xref: /llvm-project/llvm/lib/CodeGen/LiveDebugVariables.cpp (revision b4569de7393ea4fbdc8d5a19e0c0e91c4db09351)
1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveDebugVariables analysis.
11 //
12 // Remove all DBG_VALUE instructions referencing virtual registers and replace
13 // them with a data structure tracking where live user variables are kept - in a
14 // virtual register or in a stack slot.
15 //
16 // Allow the data structure to be updated during register allocation when values
17 // are moved between registers and stack slots. Finally emit new DBG_VALUE
18 // instructions after register allocation is complete.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "LiveDebugVariables.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/IntervalMap.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/CodeGen/LexicalScopes.h"
32 #include "llvm/CodeGen/LiveInterval.h"
33 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineDominators.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/SlotIndexes.h"
42 #include "llvm/CodeGen/VirtRegMap.h"
43 #include "llvm/IR/DebugInfoMetadata.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/Metadata.h"
47 #include "llvm/MC/MCRegisterInfo.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetInstrInfo.h"
55 #include "llvm/Target/TargetOpcodes.h"
56 #include "llvm/Target/TargetRegisterInfo.h"
57 #include "llvm/Target/TargetSubtargetInfo.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <iterator>
61 #include <memory>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "livedebugvars"
67 
68 static cl::opt<bool>
69 EnableLDV("live-debug-variables", cl::init(true),
70           cl::desc("Enable the live debug variables pass"), cl::Hidden);
71 
72 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted");
73 
74 char LiveDebugVariables::ID = 0;
75 
76 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE,
77                 "Debug Variable Analysis", false, false)
78 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
79 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
80 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE,
81                 "Debug Variable Analysis", false, false)
82 
83 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const {
84   AU.addRequired<MachineDominatorTree>();
85   AU.addRequiredTransitive<LiveIntervals>();
86   AU.setPreservesAll();
87   MachineFunctionPass::getAnalysisUsage(AU);
88 }
89 
90 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) {
91   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
92 }
93 
94 enum : unsigned { UndefLocNo = ~0U };
95 
96 /// Describes a location by number along with some flags about the original
97 /// usage of the location.
98 class DbgValueLocation {
99 public:
100   DbgValueLocation(unsigned LocNo, bool WasIndirect)
101       : LocNo(LocNo), WasIndirect(WasIndirect) {
102     static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing");
103     assert(locNo() == LocNo && "location truncation");
104   }
105 
106   DbgValueLocation() : LocNo(0), WasIndirect(0) {}
107 
108   unsigned locNo() const {
109     // Fix up the undef location number, which gets truncated.
110     return LocNo == INT_MAX ? UndefLocNo : LocNo;
111   }
112   bool wasIndirect() const { return WasIndirect; }
113   bool isUndef() const { return locNo() == UndefLocNo; }
114 
115   DbgValueLocation changeLocNo(unsigned NewLocNo) const {
116     return DbgValueLocation(NewLocNo, WasIndirect);
117   }
118 
119   friend inline bool operator==(const DbgValueLocation &LHS,
120                                 const DbgValueLocation &RHS) {
121     return LHS.LocNo == RHS.LocNo && LHS.WasIndirect == RHS.WasIndirect;
122   }
123 
124   friend inline bool operator!=(const DbgValueLocation &LHS,
125                                 const DbgValueLocation &RHS) {
126     return !(LHS == RHS);
127   }
128 
129 private:
130   unsigned LocNo : 31;
131   unsigned WasIndirect : 1;
132 };
133 
134 /// LocMap - Map of where a user value is live, and its location.
135 using LocMap = IntervalMap<SlotIndex, DbgValueLocation, 4>;
136 
137 namespace {
138 
139 class LDVImpl;
140 
141 /// UserValue - A user value is a part of a debug info user variable.
142 ///
143 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
144 /// holds part of a user variable. The part is identified by a byte offset.
145 ///
146 /// UserValues are grouped into equivalence classes for easier searching. Two
147 /// user values are related if they refer to the same variable, or if they are
148 /// held by the same virtual register. The equivalence class is the transitive
149 /// closure of that relation.
150 class UserValue {
151   const DILocalVariable *Variable; ///< The debug info variable we are part of.
152   const DIExpression *Expression; ///< Any complex address expression.
153   DebugLoc dl;            ///< The debug location for the variable. This is
154                           ///< used by dwarf writer to find lexical scope.
155   UserValue *leader;      ///< Equivalence class leader.
156   UserValue *next = nullptr; ///< Next value in equivalence class, or null.
157 
158   /// Numbered locations referenced by locmap.
159   SmallVector<MachineOperand, 4> locations;
160 
161   /// Map of slot indices where this value is live.
162   LocMap locInts;
163 
164   /// Set of interval start indexes that have been trimmed to the
165   /// lexical scope.
166   SmallSet<SlotIndex, 2> trimmedDefs;
167 
168   /// insertDebugValue - Insert a DBG_VALUE into MBB at Idx for LocNo.
169   void insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx,
170                         DbgValueLocation Loc, bool Spilled, LiveIntervals &LIS,
171                         const TargetInstrInfo &TII);
172 
173   /// splitLocation - Replace OldLocNo ranges with NewRegs ranges where NewRegs
174   /// is live. Returns true if any changes were made.
175   bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
176                      LiveIntervals &LIS);
177 
178 public:
179   /// UserValue - Create a new UserValue.
