1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveDebugVariables analysis. 11 // 12 // Remove all DBG_VALUE instructions referencing virtual registers and replace 13 // them with a data structure tracking where live user variables are kept - in a 14 // virtual register or in a stack slot. 15 // 16 // Allow the data structure to be updated during register allocation when values 17 // are moved between registers and stack slots. Finally emit new DBG_VALUE 18 // instructions after register allocation is complete. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "LiveDebugVariables.h" 23 #include "llvm/ADT/ArrayRef.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/IntervalMap.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/CodeGen/LexicalScopes.h" 32 #include "llvm/CodeGen/LiveInterval.h" 33 #include "llvm/CodeGen/LiveIntervals.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineDominators.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/SlotIndexes.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetOpcodes.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/VirtRegMap.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/MC/MCRegisterInfo.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <iterator> 61 #include <memory> 62 #include <utility> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "livedebugvars" 67 68 static cl::opt<bool> 69 EnableLDV("live-debug-variables", cl::init(true), 70 cl::desc("Enable the live debug variables pass"), cl::Hidden); 71 72 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); 73 74 char LiveDebugVariables::ID = 0; 75 76 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE, 77 "Debug Variable Analysis", false, false) 78 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 79 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 80 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE, 81 "Debug Variable Analysis", false, false) 82 83 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { 84 AU.addRequired<MachineDominatorTree>(); 85 AU.addRequiredTransitive<LiveIntervals>(); 86 AU.setPreservesAll(); 87 MachineFunctionPass::getAnalysisUsage(AU); 88 } 89 90 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) { 91 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 92 } 93 94 enum : unsigned { UndefLocNo = ~0U }; 95 96 /// Describes a location by number along with some flags about the original 97 /// usage of the location. 98 class DbgValueLocation { 99 public: 100 DbgValueLocation(unsigned LocNo, bool WasIndirect) 101 : LocNo(LocNo), WasIndirect(WasIndirect) { 102 static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing"); 103 assert(locNo() == LocNo && "location truncation"); 104 } 105 106 DbgValueLocation() : LocNo(0), WasIndirect(0) {} 107 108 unsigned locNo() const { 109 // Fix up the undef location number, which gets truncated. 110 return LocNo == INT_MAX ? UndefLocNo : LocNo; 111 } 112 bool wasIndirect() const { return WasIndirect; } 113 bool isUndef() const { return locNo() == UndefLocNo; } 114 115 DbgValueLocation changeLocNo(unsigned NewLocNo) const { 116 return DbgValueLocation(NewLocNo, WasIndirect); 117 } 118 119 friend inline bool operator==(const DbgValueLocation &LHS, 120 const DbgValueLocation &RHS) { 121 return LHS.LocNo == RHS.LocNo && LHS.WasIndirect == RHS.WasIndirect; 122 } 123 124 friend inline bool operator!=(const DbgValueLocation &LHS, 125 const DbgValueLocation &RHS) { 126 return !(LHS == RHS); 127 } 128 129 private: 130 unsigned LocNo : 31; 131 unsigned WasIndirect : 1; 132 }; 133 134 /// LocMap - Map of where a user value is live, and its location. 135 using LocMap = IntervalMap<SlotIndex, DbgValueLocation, 4>; 136 137 namespace { 138 139 class LDVImpl; 140 141 /// UserValue - A user value is a part of a debug info user variable. 142 /// 143 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 144 /// holds part of a user variable. The part is identified by a byte offset. 145 /// 146 /// UserValues are grouped into equivalence classes for easier searching. Two 147 /// user values are related if they refer to the same variable, or if they are 148 /// held by the same virtual register. The equivalence class is the transitive 149 /// closure of that relation. 150 class UserValue { 151 const DILocalVariable *Variable; ///< The debug info variable we are part of. 152 const DIExpression *Expression; ///< Any complex address expression. 153 DebugLoc dl; ///< The debug location for the variable. This is 154 ///< used by dwarf writer to find lexical scope. 155 UserValue *leader; ///< Equivalence class leader. 156 UserValue *next = nullptr; ///< Next value in equivalence class, or null. 157 158 /// Numbered locations referenced by locmap. 159 SmallVector<MachineOperand, 4> locations; 160 161 /// Map of slot indices where this value is live. 162 LocMap locInts; 163 164 /// Set of interval start indexes that have been trimmed to the 165 /// lexical scope. 