1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveDebugVariables analysis. 11 // 12 // Remove all DBG_VALUE instructions referencing virtual registers and replace 13 // them with a data structure tracking where live user variables are kept - in a 14 // virtual register or in a stack slot. 15 // 16 // Allow the data structure to be updated during register allocation when values 17 // are moved between registers and stack slots. Finally emit new DBG_VALUE 18 // instructions after register allocation is complete. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "LiveDebugVariables.h" 23 #include "llvm/ADT/ArrayRef.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/IntervalMap.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/CodeGen/LexicalScopes.h" 32 #include "llvm/CodeGen/LiveInterval.h" 33 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineDominators.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/SlotIndexes.h" 42 #include "llvm/CodeGen/VirtRegMap.h" 43 #include "llvm/IR/DebugInfoMetadata.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/Metadata.h" 47 #include "llvm/MC/MCRegisterInfo.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetInstrInfo.h" 55 #include "llvm/Target/TargetOpcodes.h" 56 #include "llvm/Target/TargetRegisterInfo.h" 57 #include "llvm/Target/TargetSubtargetInfo.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <iterator> 61 #include <memory> 62 #include <utility> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "livedebugvars" 67 68 static cl::opt<bool> 69 EnableLDV("live-debug-variables", cl::init(true), 70 cl::desc("Enable the live debug variables pass"), cl::Hidden); 71 72 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); 73 74 char LiveDebugVariables::ID = 0; 75 76 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE, 77 "Debug Variable Analysis", false, false) 78 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 79 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 80 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE, 81 "Debug Variable Analysis", false, false) 82 83 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { 84 AU.addRequired<MachineDominatorTree>(); 85 AU.addRequiredTransitive<LiveIntervals>(); 86 AU.setPreservesAll(); 87 MachineFunctionPass::getAnalysisUsage(AU); 88 } 89 90 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) { 91 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 92 } 93 94 enum : unsigned { UndefLocNo = ~0U }; 95 96 /// Describes a location by number along with some flags about the original 97 /// usage of the location. 98 class DbgValueLocation { 99 public: 100 DbgValueLocation(unsigned LocNo, bool WasIndirect) 101 : LocNo(LocNo), WasIndirect(WasIndirect) { 102 static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing"); 103 assert(locNo() == LocNo && "location truncation"); 104 } 105 106 DbgValueLocation() : LocNo(0), WasIndirect(0) {} 107 108 unsigned locNo() const { 109 // Fix up the undef location number, which gets truncated. 110 return LocNo == INT_MAX ? UndefLocNo : LocNo; 111 } 112 bool wasIndirect() const { return WasIndirect; } 113 bool isUndef() const { return locNo() == UndefLocNo; } 114 115 DbgValueLocation changeLocNo(unsigned NewLocNo) const { 116 return DbgValueLocation(NewLocNo, WasIndirect); 117 } 118 119 friend inline bool operator==(const DbgValueLocation &LHS, 120 const DbgValueLocation &RHS) { 121 return LHS.LocNo == RHS.LocNo && LHS.WasIndirect == RHS.WasIndirect; 122 } 123 124 friend inline bool operator!=(const DbgValueLocation &LHS, 125 const DbgValueLocation &RHS) { 126 return !(LHS == RHS); 127 } 128 129 private: 130 unsigned LocNo : 31; 131 unsigned WasIndirect : 1; 132 }; 133 134 /// LocMap - Map of where a user value is live, and its location. 135 using LocMap = IntervalMap<SlotIndex, DbgValueLocation, 4>; 136 137 namespace { 138 139 class LDVImpl; 140 141 /// UserValue - A user value is a part of a debug info user variable. 142 /// 143 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 144 /// holds part of a user variable. The part is identified by a byte offset. 145 /// 146 /// UserValues are grouped into equivalence classes for easier searching. Two 147 /// user values are related if they refer to the same variable, or if they are 148 /// held by the same virtual register. The equivalence class is the transitive 149 /// closure of that relation. 150 class UserValue { 151 const DILocalVariable *Variable; ///< The debug info variable we are part of. 152 const DIExpression *Expression; ///< Any complex address expression. 153 DebugLoc dl; ///< The debug location for the variable. This is 154 ///< used by dwarf writer to find lexical scope. 155 UserValue *leader; ///< Equivalence class leader. 156 UserValue *next = nullptr; ///< Next value in equivalence class, or null. 157 158 /// Numbered locations referenced by locmap. 159 SmallVector<MachineOperand, 4> locations; 160 161 /// Map of slot indices where this value is live. 162 LocMap locInts; 163 164 /// Set of interval start indexes that have been trimmed to the 165 /// lexical scope. 