180   UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L,
181             LocMap::Allocator &alloc)
182       : Variable(var), Expression(expr), dl(std::move(L)), leader(this),
183         locInts(alloc) {}
184 
185   /// getLeader - Get the leader of this value's equivalence class.
186   UserValue *getLeader() {
187     UserValue *l = leader;
188     while (l != l->leader)
189       l = l->leader;
190     return leader = l;
191   }
192 
193   /// getNext - Return the next UserValue in the equivalence class.
194   UserValue *getNext() const { return next; }
195 
196   /// match - Does this UserValue match the parameters?
197   bool match(const DILocalVariable *Var, const DIExpression *Expr,
198              const DILocation *IA) const {
199     // FIXME: The fragment should be part of the equivalence class, but not
200     // other things in the expression like stack values.
201     return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA;
202   }
203 
204   /// merge - Merge equivalence classes.
205   static UserValue *merge(UserValue *L1, UserValue *L2) {
206     L2 = L2->getLeader();
207     if (!L1)
208       return L2;
209     L1 = L1->getLeader();
210     if (L1 == L2)
211       return L1;
212     // Splice L2 before L1's members.
213     UserValue *End = L2;
214     while (End->next) {
215       End->leader = L1;
216       End = End->next;
217     }
218     End->leader = L1;
219     End->next = L1->next;
220     L1->next = L2;
221     return L1;
222   }
223 
224   /// getLocationNo - Return the location number that matches Loc.
225   unsigned getLocationNo(const MachineOperand &LocMO) {
226     if (LocMO.isReg()) {
227       if (LocMO.getReg() == 0)
228         return UndefLocNo;
229       // For register locations we dont care about use/def and other flags.
230       for (unsigned i = 0, e = locations.size(); i != e; ++i)
231         if (locations[i].isReg() &&
232             locations[i].getReg() == LocMO.getReg() &&
233             locations[i].getSubReg() == LocMO.getSubReg())
234           return i;
235     } else
236       for (unsigned i = 0, e = locations.size(); i != e; ++i)
237         if (LocMO.isIdenticalTo(locations[i]))
238           return i;
239     locations.push_back(LocMO);
240     // We are storing a MachineOperand outside a MachineInstr.
241     locations.back().clearParent();
242     // Don't store def operands.
243     if (locations.back().isReg())
244       locations.back().setIsUse();
245     return locations.size() - 1;
246   }
247 
248   /// mapVirtRegs - Ensure that all virtual register locations are mapped.
249   void mapVirtRegs(LDVImpl *LDV);
250 
251   /// addDef - Add a definition point to this value.
252   void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect) {
253     DbgValueLocation Loc(getLocationNo(LocMO), IsIndirect);
254     // Add a singular (Idx,Idx) -> Loc mapping.
255     LocMap::iterator I = locInts.find(Idx);
256     if (!I.valid() || I.start() != Idx)
257       I.insert(Idx, Idx.getNextSlot(), Loc);
258     else
259       // A later DBG_VALUE at the same SlotIndex overrides the old location.
260       I.setValue(Loc);
261   }
262 
263   /// extendDef - Extend the current definition as far as possible down.
264   /// Stop when meeting an existing def or when leaving the live
265   /// range of VNI.
266   /// End points where VNI is no longer live are added to Kills.
267   /// @param Idx   Starting point for the definition.
268   /// @param Loc   Location number to propagate.
269   /// @param LR    Restrict liveness to where LR has the value VNI. May be null.
270   /// @param VNI   When LR is not null, this is the value to restrict to.
271   /// @param Kills Append end points of VNI's live range to Kills.
272   /// @param LIS   Live intervals analysis.
273   void extendDef(SlotIndex Idx, DbgValueLocation Loc,
274                  LiveRange *LR, const VNInfo *VNI,
275                  SmallVectorImpl<SlotIndex> *Kills,
276                  LiveIntervals &LIS);
277 
278   /// addDefsFromCopies - The value in LI/LocNo may be copies to other
279   /// registers. Determine if any of the copies are available at the kill
280   /// points, and add defs if possible.
281   /// @param LI      Scan for copies of the value in LI->reg.
282   /// @param LocNo   Location number of LI->reg.
283   /// @param WasIndirect Indicates if the original use of LI->reg was indirect
284   /// @param Kills   Points where the range of LocNo could be extended.
285   /// @param NewDefs Append (Idx, LocNo) of inserted defs here.
286   void addDefsFromCopies(
287       LiveInterval *LI, unsigned LocNo, bool WasIndirect,
288       const SmallVectorImpl<SlotIndex> &Kills,
289       SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
290       MachineRegisterInfo &MRI, LiveIntervals &LIS);
291 
292   /// computeIntervals - Compute the live intervals of all locations after
293   /// collecting all their def points.
294   void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
295                         LiveIntervals &LIS, LexicalScopes &LS);
296 
297   /// splitRegister - Replace OldReg ranges with NewRegs ranges where NewRegs is
298   /// live. Returns true if any changes were made.
299   bool splitRegister(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
300                      LiveIntervals &LIS);
301 
302   /// rewriteLocations - Rewrite virtual register locations according to the
303   /// provided virtual register map. Record which locations were spilled.
304   void rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI,
305                         BitVector &SpilledLocations);
306 
307   /// emitDebugValues - Recreate DBG_VALUE instruction from data structures.