166 SmallSet<SlotIndex, 2> trimmedDefs; 167 168 /// insertDebugValue - Insert a DBG_VALUE into MBB at Idx for LocNo. 169 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 170 SlotIndex StopIdx, 171 DbgValueLocation Loc, bool Spilled, LiveIntervals &LIS, 172 const TargetInstrInfo &TII, 173 const TargetRegisterInfo &TRI); 174 175 /// splitLocation - Replace OldLocNo ranges with NewRegs ranges where NewRegs 176 /// is live. Returns true if any changes were made. 177 bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 178 LiveIntervals &LIS); 179 180 public: 181 /// UserValue - Create a new UserValue. 182 UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L, 183 LocMap::Allocator &alloc) 184 : Variable(var), Expression(expr), dl(std::move(L)), leader(this), 185 locInts(alloc) {} 186 187 /// getLeader - Get the leader of this value's equivalence class. 188 UserValue *getLeader() { 189 UserValue *l = leader; 190 while (l != l->leader) 191 l = l->leader; 192 return leader = l; 193 } 194 195 /// getNext - Return the next UserValue in the equivalence class. 196 UserValue *getNext() const { return next; } 197 198 /// match - Does this UserValue match the parameters? 199 bool match(const DILocalVariable *Var, const DIExpression *Expr, 200 const DILocation *IA) const { 201 // FIXME: The fragment should be part of the equivalence class, but not 202 // other things in the expression like stack values. 203 return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA; 204 } 205 206 /// merge - Merge equivalence classes. 207 static UserValue *merge(UserValue *L1, UserValue *L2) { 208 L2 = L2->getLeader(); 209 if (!L1) 210 return L2; 211 L1 = L1->getLeader(); 212 if (L1 == L2) 213 return L1; 214 // Splice L2 before L1's members. 215 UserValue *End = L2; 216 while (End->next) { 217 End->leader = L1; 218 End = End->next; 219 } 220 End->leader = L1; 221 End->next = L1->next; 222 L1->next = L2; 223 return L1; 224 } 225 226 /// getLocationNo - Return the location number that matches Loc. 227 unsigned getLocationNo(const MachineOperand &LocMO) { 228 if (LocMO.isReg()) { 229 if (LocMO.getReg() == 0) 230 return UndefLocNo; 231 // For register locations we dont care about use/def and other flags. 232 for (unsigned i = 0, e = locations.size(); i != e; ++i) 233 if (locations[i].isReg() && 234 locations[i].getReg() == LocMO.getReg() && 235 locations[i].getSubReg() == LocMO.getSubReg()) 236 return i; 237 } else 238 for (unsigned i = 0, e = locations.size(); i != e; ++i) 239 if (LocMO.isIdenticalTo(locations[i])) 240 return i; 241 locations.push_back(LocMO); 242 // We are storing a MachineOperand outside a MachineInstr. 243 locations.back().clearParent(); 244 // Don't store def operands. 245 if (locations.back().isReg()) { 246 if (locations.back().isDef()) 247 locations.back().setIsDead(false); 248 locations.back().setIsUse(); 249 } 250 return locations.size() - 1; 251 } 252 253 /// mapVirtRegs - Ensure that all virtual register locations are mapped. 254 void mapVirtRegs(LDVImpl *LDV); 255 256 /// addDef - Add a definition point to this value. 257 void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect) { 258 DbgValueLocation Loc(getLocationNo(LocMO), IsIndirect); 259 // Add a singular (Idx,Idx) -> Loc mapping. 260 LocMap::iterator I = locInts.find(Idx); 261 if (!I.valid() || I.start() != Idx) 262 I.insert(Idx, Idx.getNextSlot(), Loc); 263 else 264 // A later DBG_VALUE at the same SlotIndex overrides the old location. 265 I.setValue(Loc); 266 } 267 268 /// extendDef - Extend the current definition as far as possible down. 269 /// Stop when meeting an existing def or when leaving the live 270 /// range of VNI. 271 /// End points where VNI is no longer live are added to Kills. 272 /// @param Idx Starting point for the definition. 273 /// @param Loc Location number to propagate. 274 /// @param LR Restrict liveness to where LR has the value VNI. May be null. 275 /// @param VNI When LR is not null, this is the value to restrict to. 276 /// @param Kills Append end points of VNI's live range to Kills. 277 /// @param LIS Live intervals analysis. 278 void extendDef(SlotIndex Idx, DbgValueLocation Loc, 279 LiveRange *LR, const VNInfo *VNI, 280 SmallVectorImpl<SlotIndex> *Kills, 281 LiveIntervals &LIS); 282 283 /// addDefsFromCopies - The value in LI/LocNo may be copies to other 284 /// registers. Determine if any of the copies are available at the kill 285 /// points, and add defs if possible. 286 /// @param LI Scan for copies of the value in LI->reg. 287 /// @param LocNo Location number of LI->reg. 288 /// @param WasIndirect Indicates if the original use of LI->reg was indirect 289 /// @param Kills Points where the range of LocNo could be extended. 290 /// @param NewDefs Append (Idx, LocNo) of inserted defs here. 291 void addDefsFromCopies( 292 LiveInterval *LI, unsigned LocNo, bool WasIndirect, 293 const SmallVectorImpl<SlotIndex> &Kills, 294 SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs, 295 MachineRegisterInfo &MRI, LiveIntervals &LIS); 296 297 /// computeIntervals - Compute the live intervals of all locations after 298 /// collecting all their def points. 