166 SmallSet<SlotIndex, 2> trimmedDefs; 167 168 /// insertDebugValue - Insert a DBG_VALUE into MBB at Idx for LocNo. 169 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx, 170 DbgValueLocation Loc, bool Spilled, LiveIntervals &LIS, 171 const TargetInstrInfo &TII); 172 173 /// splitLocation - Replace OldLocNo ranges with NewRegs ranges where NewRegs 174 /// is live. Returns true if any changes were made. 175 bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 176 LiveIntervals &LIS); 177 178 public: 179 /// UserValue - Create a new UserValue. 180 UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L, 181 LocMap::Allocator &alloc) 182 : Variable(var), Expression(expr), dl(std::move(L)), leader(this), 183 locInts(alloc) {} 184 185 /// getLeader - Get the leader of this value's equivalence class. 186 UserValue *getLeader() { 187 UserValue *l = leader; 188 while (l != l->leader) 189 l = l->leader; 190 return leader = l; 191 } 192 193 /// getNext - Return the next UserValue in the equivalence class. 194 UserValue *getNext() const { return next; } 195 196 /// match - Does this UserValue match the parameters? 197 bool match(const DILocalVariable *Var, const DIExpression *Expr, 198 const DILocation *IA) const { 199 // FIXME: The fragment should be part of the equivalence class, but not 200 // other things in the expression like stack values. 201 return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA; 202 } 203 204 /// merge - Merge equivalence classes. 205 static UserValue *merge(UserValue *L1, UserValue *L2) { 206 L2 = L2->getLeader(); 207 if (!L1) 208 return L2; 209 L1 = L1->getLeader(); 210 if (L1 == L2) 211 return L1; 212 // Splice L2 before L1's members. 213 UserValue *End = L2; 214 while (End->next) { 215 End->leader = L1; 216 End = End->next; 217 } 218 End->leader = L1; 219 End->next = L1->next; 220 L1->next = L2; 221 return L1; 222 } 223 224 /// getLocationNo - Return the location number that matches Loc. 225 unsigned getLocationNo(const MachineOperand &LocMO) { 226 if (LocMO.isReg()) { 227 if (LocMO.getReg() == 0) 228 return UndefLocNo; 229 // For register locations we dont care about use/def and other flags. 230 for (unsigned i = 0, e = locations.size(); i != e; ++i) 231 if (locations[i].isReg() && 232 locations[i].getReg() == LocMO.getReg() && 233 locations[i].getSubReg() == LocMO.getSubReg()) 234 return i; 235 } else 236 for (unsigned i = 0, e = locations.size(); i != e; ++i) 237 if (LocMO.isIdenticalTo(locations[i])) 238 return i; 239 locations.push_back(LocMO); 240 // We are storing a MachineOperand outside a MachineInstr. 241 locations.back().clearParent(); 242 // Don't store def operands. 243 if (locations.back().isReg()) 244 locations.back().setIsUse(); 245 return locations.size() - 1; 246 } 247 248 /// mapVirtRegs - Ensure that all virtual register locations are mapped. 249 void mapVirtRegs(LDVImpl *LDV); 250 251 /// addDef - Add a definition point to this value. 252 void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect) { 253 DbgValueLocation Loc(getLocationNo(LocMO), IsIndirect); 254 // Add a singular (Idx,Idx) -> Loc mapping. 255 LocMap::iterator I = locInts.find(Idx); 256 if (!I.valid() || I.start() != Idx) 257 I.insert(Idx, Idx.getNextSlot(), Loc); 258 else 259 // A later DBG_VALUE at the same SlotIndex overrides the old location. 260 I.setValue(Loc); 261 } 262 263 /// extendDef - Extend the current definition as far as possible down. 264 /// Stop when meeting an existing def or when leaving the live 265 /// range of VNI. 266 /// End points where VNI is no longer live are added to Kills. 267 /// @param Idx Starting point for the definition. 268 /// @param Loc Location number to propagate. 269 /// @param LR Restrict liveness to where LR has the value VNI. May be null. 270 /// @param VNI When LR is not null, this is the value to restrict to. 271 /// @param Kills Append end points of VNI's live range to Kills. 272 /// @param LIS Live intervals analysis. 273 void extendDef(SlotIndex Idx, DbgValueLocation Loc, 274 LiveRange *LR, const VNInfo *VNI, 275 SmallVectorImpl<SlotIndex> *Kills, 276 LiveIntervals &LIS); 277 278 /// addDefsFromCopies - The value in LI/LocNo may be copies to other 279 /// registers. Determine if any of the copies are available at the kill 280 /// points, and add defs if possible. 281 /// @param LI Scan for copies of the value in LI->reg. 282 /// @param LocNo Location number of LI->reg. 283 /// @param WasIndirect Indicates if the original use of LI->reg was indirect 284 /// @param Kills Points where the range of LocNo could be extended. 285 /// @param NewDefs Append (Idx, LocNo) of inserted defs here. 286 void addDefsFromCopies( 287 LiveInterval *LI, unsigned LocNo, bool WasIndirect, 288 const SmallVectorImpl<SlotIndex> &Kills, 289 SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs, 290 MachineRegisterInfo &MRI, LiveIntervals &LIS); 291 292 /// computeIntervals - Compute the live intervals of all locations after 293 /// collecting all their def points. 