES **********\n"); 1726 1727 // Re-insert any DBG_INSTR_REFs back in the position they were. Ordering 1728 // is preserved by vector. 1729 auto Slots = LIS->getSlotIndexes(); 1730 const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_INSTR_REF); 1731 for (auto &P : StashedInstrReferences) { 1732 const SlotIndex &Idx = P.first; 1733 auto *MBB = Slots->getMBBFromIndex(Idx); 1734 MachineBasicBlock::iterator insertPos = 1735 findInsertLocation(MBB, Idx, *LIS, BBSkipInstsMap); 1736 for (auto &Stashed : P.second) { 1737 auto MIB = BuildMI(*MF, std::get<4>(Stashed), RefII); 1738 MIB.addImm(std::get<0>(Stashed)); 1739 MIB.addImm(std::get<1>(Stashed)); 1740 MIB.addMetadata(std::get<2>(Stashed)); 1741 MIB.addMetadata(std::get<3>(Stashed)); 1742 MachineInstr *New = MIB; 1743 MBB->insert(insertPos, New); 1744 } 1745 } 1746 1747 EmitDone = true; 1748 BBSkipInstsMap.clear(); 1749 } 1750 1751 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { 1752 if (pImpl) 1753 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); 1754 } 1755 1756 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1757 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { 1758 if (pImpl) 1759 static_cast<LDVImpl*>(pImpl)->print(dbgs()); 1760 } 1761 #endif 1762