308   void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
309                        const TargetInstrInfo &TRI,
310                        const BitVector &SpilledLocations);
311 
312   /// getDebugLoc - Return DebugLoc of this UserValue.
313   DebugLoc getDebugLoc() { return dl;}
314 
315   void print(raw_ostream &, const TargetRegisterInfo *);
316 };
317 
318 /// LDVImpl - Implementation of the LiveDebugVariables pass.
319 class LDVImpl {
320   LiveDebugVariables &pass;
321   LocMap::Allocator allocator;
322   MachineFunction *MF = nullptr;
323   LiveIntervals *LIS;
324   const TargetRegisterInfo *TRI;
325 
326   /// Whether emitDebugValues is called.
327   bool EmitDone = false;
328 
329   /// Whether the machine function is modified during the pass.
330   bool ModifiedMF = false;
331 
332   /// userValues - All allocated UserValue instances.
333   SmallVector<std::unique_ptr<UserValue>, 8> userValues;
334 
335   /// Map virtual register to eq class leader.
336   using VRMap = DenseMap<unsigned, UserValue *>;
337   VRMap virtRegToEqClass;
338 
339   /// Map user variable to eq class leader.
340   using UVMap = DenseMap<const DILocalVariable *, UserValue *>;
341   UVMap userVarMap;
342 
343   /// getUserValue - Find or create a UserValue.
344   UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr,
345                           const DebugLoc &DL);
346 
347   /// lookupVirtReg - Find the EC leader for VirtReg or null.
348   UserValue *lookupVirtReg(unsigned VirtReg);
349 
350   /// handleDebugValue - Add DBG_VALUE instruction to our maps.
351   /// @param MI  DBG_VALUE instruction
352   /// @param Idx Last valid SLotIndex before instruction.
353   /// @return    True if the DBG_VALUE instruction should be deleted.
354   bool handleDebugValue(MachineInstr &MI, SlotIndex Idx);
355 
356   /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding
357   /// a UserValue def for each instruction.
358   /// @param mf MachineFunction to be scanned.
359   /// @return True if any debug values were found.
360   bool collectDebugValues(MachineFunction &mf);
361 
362   /// computeIntervals - Compute the live intervals of all user values after
363   /// collecting all their def points.
364   void computeIntervals();
365 
366 public:
367   LDVImpl(LiveDebugVariables *ps) : pass(*ps) {}
368 
369   bool runOnMachineFunction(MachineFunction &mf);
370 
371   /// clear - Release all memory.
372   void clear() {
373     MF = nullptr;
374     userValues.clear();
375     virtRegToEqClass.clear();
376     userVarMap.clear();
377     // Make sure we call emitDebugValues if the machine function was modified.
378     assert((!ModifiedMF || EmitDone) &&
379            "Dbg values are not emitted in LDV");
380     EmitDone = false;
381     ModifiedMF = false;
382   }
383 
384   /// mapVirtReg - Map virtual register to an equivalence class.
385   void mapVirtReg(unsigned VirtReg, UserValue *EC);
386 
387   /// splitRegister -  Replace all references to OldReg with NewRegs.
388   void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs);
389 
390   /// emitDebugValues - Recreate DBG_VALUE instruction from data structures.
391   void emitDebugValues(VirtRegMap *VRM);
392 
393   void print(raw_ostream&);
394 };
395 
396 } // end anonymous namespace
397 
398 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
399 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS,
400                           const LLVMContext &Ctx) {
401   if (!DL)
402     return;
403 
404   auto *Scope = cast<DIScope>(DL.getScope());
405   // Omit the directory, because it's likely to be long and uninteresting.
406   CommentOS << Scope->getFilename();
407   CommentOS << ':' << DL.getLine();
408   if (DL.getCol() != 0)
409     CommentOS << ':' << DL.getCol();
410 
411   DebugLoc InlinedAtDL = DL.getInlinedAt();
412   if (!InlinedAtDL)
413     return;
414 
415   CommentOS << " @[ ";
416   printDebugLoc(InlinedAtDL, CommentOS, Ctx);
417   CommentOS << " ]";
418 }
419 
420 static void printExtendedName(raw_ostream &OS, const DILocalVariable *V,
421                               const DILocation *DL) {
422   const LLVMContext &Ctx = V->getContext();
423   StringRef Res = V->getName();
424   if (!Res.empty())
425     OS << Res << "," << V->getLine();
426   if (auto *InlinedAt = DL->getInlinedAt()) {
427     if (DebugLoc InlinedAtDL = InlinedAt) {
428       OS << " @[";
429       printDebugLoc(InlinedAtDL, OS, Ctx);
430       OS << "]";
431     }
432   }
433 }
434 
435 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
436   auto *DV = cast<DILocalVariable>(Variable);
437   OS << "!\"";
438   printExtendedName(OS, DV, dl);
439 
440   OS << "\"\t";
441   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
442     OS << " [" << I.start() << ';' << I.stop() << "):";
443     if (I.value().isUndef())
444       OS << "undef";
445     else {
446       OS << I.value().locNo();
447       if (I.value().wasIndirect())
448         OS << " ind";
449     }
450   }
451   for (unsigned i = 0, e = locations.size(); i != e; ++i) {
452     OS << " Loc" << i << '=';
453     locations[i].print(OS, TRI);
454   }
455   OS << '\n';
456 }
457 
458 void LDVImpl::print(raw_ostream &OS) {
459   OS << "********** DEBUG VARIABLES **********\n";
460   for (unsigned i = 0, e = userValues.size(); i != e; ++i)
461     userValues[i]->print(OS, TRI);