294 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, 295 LiveIntervals &LIS, LexicalScopes &LS); 296 297 /// splitRegister - Replace OldReg ranges with NewRegs ranges where NewRegs is 298 /// live. Returns true if any changes were made. 299 bool splitRegister(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 300 LiveIntervals &LIS); 301 302 /// rewriteLocations - Rewrite virtual register locations according to the 303 /// provided virtual register map. Record which locations were spilled. 304 void rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI, 305 BitVector &SpilledLocations); 306 307 /// emitDebugValues - Recreate DBG_VALUE instruction from data structures. 308 void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 309 const TargetInstrInfo &TRI, 310 const BitVector &SpilledLocations); 311 312 /// getDebugLoc - Return DebugLoc of this UserValue. 313 DebugLoc getDebugLoc() { return dl;} 314 315 void print(raw_ostream &, const TargetRegisterInfo *); 316 }; 317 318 /// LDVImpl - Implementation of the LiveDebugVariables pass. 319 class LDVImpl { 320 LiveDebugVariables &pass; 321 LocMap::Allocator allocator; 322 MachineFunction *MF = nullptr; 323 LiveIntervals *LIS; 324 const TargetRegisterInfo *TRI; 325 326 /// Whether emitDebugValues is called. 327 bool EmitDone = false; 328 329 /// Whether the machine function is modified during the pass. 330 bool ModifiedMF = false; 331 332 /// userValues - All allocated UserValue instances. 333 SmallVector<std::unique_ptr<UserValue>, 8> userValues; 334 335 /// Map virtual register to eq class leader. 336 using VRMap = DenseMap<unsigned, UserValue *>; 337 VRMap virtRegToEqClass; 338 339 /// Map user variable to eq class leader. 340 using UVMap = DenseMap<const DILocalVariable *, UserValue *>; 341 UVMap userVarMap; 342 343 /// getUserValue - Find or create a UserValue. 344 UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr, 345 const DebugLoc &DL); 346 347 /// lookupVirtReg - Find the EC leader for VirtReg or null. 348 UserValue *lookupVirtReg(unsigned VirtReg); 349 350 /// handleDebugValue - Add DBG_VALUE instruction to our maps. 351 /// @param MI DBG_VALUE instruction 352 /// @param Idx Last valid SLotIndex before instruction. 353 /// @return True if the DBG_VALUE instruction should be deleted. 354 bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); 355 356 /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding 357 /// a UserValue def for each instruction. 358 /// @param mf MachineFunction to be scanned. 359 /// @return True if any debug values were found. 360 bool collectDebugValues(MachineFunction &mf); 361 362 /// computeIntervals - Compute the live intervals of all user values after 363 /// collecting all their def points. 364 void computeIntervals(); 365 366 public: 367 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} 368 369 bool runOnMachineFunction(MachineFunction &mf); 370 371 /// clear - Release all memory. 372 void clear() { 373 MF = nullptr; 374 userValues.clear(); 375 virtRegToEqClass.clear(); 376 userVarMap.clear(); 377 // Make sure we call emitDebugValues if the machine function was modified. 378 assert((!ModifiedMF || EmitDone) && 379 "Dbg values are not emitted in LDV"); 380 EmitDone = false; 381 ModifiedMF = false; 382 } 383 384 /// mapVirtReg - Map virtual register to an equivalence class. 385 void mapVirtReg(unsigned VirtReg, UserValue *EC); 386 387 /// splitRegister - Replace all references to OldReg with NewRegs. 388 void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs); 389 390 /// emitDebugValues - Recreate DBG_VALUE instruction from data structures. 391 void emitDebugValues(VirtRegMap *VRM); 392 393 void print(raw_ostream&); 394 }; 395 396 } // end anonymous namespace 397 398 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 399 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, 400 const LLVMContext &Ctx) { 401 if (!DL) 402 return; 403 404 auto *Scope = cast<DIScope>(DL.getScope()); 405 // Omit the directory, because it's likely to be long and uninteresting. 406 CommentOS << Scope->getFilename(); 407 CommentOS << ':' << DL.getLine(); 408 if (DL.getCol() != 0) 409 CommentOS << ':' << DL.getCol(); 410 411 DebugLoc InlinedAtDL = DL.getInlinedAt(); 412 if (!InlinedAtDL) 413 return; 414 415 CommentOS << " @[ "; 416 printDebugLoc(InlinedAtDL, CommentOS, Ctx); 417 CommentOS << " ]"; 418 } 419 420 static void printExtendedName(raw_ostream &OS, const DILocalVariable *V, 421 const DILocation *DL) { 422 const LLVMContext &Ctx = V->getContext(); 423 StringRef Res = V->getName(); 424 if (!Res.empty()) 425 OS << Res << "," << V->getLine(); 426 if (auto *InlinedAt = DL->getInlinedAt()) { 427 if (DebugLoc InlinedAtDL = InlinedAt) { 428 OS << " @["; 429 printDebugLoc(InlinedAtDL, OS, Ctx); 430 OS << "]"; 431 } 432 } 433 } 434 435 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 436 auto *DV = cast<DILocalVariable>(Variable); 437 OS << "!\""; 438 printExtendedName(OS, DV, dl); 439 440 OS << "\"\t"; 441 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 442 OS << " [" << I.start() << ';' << I.stop() << "):"; 443 if (I.value().isUndef()) 444 OS << "undef"; 445 else { 446 OS << I.value().locNo(); 447 if (I.value().wasIndirect()) 448 OS << " ind"; 449 } 450 } 451 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 452 OS << " Loc" << i << '='; 453 locations[i].print(OS, TRI); 454 } 455 OS << '\n'; 456 } 457 458 void LDVImpl::print(raw_ostream &OS) { 459 OS << "********** DEBUG VARIABLES **********\n"; 460 for (unsigned i = 0, e = userValues.size(); i != e; ++i) 461 userValues[i]->print(OS, TRI); 462 } 463 #endif 464 465 void UserValue::mapVirtRegs(LDVImpl *LDV) { 466 for (unsigned i = 0, e = locations.size(); i != e; ++i) 467 if (locations[i].isReg() && 468 TargetRegisterInfo::isVirtualRegister(locations[i].getReg())) 469 LDV->mapVirtReg(locations[i].getReg(), this); 470 } 471 472 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var, 473 const DIExpression *Expr, const DebugLoc &DL) { 474 UserValue *&Leader = userVarMap[Var]; 475 if (Leader) { 476 UserValue *UV = Leader->getLeader(); 477 Leader = UV; 478 for (; UV; UV = UV->getNext()) 479 if (UV->match(Var, Expr, DL->getInlinedAt())) 480 return UV; 481 } 482 483 userValues.push_back( 484 llvm::make_unique<UserValue>(Var, Expr, DL, allocator)); 485 UserValue *UV = userValues.back().get(); 486 Leader = UserValue::merge(Leader, UV); 487 return UV; 488 } 489 490 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) { 491 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs"); 492 UserValue *&Leader = virtRegToEqClass[VirtReg]; 493 Leader = UserValue::merge(Leader, EC); 494 } 495 496 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) { 497 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) 498 return UV->getLeader(); 499 return nullptr; 500 } 501 502 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) { 503 // DBG_VALUE loc, offset, variable 504 if (MI.getNumOperands() != 4 || 505 !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) || 506 !MI.getOperand(2).isMetadata()) { 507 DEBUG(dbgs() << "Can't handle " << MI); 508 return false; 509 } 510 511 // Get or create the UserValue for (variable,offset) here. 512 bool IsIndirect = MI.getOperand(1).isImm(); 513 if (IsIndirect) 514 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); 515 const DILocalVariable *Var = MI.getDebugVariable(); 516 const DIExpression *Expr = MI.getDebugExpression(); 517 UserValue *UV = 518 getUserValue(Var, Expr, MI.getDebugLoc()); 519 UV->addDef(Idx, MI.getOperand(0), IsIndirect); 520 return true; 521 } 522 523 bool LDVImpl::collectDebugValues(MachineFunction &mf) { 524 bool Changed = false; 525 for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE; 526 ++MFI) { 527 MachineBasicBlock *MBB = &*MFI; 528 for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end(); 529 MBBI != MBBE;) { 530 if (!MBBI->isDebugValue()) { 531 ++MBBI; 532 continue; 533 } 534 // DBG_VALUE has no slot index, use the previous instruction instead. 535 SlotIndex Idx = 536 MBBI == MBB->begin() 537 ? LIS->getMBBStartIdx(MBB) 538 : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); 539 // Handle consecutive DBG_VALUE instructions with the same slot index. 540 do { 541 if (handleDebugValue(*MBBI, Idx)) { 542 MBBI = MBB->erase(MBBI); 543 Changed = true; 544 } else 545 ++MBBI; 546 } while (MBBI != MBBE && MBBI->isDebugValue()); 547 } 548 } 549 return Changed; 550 } 551 552 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a 553 /// data-flow analysis to propagate them beyond basic block boundaries. 554 void UserValue::extendDef(SlotIndex Idx, DbgValueLocation Loc, LiveRange *LR, 555 const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills, 556 LiveIntervals &LIS) { 557 SlotIndex Start = Idx; 558 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 559 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 560 LocMap::iterator I = locInts.find(Start); 561 562 // Limit to VNI's live range. 563 bool ToEnd = true; 564 if (LR && VNI) { 565 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); 566 if (!Segment || Segment->valno != VNI) { 567 if (Kills) 568 Kills->push_back(Start); 569 return; 570 } 571 if (Segment->end < Stop) { 572 Stop = Segment->end; 573 ToEnd = false; 574 } 575 } 576 577 // There could already be a short def at Start. 578 if (I.valid() && I.start() <= Start) { 579 // Stop when meeting a different location or an already extended interval. 580 Start = Start.getNextSlot(); 581 if (I.value() != Loc || I.stop() != Start) 582 return; 583 // This is a one-slot placeholder. Just skip it. 584 ++I; 585 } 586 587 // Limited by the next def. 588 if (I.valid() && I.start() < Stop) { 589 Stop = I.start(); 590 ToEnd = false; 591 } 592 // Limited by VNI's live range. 