462 }
463 #endif
464 
465 void UserValue::mapVirtRegs(LDVImpl *LDV) {
466   for (unsigned i = 0, e = locations.size(); i != e; ++i)
467     if (locations[i].isReg() &&
468         TargetRegisterInfo::isVirtualRegister(locations[i].getReg()))
469       LDV->mapVirtReg(locations[i].getReg(), this);
470 }
471 
472 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var,
473                                  const DIExpression *Expr, const DebugLoc &DL) {
474   UserValue *&Leader = userVarMap[Var];
475   if (Leader) {
476     UserValue *UV = Leader->getLeader();
477     Leader = UV;
478     for (; UV; UV = UV->getNext())
479       if (UV->match(Var, Expr, DL->getInlinedAt()))
480         return UV;
481   }
482 
483   userValues.push_back(
484       llvm::make_unique<UserValue>(Var, Expr, DL, allocator));
485   UserValue *UV = userValues.back().get();
486   Leader = UserValue::merge(Leader, UV);
487   return UV;
488 }
489 
490 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) {
491   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs");
492   UserValue *&Leader = virtRegToEqClass[VirtReg];
493   Leader = UserValue::merge(Leader, EC);
494 }
495 
496 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) {
497   if (UserValue *UV = virtRegToEqClass.lookup(VirtReg))
498     return UV->getLeader();
499   return nullptr;
500 }
501 
502 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) {
503   // DBG_VALUE loc, offset, variable
504   if (MI.getNumOperands() != 4 ||
505       !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) ||
506       !MI.getOperand(2).isMetadata()) {
507     DEBUG(dbgs() << "Can't handle " << MI);
508     return false;
509   }
510 
511   // Get or create the UserValue for (variable,offset) here.
512   bool IsIndirect = MI.getOperand(1).isImm();
513   if (IsIndirect)
514     assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
515   const DILocalVariable *Var = MI.getDebugVariable();
516   const DIExpression *Expr = MI.getDebugExpression();
517   UserValue *UV =
518       getUserValue(Var, Expr, MI.getDebugLoc());
519   UV->addDef(Idx, MI.getOperand(0), IsIndirect);
520   return true;
521 }
522 
523 bool LDVImpl::collectDebugValues(MachineFunction &mf) {
524   bool Changed = false;
525   for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE;
526        ++MFI) {
527     MachineBasicBlock *MBB = &*MFI;
528     for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end();
529          MBBI != MBBE;) {
530       if (!MBBI->isDebugValue()) {
531         ++MBBI;
532         continue;
533       }
534       // DBG_VALUE has no slot index, use the previous instruction instead.
535       SlotIndex Idx =
536           MBBI == MBB->begin()
537               ? LIS->getMBBStartIdx(MBB)
538               : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot();
539       // Handle consecutive DBG_VALUE instructions with the same slot index.
540       do {
541         if (handleDebugValue(*MBBI, Idx)) {
542           MBBI = MBB->erase(MBBI);
543           Changed = true;
544         } else
545           ++MBBI;
546       } while (MBBI != MBBE && MBBI->isDebugValue());
547     }
548   }
549   return Changed;
550 }
551 
552 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a
553 /// data-flow analysis to propagate them beyond basic block boundaries.
554 void UserValue::extendDef(SlotIndex Idx, DbgValueLocation Loc, LiveRange *LR,
555                           const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills,
556                           LiveIntervals &LIS) {
557   SlotIndex Start = Idx;
558   MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
559   SlotIndex Stop = LIS.getMBBEndIdx(MBB);
560   LocMap::iterator I = locInts.find(Start);
561 
562   // Limit to VNI's live range.
563   bool ToEnd = true;
564   if (LR && VNI) {
565     LiveInterval::Segment *Segment = LR->getSegmentContaining(Start);
566     if (!Segment || Segment->valno != VNI) {
567       if (Kills)
568         Kills->push_back(Start);
569       return;
570     }
571     if (Segment->end < Stop) {
572       Stop = Segment->end;
573       ToEnd = false;
574     }
575   }
576 
577   // There could already be a short def at Start.
578   if (I.valid() && I.start() <= Start) {
579     // Stop when meeting a different location or an already extended interval.
580     Start = Start.getNextSlot();
581     if (I.value() != Loc || I.stop() != Start)
582       return;
583     // This is a one-slot placeholder. Just skip it.
584     ++I;
585   }
586 
587   // Limited by the next def.
588   if (I.valid() && I.start() < Stop) {
589     Stop = I.start();
590     ToEnd = false;
591   }
592   // Limited by VNI's live range.
593   else if (!ToEnd && Kills)
594     Kills->push_back(Stop);
595 
596   if (Start < Stop)
597     I.insert(Start, Stop, Loc);
598 }
599 
600 void UserValue::addDefsFromCopies(
601     LiveInterval *LI, unsigned LocNo, bool WasIndirect,
602     const SmallVectorImpl<SlotIndex> &Kills,
603     SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
604     MachineRegisterInfo &MRI, LiveIntervals &LIS) {
605   if (Kills.empty())
606     return;
607   // Don't track copies from physregs, there are too many uses.
608   if (!TargetRegisterInfo::isVirtualRegister(LI->reg))
609     return;
610 
611   // Collect all the (vreg, valno) pairs that are copies of LI.