593 else if (!ToEnd && Kills) 594 Kills->push_back(Stop); 595 596 if (Start < Stop) 597 I.insert(Start, Stop, Loc); 598 } 599 600 void UserValue::addDefsFromCopies( 601 LiveInterval *LI, unsigned LocNo, bool WasIndirect, 602 const SmallVectorImpl<SlotIndex> &Kills, 603 SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs, 604 MachineRegisterInfo &MRI, LiveIntervals &LIS) { 605 if (Kills.empty()) 606 return; 607 // Don't track copies from physregs, there are too many uses. 608 if (!TargetRegisterInfo::isVirtualRegister(LI->reg)) 609 return; 610 611 // Collect all the (vreg, valno) pairs that are copies of LI. 612 SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues; 613 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) { 614 MachineInstr *MI = MO.getParent(); 615 // Copies of the full value. 616 if (MO.getSubReg() || !MI->isCopy()) 617 continue; 618 unsigned DstReg = MI->getOperand(0).getReg(); 619 620 // Don't follow copies to physregs. These are usually setting up call 621 // arguments, and the argument registers are always call clobbered. We are 622 // better off in the source register which could be a callee-saved register, 623 // or it could be spilled. 624 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 625 continue; 626 627 // Is LocNo extended to reach this copy? If not, another def may be blocking 628 // it, or we are looking at a wrong value of LI. 629 SlotIndex Idx = LIS.getInstructionIndex(*MI); 630 LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); 631 if (!I.valid() || I.value().locNo() != LocNo) 632 continue; 633 634 if (!LIS.hasInterval(DstReg)) 635 continue; 636 LiveInterval *DstLI = &LIS.getInterval(DstReg); 637 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); 638 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); 639 CopyValues.push_back(std::make_pair(DstLI, DstVNI)); 640 } 641 642 if (CopyValues.empty()) 643 return; 644 645 DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI << '\n'); 646 647 // Try to add defs of the copied values for each kill point. 648 for (unsigned i = 0, e = Kills.size(); i != e; ++i) { 649 SlotIndex Idx = Kills[i]; 650 for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) { 651 LiveInterval *DstLI = CopyValues[j].first; 652 const VNInfo *DstVNI = CopyValues[j].second; 653 if (DstLI->getVNInfoAt(Idx) != DstVNI) 654 continue; 655 // Check that there isn't already a def at Idx 656 LocMap::iterator I = locInts.find(Idx); 657 if (I.valid() && I.start() <= Idx) 658 continue; 659 DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #" 660 << DstVNI->id << " in " << *DstLI << '\n'); 661 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); 662 assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); 663 unsigned LocNo = getLocationNo(CopyMI->getOperand(0)); 664 DbgValueLocation NewLoc(LocNo, WasIndirect); 665 I.insert(Idx, Idx.getNextSlot(), NewLoc); 666 NewDefs.push_back(std::make_pair(Idx, NewLoc)); 667 break; 668 } 669 } 670 } 671 672 void UserValue::computeIntervals(MachineRegisterInfo &MRI, 673 const TargetRegisterInfo &TRI, 674 LiveIntervals &LIS, LexicalScopes &LS) { 675 SmallVector<std::pair<SlotIndex, DbgValueLocation>, 16> Defs; 676 677 // Collect all defs to be extended (Skipping undefs). 678 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 679 if (!I.value().isUndef()) 680 Defs.push_back(std::make_pair(I.start(), I.value())); 681 682 // Extend all defs, and possibly add new ones along the way. 683 for (unsigned i = 0; i != Defs.size(); ++i) { 684 SlotIndex Idx = Defs[i].first; 685 DbgValueLocation Loc = Defs[i].second; 686 const MachineOperand &LocMO = locations[Loc.locNo()]; 687 688 if (!LocMO.isReg()) { 689 extendDef(Idx, Loc, nullptr, nullptr, nullptr, LIS); 690 continue; 691 } 692 693 // Register locations are constrained to where the register value is live. 694 if (TargetRegisterInfo::isVirtualRegister(LocMO.getReg())) { 695 LiveInterval *LI = nullptr; 696 const VNInfo *VNI = nullptr; 697 if (LIS.hasInterval(LocMO.getReg())) { 698 LI = &LIS.getInterval(LocMO.getReg()); 699 VNI = LI->getVNInfoAt(Idx); 700 } 701 SmallVector<SlotIndex, 16> Kills; 702 extendDef(Idx, Loc, LI, VNI, &Kills, LIS); 703 if (LI) 704 addDefsFromCopies(LI, Loc.locNo(), Loc.wasIndirect(), Kills, Defs, MRI, 705 LIS); 706 continue; 707 } 708 709 // For physregs, we only mark the start slot idx. DwarfDebug will see it 710 // as if the DBG_VALUE is valid up until the end of the basic block, or 711 // the next def of the physical register. So we do not need to extend the 712 // range. It might actually happen that the DBG_VALUE is the last use of 713 // the physical register (e.g. if this is an unused input argument to a 714 // function). 715 } 716 717 // Erase all the undefs. 718 for (LocMap::iterator I = locInts.begin(); I.valid();) 719 if (I.value().isUndef()) 720 I.erase(); 721 else 722 ++I; 723 724 // The computed intervals may extend beyond the range of the debug 725 // location's lexical scope. In this case, splitting of an interval 726 // can result in an interval outside of the scope being created, 727 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent 728 // this, trim the intervals to the lexical scope. 729 730 LexicalScope *Scope = LS.findLexicalScope(dl); 731 if (!Scope) 732 return; 733 734 SlotIndex PrevEnd; 735 LocMap::iterator I = locInts.begin(); 736 737 // Iterate over the lexical scope ranges. Each time round the loop 738 // we check the intervals for overlap with the end of the previous 739 // range and the start of the next. The first range is handled as 740 // a special case where there is no PrevEnd. 741 for (const InsnRange &Range : Scope->getRanges()) { 742 SlotIndex RStart = LIS.getInstructionIndex(*Range.first); 743 SlotIndex REnd = LIS.getInstructionIndex(*Range.second); 744 745 // At the start of each iteration I has been advanced so that 746 // I.stop() >= PrevEnd. Check for overlap. 747 if (PrevEnd && I.start() < PrevEnd) { 748 SlotIndex IStop = I.stop(); 749 DbgValueLocation Loc = I.value(); 750 751 // Stop overlaps previous end - trim the end of the interval to 752 // the scope range. 753 I.setStopUnchecked(PrevEnd); 754 ++I; 755 756 // If the interval also overlaps the start of the "next" (i.e. 757 // current) range create a new interval for the remainder (which 758 // may be further trimmed). 759 if (RStart < IStop) 760 I.insert(RStart, IStop, Loc); 761 } 762 763 // Advance I so that I.stop() >= RStart, and check for overlap. 764 I.advanceTo(RStart); 765 if (!I.valid()) 766 return; 767 768 if (I.start() < RStart) { 769 // Interval start overlaps range - trim to the scope range. 770 I.setStartUnchecked(RStart); 771 // Remember that this interval was trimmed. 772 trimmedDefs.insert(RStart); 773 } 774 775 // The end of a lexical scope range is the last instruction in the 776 // range. To convert to an interval we need the index of the 777 // instruction after it. 778 REnd = REnd.getNextIndex(); 779 780 // Advance I to first interval outside current range. 781 I.advanceTo(REnd); 782 if (!I.valid()) 783 return; 784 785 PrevEnd = REnd; 786 } 787 788 // Check for overlap with end of final range. 789 if (PrevEnd && I.start() < PrevEnd) 790 I.setStopUnchecked(PrevEnd); 791 } 792 793 void LDVImpl::computeIntervals() { 794 LexicalScopes LS; 795 LS.initialize(*MF); 796 797 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 798 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS); 799 userValues[i]->mapVirtRegs(this); 800 } 801 } 802 803 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) { 804 clear(); 805 MF = &mf; 806 LIS = &pass.getAnalysis<LiveIntervals>(); 807 TRI = mf.getSubtarget().getRegisterInfo(); 808 DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 809 << mf.getName() << " **********\n"); 810 811 bool Changed = collectDebugValues(mf); 812 computeIntervals(); 813 DEBUG(print(dbgs())); 814 ModifiedMF = Changed; 815 return Changed; 816 } 817 818 static void removeDebugValues(MachineFunction &mf) { 819 for (MachineBasicBlock &MBB : mf) { 820 for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) { 821 if (!MBBI->isDebugValue()) { 822 ++MBBI; 823 continue; 824 } 825 MBBI = MBB.erase(MBBI); 826 } 827 } 828 } 829 830 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { 831 if (!EnableLDV) 832 return false; 833 if (!mf.getFunction()->getSubprogram()) { 834 removeDebugValues(mf); 835 return false; 836 } 837 if (!pImpl) 838 pImpl = new LDVImpl(this); 839 return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf); 840 } 841 842 void LiveDebugVariables::releaseMemory() { 843 if (pImpl) 844 static_cast<LDVImpl*>(pImpl)->clear(); 845 } 846 847 LiveDebugVariables::~LiveDebugVariables() { 848 if (pImpl) 849 delete static_cast<LDVImpl*>(pImpl); 850 } 851 852 //===----------------------------------------------------------------------===// 853 // Live Range Splitting 854 //===----------------------------------------------------------------------===// 855 856 bool 857 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 858 LiveIntervals& LIS) { 859 DEBUG({ 860 dbgs() << "Splitting Loc" << OldLocNo << '\t'; 861 print(dbgs(), nullptr); 862 }); 863 bool DidChange = false; 864 LocMap::iterator LocMapI; 865 LocMapI.setMap(locInts); 866 for (unsigned i = 0; i != NewRegs.size(); ++i) { 867 LiveInterval *LI = &LIS.getInterval(NewRegs[i]); 868 if (LI->empty()) 869 continue; 870 871 // Don't allocate the new LocNo until it is needed. 872 unsigned NewLocNo = UndefLocNo; 873 874 // Iterate over the overlaps between locInts and LI. 875 LocMapI.find(LI->beginIndex()); 876 if (!LocMapI.valid()) 877 continue; 878 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); 879 LiveInterval::iterator LIE = LI->end(); 880 while (LocMapI.valid() && LII != LIE) { 881 // At this point, we know that LocMapI.stop() > LII->start. 882 LII = LI->advanceTo(LII, LocMapI.start()); 883 if (LII == LIE) 884 break; 885 886 // Now LII->end > LocMapI.start(). Do we have an overlap? 887 if (LocMapI.value().locNo() == OldLocNo && LII->start < LocMapI.stop()) { 888 // Overlapping correct location. Allocate NewLocNo now. 889 if (NewLocNo == UndefLocNo) { 890 MachineOperand MO = MachineOperand::CreateReg(LI->reg, false); 891 MO.setSubReg(locations[OldLocNo].getSubReg()); 892 NewLocNo = getLocationNo(MO); 893 DidChange = true; 894 } 895 896 SlotIndex LStart = LocMapI.start(); 897 SlotIndex LStop = LocMapI.stop(); 898 DbgValueLocation OldLoc = LocMapI.value(); 899 900 // Trim LocMapI down to the LII overlap. 