612   SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues;
613   for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) {
614     MachineInstr *MI = MO.getParent();
615     // Copies of the full value.
616     if (MO.getSubReg() || !MI->isCopy())
617       continue;
618     unsigned DstReg = MI->getOperand(0).getReg();
619 
620     // Don't follow copies to physregs. These are usually setting up call
621     // arguments, and the argument registers are always call clobbered. We are
622     // better off in the source register which could be a callee-saved register,
623     // or it could be spilled.
624     if (!TargetRegisterInfo::isVirtualRegister(DstReg))
625       continue;
626 
627     // Is LocNo extended to reach this copy? If not, another def may be blocking
628     // it, or we are looking at a wrong value of LI.
629     SlotIndex Idx = LIS.getInstructionIndex(*MI);
630     LocMap::iterator I = locInts.find(Idx.getRegSlot(true));
631     if (!I.valid() || I.value().locNo() != LocNo)
632       continue;
633 
634     if (!LIS.hasInterval(DstReg))
635       continue;
636     LiveInterval *DstLI = &LIS.getInterval(DstReg);
637     const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot());
638     assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value");
639     CopyValues.push_back(std::make_pair(DstLI, DstVNI));
640   }
641 
642   if (CopyValues.empty())
643     return;
644 
645   DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI << '\n');
646 
647   // Try to add defs of the copied values for each kill point.
648   for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
649     SlotIndex Idx = Kills[i];
650     for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) {
651       LiveInterval *DstLI = CopyValues[j].first;
652       const VNInfo *DstVNI = CopyValues[j].second;
653       if (DstLI->getVNInfoAt(Idx) != DstVNI)
654         continue;
655       // Check that there isn't already a def at Idx
656       LocMap::iterator I = locInts.find(Idx);
657       if (I.valid() && I.start() <= Idx)
658         continue;
659       DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #"
660                    << DstVNI->id << " in " << *DstLI << '\n');
661       MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def);
662       assert(CopyMI && CopyMI->isCopy() && "Bad copy value");
663       unsigned LocNo = getLocationNo(CopyMI->getOperand(0));
664       DbgValueLocation NewLoc(LocNo, WasIndirect);
665       I.insert(Idx, Idx.getNextSlot(), NewLoc);
666       NewDefs.push_back(std::make_pair(Idx, NewLoc));
667       break;
668     }
669   }
670 }
671 
672 void UserValue::computeIntervals(MachineRegisterInfo &MRI,
673                                  const TargetRegisterInfo &TRI,
674                                  LiveIntervals &LIS, LexicalScopes &LS) {
675   SmallVector<std::pair<SlotIndex, DbgValueLocation>, 16> Defs;
676 
677   // Collect all defs to be extended (Skipping undefs).
678   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I)
679     if (!I.value().isUndef())
680       Defs.push_back(std::make_pair(I.start(), I.value()));
681 
682   // Extend all defs, and possibly add new ones along the way.
683   for (unsigned i = 0; i != Defs.size(); ++i) {
684     SlotIndex Idx = Defs[i].first;
685     DbgValueLocation Loc = Defs[i].second;
686     const MachineOperand &LocMO = locations[Loc.locNo()];
687 
688     if (!LocMO.isReg()) {
689       extendDef(Idx, Loc, nullptr, nullptr, nullptr, LIS);
690       continue;
691     }
692 
693     // Register locations are constrained to where the register value is live.
694     if (TargetRegisterInfo::isVirtualRegister(LocMO.getReg())) {
695       LiveInterval *LI = nullptr;
696       const VNInfo *VNI = nullptr;
697       if (LIS.hasInterval(LocMO.getReg())) {
698         LI = &LIS.getInterval(LocMO.getReg());
699         VNI = LI->getVNInfoAt(Idx);
700       }
701       SmallVector<SlotIndex, 16> Kills;
702       extendDef(Idx, Loc, LI, VNI, &Kills, LIS);
703       if (LI)
704         addDefsFromCopies(LI, Loc.locNo(), Loc.wasIndirect(), Kills, Defs, MRI,
705                           LIS);
706       continue;
707     }
708 
709     // For physregs, we only mark the start slot idx. DwarfDebug will see it
710     // as if the DBG_VALUE is valid up until the end of the basic block, or
711     // the next def of the physical register. So we do not need to extend the
712     // range. It might actually happen that the DBG_VALUE is the last use of
713     // the physical register (e.g. if this is an unused input argument to a
714     // function).
715   }
716 
717   // Erase all the undefs.
718   for (LocMap::iterator I = locInts.begin(); I.valid();)
719     if (I.value().isUndef())
720       I.erase();
721     else
722       ++I;
723 
724   // The computed intervals may extend beyond the range of the debug
725   // location's lexical scope. In this case, splitting of an interval
726   // can result in an interval outside of the scope being created,
727   // causing extra unnecessary DBG_VALUEs to be emitted. To prevent
728   // this, trim the intervals to the lexical scope.
729 
730   LexicalScope *Scope = LS.findLexicalScope(dl);
731   if (!Scope)
732     return;
733 
734   SlotIndex PrevEnd;
735   LocMap::iterator I = locInts.begin();
736 
737   // Iterate over the lexical scope ranges. Each time round the loop
738   // we check the intervals for overlap with the end of the previous
739   // range and the start of the next. The first range is handled as
740   // a special case where there is no PrevEnd.