901 if (LStart < LII->start) 902 LocMapI.setStartUnchecked(LII->start); 903 if (LStop > LII->end) 904 LocMapI.setStopUnchecked(LII->end); 905 906 // Change the value in the overlap. This may trigger coalescing. 907 LocMapI.setValue(OldLoc.changeLocNo(NewLocNo)); 908 909 // Re-insert any removed OldLocNo ranges. 910 if (LStart < LocMapI.start()) { 911 LocMapI.insert(LStart, LocMapI.start(), OldLoc); 912 ++LocMapI; 913 assert(LocMapI.valid() && "Unexpected coalescing"); 914 } 915 if (LStop > LocMapI.stop()) { 916 ++LocMapI; 917 LocMapI.insert(LII->end, LStop, OldLoc); 918 --LocMapI; 919 } 920 } 921 922 // Advance to the next overlap. 923 if (LII->end < LocMapI.stop()) { 924 if (++LII == LIE) 925 break; 926 LocMapI.advanceTo(LII->start); 927 } else { 928 ++LocMapI; 929 if (!LocMapI.valid()) 930 break; 931 LII = LI->advanceTo(LII, LocMapI.start()); 932 } 933 } 934 } 935 936 // Finally, remove any remaining OldLocNo intervals and OldLocNo itself. 937 locations.erase(locations.begin() + OldLocNo); 938 LocMapI.goToBegin(); 939 while (LocMapI.valid()) { 940 DbgValueLocation v = LocMapI.value(); 941 if (v.locNo() == OldLocNo) { 942 DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';' 943 << LocMapI.stop() << ")\n"); 944 LocMapI.erase(); 945 } else { 946 if (v.locNo() > OldLocNo) 947 LocMapI.setValueUnchecked(v.changeLocNo(v.locNo() - 1)); 948 ++LocMapI; 949 } 950 } 951 952 DEBUG({dbgs() << "Split result: \t"; print(dbgs(), nullptr);}); 953 return DidChange; 954 } 955 956 bool 957 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, 958 LiveIntervals &LIS) { 959 bool DidChange = false; 960 // Split locations referring to OldReg. Iterate backwards so splitLocation can 961 // safely erase unused locations. 962 for (unsigned i = locations.size(); i ; --i) { 963 unsigned LocNo = i-1; 964 const MachineOperand *Loc = &locations[LocNo]; 965 if (!Loc->isReg() || Loc->getReg() != OldReg) 966 continue; 967 DidChange |= splitLocation(LocNo, NewRegs, LIS); 968 } 969 return DidChange; 970 } 971 972 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) { 973 bool DidChange = false; 974 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) 975 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); 976 977 if (!DidChange) 978 return; 979 980 // Map all of the new virtual registers. 981 UserValue *UV = lookupVirtReg(OldReg); 982 for (unsigned i = 0; i != NewRegs.size(); ++i) 983 mapVirtReg(NewRegs[i], UV); 984 } 985 986 void LiveDebugVariables:: 987 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) { 988 if (pImpl) 989 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); 990 } 991 992 void UserValue::rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI, 993 BitVector &SpilledLocations) { 994 // Build a set of new locations with new numbers so we can coalesce our 995 // IntervalMap if two vreg intervals collapse to the same physical location. 996 // Use MapVector instead of SetVector because MapVector::insert returns the 997 // position of the previously or newly inserted element. The boolean value 998 // tracks if the location was produced by a spill. 999 // FIXME: This will be problematic if we ever support direct and indirect 1000 // frame index locations, i.e. expressing both variables in memory and 1001 // 'int x, *px = &x'. The "spilled" bit must become part of the location. 1002 MapVector<MachineOperand, bool> NewLocations; 1003 SmallVector<unsigned, 4> LocNoMap(locations.size()); 1004 for (unsigned I = 0, E = locations.size(); I != E; ++I) { 1005 bool Spilled = false; 1006 MachineOperand Loc = locations[I]; 1007 // Only virtual registers are rewritten. 1008 if (Loc.isReg() && Loc.getReg() && 1009 TargetRegisterInfo::isVirtualRegister(Loc.getReg())) { 1010 unsigned VirtReg = Loc.getReg(); 1011 if (VRM.isAssignedReg(VirtReg) && 1012 TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) { 1013 // This can create a %noreg operand in rare cases when the sub-register 1014 // index is no longer available. That means the user value is in a 1015 // non-existent sub-register, and %noreg is exactly what we want. 1016 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); 1017 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { 1018 // FIXME: Translate SubIdx to a stackslot offset. 1019 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); 1020 Spilled = true; 1021 } else { 1022 Loc.setReg(0); 1023 Loc.setSubReg(0); 1024 } 1025 } 1026 1027 // Insert this location if it doesn't already exist and record a mapping 1028 // from the old number to the new number. 1029 auto InsertResult = NewLocations.insert({Loc, Spilled}); 1030 unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first); 1031 LocNoMap[I] = NewLocNo; 1032 } 1033 1034 // Rewrite the locations and record which ones were spill slots. 1035 locations.clear(); 1036 SpilledLocations.clear(); 1037 SpilledLocations.resize(NewLocations.size()); 1038 for (auto &Pair : NewLocations) { 1039 locations.push_back(Pair.first); 1040 if (Pair.second) { 1041 unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair); 1042 SpilledLocations.set(NewLocNo); 1043 } 1044 } 1045 1046 // Update the interval map, but only coalesce left, since intervals to the 1047 // right use the old location numbers. This should merge two contiguous 1048 // DBG_VALUE intervals with different vregs that were allocated to the same 1049 // physical register. 