741   for (const InsnRange &Range : Scope->getRanges()) {
742     SlotIndex RStart = LIS.getInstructionIndex(*Range.first);
743     SlotIndex REnd = LIS.getInstructionIndex(*Range.second);
744 
745     // At the start of each iteration I has been advanced so that
746     // I.stop() >= PrevEnd. Check for overlap.
747     if (PrevEnd && I.start() < PrevEnd) {
748       SlotIndex IStop = I.stop();
749       DbgValueLocation Loc = I.value();
750 
751       // Stop overlaps previous end - trim the end of the interval to
752       // the scope range.
753       I.setStopUnchecked(PrevEnd);
754       ++I;
755 
756       // If the interval also overlaps the start of the "next" (i.e.
757       // current) range create a new interval for the remainder (which
758       // may be further trimmed).
759       if (RStart < IStop)
760         I.insert(RStart, IStop, Loc);
761     }
762 
763     // Advance I so that I.stop() >= RStart, and check for overlap.
764     I.advanceTo(RStart);
765     if (!I.valid())
766       return;
767 
768     if (I.start() < RStart) {
769       // Interval start overlaps range - trim to the scope range.
770       I.setStartUnchecked(RStart);
771       // Remember that this interval was trimmed.
772       trimmedDefs.insert(RStart);
773     }
774 
775     // The end of a lexical scope range is the last instruction in the
776     // range. To convert to an interval we need the index of the
777     // instruction after it.
778     REnd = REnd.getNextIndex();
779 
780     // Advance I to first interval outside current range.
781     I.advanceTo(REnd);
782     if (!I.valid())
783       return;
784 
785     PrevEnd = REnd;
786   }
787 
788   // Check for overlap with end of final range.
789   if (PrevEnd && I.start() < PrevEnd)
790     I.setStopUnchecked(PrevEnd);
791 }
792 
793 void LDVImpl::computeIntervals() {
794   LexicalScopes LS;
795   LS.initialize(*MF);
796 
797   for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
798     userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS);
799     userValues[i]->mapVirtRegs(this);
800   }
801 }
802 
803 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) {
804   clear();
805   MF = &mf;
806   LIS = &pass.getAnalysis<LiveIntervals>();
807   TRI = mf.getSubtarget().getRegisterInfo();
808   DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
809                << mf.getName() << " **********\n");
810 
811   bool Changed = collectDebugValues(mf);
812   computeIntervals();
813   DEBUG(print(dbgs()));
814   ModifiedMF = Changed;
815   return Changed;
816 }
817 
818 static void removeDebugValues(MachineFunction &mf) {
819   for (MachineBasicBlock &MBB : mf) {
820     for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) {
821       if (!MBBI->isDebugValue()) {
822         ++MBBI;
823         continue;
824       }
825       MBBI = MBB.erase(MBBI);
826     }
827   }
828 }
829 
830 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
831   if (!EnableLDV)
832     return false;
833   if (!mf.getFunction()->getSubprogram()) {
834     removeDebugValues(mf);
835     return false;
836   }
837   if (!pImpl)
838     pImpl = new LDVImpl(this);
839   return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf);
840 }
841 
842 void LiveDebugVariables::releaseMemory() {
843   if (pImpl)
844     static_cast<LDVImpl*>(pImpl)->clear();
845 }
846 
847 LiveDebugVariables::~LiveDebugVariables() {
848   if (pImpl)
849     delete static_cast<LDVImpl*>(pImpl);
850 }
851 
852 //===----------------------------------------------------------------------===//
853 //                           Live Range Splitting
854 //===----------------------------------------------------------------------===//
855 
856 bool
857 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
858                          LiveIntervals& LIS) {
859   DEBUG({
860     dbgs() << "Splitting Loc" << OldLocNo << '\t';
861     print(dbgs(), nullptr);
862   });
863   bool DidChange = false;
864   LocMap::iterator LocMapI;
865   LocMapI.setMap(locInts);
866   for (unsigned i = 0; i != NewRegs.size(); ++i) {
867     LiveInterval *LI = &LIS.getInterval(NewRegs[i]);
868     if (LI->empty())
869       continue;
870 
871     // Don't allocate the new LocNo until it is needed.
872     unsigned NewLocNo = UndefLocNo;
873 
874     // Iterate over the overlaps between locInts and LI.
875     LocMapI.find(LI->beginIndex());
876     if (!LocMapI.valid())
877       continue;
878     LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start());
879     LiveInterval::iterator LIE = LI->end();
880     while (LocMapI.valid() && LII != LIE) {
881       // At this point, we know that LocMapI.stop() > LII->start.
882       LII = LI->advanceTo(LII, LocMapI.start());
883       if (LII == LIE)
884         break;
885 
886       // Now LII->end > LocMapI.start(). Do we have an overlap?
887       if (LocMapI.value().locNo() == OldLocNo && LII->start < LocMapI.stop()) {
888         // Overlapping correct location. Allocate NewLocNo now.
889         if (NewLocNo == UndefLocNo) {
890           MachineOperand MO = MachineOperand::CreateReg(LI->reg, false);
891           MO.setSubReg(locations[OldLocNo].getSubReg());
892           NewLocNo = getLocationNo(MO);
893           DidChange = true;
894         }
895 
896         SlotIndex LStart = LocMapI.start();
897         SlotIndex LStop  = LocMapI.stop();
898         DbgValueLocation OldLoc = LocMapI.value();
899 
900         // Trim LocMapI down to the LII overlap.
901         if (LStart < LII->start)
902           LocMapI.setStartUnchecked(LII->start);
903         if (LStop > LII->end)
904           LocMapI.setStopUnchecked(LII->end);
905 
906         // Change the value in the overlap. This may trigger coalescing.
907         LocMapI.setValue(OldLoc.changeLocNo(NewLocNo));
908 
909         // Re-insert any removed OldLocNo ranges.
910         if (LStart < LocMapI.start()) {
911           LocMapI.insert(LStart, LocMapI.start(), OldLoc);
912           ++LocMapI;
913           assert(LocMapI.valid() && "Unexpected coalescing");
914         }
915         if (LStop > LocMapI.stop()) {
916           ++LocMapI;
917           LocMapI.insert(LII->end, LStop, OldLoc);
918           --LocMapI;
919         }
920       }
921 
922       // Advance to the next overlap.
923       if (LII->end < LocMapI.stop()) {
924         if (++LII == LIE)
925           break;
926         LocMapI.advanceTo(LII->start);
927       } else {
928         ++LocMapI;
929         if (!LocMapI.valid())
930           break;
931         LII = LI->advanceTo(LII, LocMapI.start());
932       }
933     }
934   }
935 
936   // Finally, remove any remaining OldLocNo intervals and OldLocNo itself.
937   locations.erase(locations.begin() + OldLocNo);
938   LocMapI.goToBegin();
939   while (LocMapI.valid()) {
940     DbgValueLocation v = LocMapI.value();
941     if (v.locNo() == OldLocNo) {
942       DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';'
943                    << LocMapI.stop() << ")\n");
944       LocMapI.erase();
945     } else {
946       if (v.locNo() > OldLocNo)
947         LocMapI.setValueUnchecked(v.changeLocNo(v.locNo() - 1));
948       ++LocMapI;
949     }
950   }
951 
952   DEBUG({dbgs() << "Split result: \t"; print(dbgs(), nullptr);});
953   return DidChange;
954 }
955 
956 bool
957 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
958                          LiveIntervals &LIS) {
959   bool DidChange = false;
960   // Split locations referring to OldReg. Iterate backwards so splitLocation can
961   // safely erase unused locations.
962   for (unsigned i = locations.size(); i ; --i) {
963     unsigned LocNo = i-1;
964     const MachineOperand *Loc = &locations[LocNo];
965     if (!Loc->isReg() || Loc->getReg() != OldReg)
966       continue;
967     DidChange |= splitLocation(LocNo, NewRegs, LIS);
968   }
969   return DidChange;
970 }
971 
972 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) {
973   bool DidChange = false;
974   for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext())
975     DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS);
976 
977   if (!DidChange)
978     return;
979 
980   // Map all of the new virtual registers.
981   UserValue *UV = lookupVirtReg(OldReg);
982   for (unsigned i = 0; i != NewRegs.size(); ++i)
983     mapVirtReg(NewRegs[i], UV);
984 }
985 
986 void LiveDebugVariables::
987 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) {
988   if (pImpl)
989     static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs);
990 }
991 
992 void UserValue::rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI,
993                                  BitVector &SpilledLocations) {
994   // Build a set of new locations with new numbers so we can coalesce our
995   // IntervalMap if two vreg intervals collapse to the same physical location.
996   // Use MapVector instead of SetVector because MapVector::insert returns the
997   // position of the previously or newly inserted element. The boolean value
998   // tracks if the location was produced by a spill.
999   // FIXME: This will be problematic if we ever support direct and indirect
1000   // frame index locations, i.e. expressing both variables in memory and
1001   // 'int x, *px = &x'. The "spilled" bit must become part of the location.
1002   MapVector<MachineOperand, bool> NewLocations;
1003   SmallVector<unsigned, 4> LocNoMap(locations.size());
1004   for (unsigned I = 0, E = locations.size(); I != E; ++I) {
1005     bool Spilled = false;
1006     MachineOperand Loc = locations[I];
1007     // Only virtual registers are rewritten.
1008     if (Loc.isReg() && Loc.getReg() &&
1009         TargetRegisterInfo::isVirtualRegister(Loc.getReg())) {
1010       unsigned VirtReg = Loc.getReg();
1011       if (VRM.isAssignedReg(VirtReg) &&
1012           TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) {
1013         // This can create a %noreg operand in rare cases when the sub-register
1014         // index is no longer available. That means the user value is in a
1015         // non-existent sub-register, and %noreg is exactly what we want.
1016         Loc.substPhysReg(VRM.getPhys(VirtReg), TRI);
1017       } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) {
1018         // FIXME: Translate SubIdx to a stackslot offset.
1019         Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg));
1020         Spilled = true;
1021       } else {
1022         Loc.setReg(0);
1023         Loc.setSubReg(0);
1024       }
1025     }
1026 
1027     // Insert this location if it doesn't already exist and record a mapping
1028     // from the old number to the new number.
1029     auto InsertResult = NewLocations.insert({Loc, Spilled});
1030     unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first);
1031     LocNoMap[I] = NewLocNo;
1032   }
1033 
1034   // Rewrite the locations and record which ones were spill slots.
1035   locations.clear();
1036   SpilledLocations.clear();
1037   SpilledLocations.resize(NewLocations.size());
1038   for (auto &Pair : NewLocations) {
1039     locations.push_back(Pair.first);
1040     if (Pair.second) {
1041       unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair);
1042       SpilledLocations.set(NewLocNo);
1043     }
1044   }
1045 
1046   // Update the interval map, but only coalesce left, since intervals to the
1047   // right use the old location numbers. This should merge two contiguous
1048   // DBG_VALUE intervals with different vregs that were allocated to the same
1049   // physical register.