1050 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 1051 DbgValueLocation Loc = I.value(); 1052 unsigned NewLocNo = LocNoMap[Loc.locNo()]; 1053 I.setValueUnchecked(Loc.changeLocNo(NewLocNo)); 1054 I.setStart(I.start()); 1055 } 1056 } 1057 1058 /// findInsertLocation - Find an iterator for inserting a DBG_VALUE 1059 /// instruction. 1060 static MachineBasicBlock::iterator 1061 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, 1062 LiveIntervals &LIS) { 1063 SlotIndex Start = LIS.getMBBStartIdx(MBB); 1064 Idx = Idx.getBaseIndex(); 1065 1066 // Try to find an insert location by going backwards from Idx. 1067 MachineInstr *MI; 1068 while (!(MI = LIS.getInstructionFromIndex(Idx))) { 1069 // We've reached the beginning of MBB. 1070 if (Idx == Start) { 1071 MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 1072 return I; 1073 } 1074 Idx = Idx.getPrevIndex(); 1075 } 1076 1077 // Don't insert anything after the first terminator, though. 1078 return MI->isTerminator() ? MBB->getFirstTerminator() : 1079 std::next(MachineBasicBlock::iterator(MI)); 1080 } 1081 1082 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx, 1083 DbgValueLocation Loc, bool Spilled, 1084 LiveIntervals &LIS, 1085 const TargetInstrInfo &TII) { 1086 MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS); 1087 MachineOperand &MO = locations[Loc.locNo()]; 1088 ++NumInsertedDebugValues; 1089 1090 assert(cast<DILocalVariable>(Variable) 1091 ->isValidLocationForIntrinsic(getDebugLoc()) && 1092 "Expected inlined-at fields to agree"); 1093 1094 // If the location was spilled, the new DBG_VALUE will be indirect. If the 1095 // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate 1096 // that the original virtual register was a pointer. 1097 const DIExpression *Expr = Expression; 1098 bool IsIndirect = Loc.wasIndirect(); 1099 if (Spilled) { 1100 if (IsIndirect) 1101 Expr = DIExpression::prepend(Expr, DIExpression::WithDeref); 1102 IsIndirect = true; 1103 } 1104 1105 assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index"); 1106 1107 MachineInstrBuilder MIB = 1108 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE)) 1109 .add(MO); 1110 if (IsIndirect) 1111 MIB.addImm(0U); 1112 else 1113 MIB.addReg(0U, RegState::Debug); 1114 MIB.addMetadata(Variable).addMetadata(Expr); 1115 } 1116 1117 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 1118 const TargetInstrInfo &TII, 1119 const BitVector &SpilledLocations) { 1120 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); 1121 1122 for (LocMap::const_iterator I = locInts.begin(); I.valid();) { 1123 SlotIndex Start = I.start(); 1124 SlotIndex Stop = I.stop(); 1125 DbgValueLocation Loc = I.value(); 1126 bool Spilled = !Loc.isUndef() ? SpilledLocations.test(Loc.locNo()) : false; 1127 1128 // If the interval start was trimmed to the lexical scope insert the 1129 // DBG_VALUE at the previous index (otherwise it appears after the 1130 // first instruction in the range). 1131 if (trimmedDefs.count(Start)) 1132 Start = Start.getPrevIndex(); 1133 1134 DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << Loc.locNo()); 1135 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1136 SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); 1137 1138 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd); 1139 insertDebugValue(&*MBB, Start, Loc, Spilled, LIS, TII); 1140 // This interval may span multiple basic blocks. 1141 // Insert a DBG_VALUE into each one. 1142 while(Stop > MBBEnd) { 1143 // Move to the next block. 1144 Start = MBBEnd; 1145 if (++MBB == MFEnd) 1146 break; 1147 MBBEnd = LIS.getMBBEndIdx(&*MBB); 1148 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd); 1149 insertDebugValue(&*MBB, Start, Loc, Spilled, LIS, TII); 1150 } 1151 DEBUG(dbgs() << '\n'); 1152 if (MBB == MFEnd) 1153 break; 1154 1155 ++I; 1156 } 1157 } 1158 1159 void LDVImpl::emitDebugValues(VirtRegMap *VRM) { 1160 DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); 1161 if (!MF) 1162 return; 1163 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1164 BitVector SpilledLocations; 1165 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 1166 DEBUG(userValues[i]->print(dbgs(), TRI)); 1167 userValues[i]->rewriteLocations(*VRM, *TRI, SpilledLocations); 1168 userValues[i]->emitDebugValues(VRM, *LIS, *TII, SpilledLocations); 1169 } 1170 EmitDone = true; 1171 } 1172 1173 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { 1174 if (pImpl) 1175 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); 1176 } 1177 1178 bool LiveDebugVariables::doInitialization(Module &M) { 1179 return Pass::doInitialization(M); 1180 } 1181 1182 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1183 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { 1184 if (pImpl) 1185 static_cast<LDVImpl*>(pImpl)->print(dbgs()); 1186 } 1187 #endif 1188