1050   for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
1051     DbgValueLocation Loc = I.value();
1052     unsigned NewLocNo = LocNoMap[Loc.locNo()];
1053     I.setValueUnchecked(Loc.changeLocNo(NewLocNo));
1054     I.setStart(I.start());
1055   }
1056 }
1057 
1058 /// findInsertLocation - Find an iterator for inserting a DBG_VALUE
1059 /// instruction.
1060 static MachineBasicBlock::iterator
1061 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx,
1062                    LiveIntervals &LIS) {
1063   SlotIndex Start = LIS.getMBBStartIdx(MBB);
1064   Idx = Idx.getBaseIndex();
1065 
1066   // Try to find an insert location by going backwards from Idx.
1067   MachineInstr *MI;
1068   while (!(MI = LIS.getInstructionFromIndex(Idx))) {
1069     // We've reached the beginning of MBB.
1070     if (Idx == Start) {
1071       MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
1072       return I;
1073     }
1074     Idx = Idx.getPrevIndex();
1075   }
1076 
1077   // Don't insert anything after the first terminator, though.
1078   return MI->isTerminator() ? MBB->getFirstTerminator() :
1079                               std::next(MachineBasicBlock::iterator(MI));
1080 }
1081 
1082 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx,
1083                                  DbgValueLocation Loc, bool Spilled,
1084                                  LiveIntervals &LIS,
1085                                  const TargetInstrInfo &TII) {
1086   MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS);
1087   MachineOperand &MO = locations[Loc.locNo()];
1088   ++NumInsertedDebugValues;
1089 
1090   assert(cast<DILocalVariable>(Variable)
1091              ->isValidLocationForIntrinsic(getDebugLoc()) &&
1092          "Expected inlined-at fields to agree");
1093 
1094   // If the location was spilled, the new DBG_VALUE will be indirect. If the
1095   // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate
1096   // that the original virtual register was a pointer.
1097   const DIExpression *Expr = Expression;
1098   bool IsIndirect = Loc.wasIndirect();
1099   if (Spilled) {
1100     if (IsIndirect)
1101       Expr = DIExpression::prepend(Expr, DIExpression::WithDeref);
1102     IsIndirect = true;
1103   }
1104 
1105   assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index");
1106 
1107   MachineInstrBuilder MIB =
1108       BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE))
1109           .add(MO);
1110   if (IsIndirect)
1111     MIB.addImm(0U);
1112   else
1113     MIB.addReg(0U, RegState::Debug);
1114   MIB.addMetadata(Variable).addMetadata(Expr);
1115 }
1116 
1117 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
1118                                 const TargetInstrInfo &TII,
1119                                 const BitVector &SpilledLocations) {
1120   MachineFunction::iterator MFEnd = VRM->getMachineFunction().end();
1121 
1122   for (LocMap::const_iterator I = locInts.begin(); I.valid();) {
1123     SlotIndex Start = I.start();
1124     SlotIndex Stop = I.stop();
1125     DbgValueLocation Loc = I.value();
1126     bool Spilled = !Loc.isUndef() ? SpilledLocations.test(Loc.locNo()) : false;
1127 
1128     // If the interval start was trimmed to the lexical scope insert the
1129     // DBG_VALUE at the previous index (otherwise it appears after the
1130     // first instruction in the range).
1131     if (trimmedDefs.count(Start))
1132       Start = Start.getPrevIndex();
1133 
1134     DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << Loc.locNo());
1135     MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1136     SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB);
1137 
1138     DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd);
1139     insertDebugValue(&*MBB, Start, Loc, Spilled, LIS, TII);
1140     // This interval may span multiple basic blocks.
1141     // Insert a DBG_VALUE into each one.
1142     while(Stop > MBBEnd) {
1143       // Move to the next block.
1144       Start = MBBEnd;
1145       if (++MBB == MFEnd)
1146         break;
1147       MBBEnd = LIS.getMBBEndIdx(&*MBB);
1148       DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd);
1149       insertDebugValue(&*MBB, Start, Loc, Spilled, LIS, TII);
1150     }
1151     DEBUG(dbgs() << '\n');
1152     if (MBB == MFEnd)
1153       break;
1154 
1155     ++I;
1156   }
1157 }
1158 
1159 void LDVImpl::emitDebugValues(VirtRegMap *VRM) {
1160   DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
1161   if (!MF)
1162     return;
1163   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1164   BitVector SpilledLocations;
1165   for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
1166     DEBUG(userValues[i]->print(dbgs(), TRI));
1167     userValues[i]->rewriteLocations(*VRM, *TRI, SpilledLocations);
1168     userValues[i]->emitDebugValues(VRM, *LIS, *TII, SpilledLocations);
1169   }
1170   EmitDone = true;
1171 }
1172 
1173 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) {
1174   if (pImpl)
1175     static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM);
1176 }
1177 
1178 bool LiveDebugVariables::doInitialization(Module &M) {
1179   return Pass::doInitialization(M);
1180 }
1181 
1182 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1183 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const {
1184   if (pImpl)
1185     static_cast<LDVImpl*>(pImpl)->print(dbgs());
1186 }
1187 #endif
1188