299 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, 300 LiveIntervals &LIS, LexicalScopes &LS); 301 302 /// splitRegister - Replace OldReg ranges with NewRegs ranges where NewRegs is 303 /// live. Returns true if any changes were made. 304 bool splitRegister(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 305 LiveIntervals &LIS); 306 307 /// rewriteLocations - Rewrite virtual register locations according to the 308 /// provided virtual register map. Record which locations were spilled. 309 void rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI, 310 BitVector &SpilledLocations); 311 312 /// emitDebugValues - Recreate DBG_VALUE instruction from data structures. 313 void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 314 const TargetInstrInfo &TII, 315 const TargetRegisterInfo &TRI, 316 const BitVector &SpilledLocations); 317 318 /// getDebugLoc - Return DebugLoc of this UserValue. 319 DebugLoc getDebugLoc() { return dl;} 320 321 void print(raw_ostream &, const TargetRegisterInfo *); 322 }; 323 324 /// LDVImpl - Implementation of the LiveDebugVariables pass. 325 class LDVImpl { 326 LiveDebugVariables &pass; 327 LocMap::Allocator allocator; 328 MachineFunction *MF = nullptr; 329 LiveIntervals *LIS; 330 const TargetRegisterInfo *TRI; 331 332 /// Whether emitDebugValues is called. 333 bool EmitDone = false; 334 335 /// Whether the machine function is modified during the pass. 336 bool ModifiedMF = false; 337 338 /// userValues - All allocated UserValue instances. 339 SmallVector<std::unique_ptr<UserValue>, 8> userValues; 340 341 /// Map virtual register to eq class leader. 342 using VRMap = DenseMap<unsigned, UserValue *>; 343 VRMap virtRegToEqClass; 344 345 /// Map user variable to eq class leader. 346 using UVMap = DenseMap<const DILocalVariable *, UserValue *>; 347 UVMap userVarMap; 348 349 /// getUserValue - Find or create a UserValue. 350 UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr, 351 const DebugLoc &DL); 352 353 /// lookupVirtReg - Find the EC leader for VirtReg or null. 354 UserValue *lookupVirtReg(unsigned VirtReg); 355 356 /// handleDebugValue - Add DBG_VALUE instruction to our maps. 357 /// @param MI DBG_VALUE instruction 358 /// @param Idx Last valid SLotIndex before instruction. 359 /// @return True if the DBG_VALUE instruction should be deleted. 360 bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); 361 362 /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding 363 /// a UserValue def for each instruction. 364 /// @param mf MachineFunction to be scanned. 365 /// @return True if any debug values were found. 366 bool collectDebugValues(MachineFunction &mf); 367 368 /// computeIntervals - Compute the live intervals of all user values after 369 /// collecting all their def points. 370 void computeIntervals(); 371 372 public: 373 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} 374 375 bool runOnMachineFunction(MachineFunction &mf); 376 377 /// clear - Release all memory. 378 void clear() { 379 MF = nullptr; 380 userValues.clear(); 381 virtRegToEqClass.clear(); 382 userVarMap.clear(); 383 // Make sure we call emitDebugValues if the machine function was modified. 384 assert((!ModifiedMF || EmitDone) && 385 "Dbg values are not emitted in LDV"); 386 EmitDone = false; 387 ModifiedMF = false; 388 } 389 390 /// mapVirtReg - Map virtual register to an equivalence class. 391 void mapVirtReg(unsigned VirtReg, UserValue *EC); 392 393 /// splitRegister - Replace all references to OldReg with NewRegs. 394 void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs); 395 396 /// emitDebugValues - Recreate DBG_VALUE instruction from data structures. 397 void emitDebugValues(VirtRegMap *VRM); 398 399 void print(raw_ostream&); 400 }; 401 402 } // end anonymous namespace 403 404 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 405 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, 406 const LLVMContext &Ctx) { 407 if (!DL) 408 return; 409 410 auto *Scope = cast<DIScope>(DL.getScope()); 411 // Omit the directory, because it's likely to be long and uninteresting. 412 CommentOS << Scope->getFilename(); 413 CommentOS << ':' << DL.getLine(); 414 if (DL.getCol() != 0) 415 CommentOS << ':' << DL.getCol(); 416 417 DebugLoc InlinedAtDL = DL.getInlinedAt(); 418 if (!InlinedAtDL) 419 return; 420 421 CommentOS << " @[ "; 422 printDebugLoc(InlinedAtDL, CommentOS, Ctx); 423 CommentOS << " ]"; 424 } 425 426 static void printExtendedName(raw_ostream &OS, const DILocalVariable *V, 427 const DILocation *DL) { 428 const LLVMContext &Ctx = V->getContext(); 429 StringRef Res = V->getName(); 430 if (!Res.empty()) 431 OS << Res << "," << V->getLine(); 432 if (auto *InlinedAt = DL->getInlinedAt()) { 433 if (DebugLoc InlinedAtDL = InlinedAt) { 434 OS << " @["; 435 printDebugLoc(InlinedAtDL, OS, Ctx); 436 OS << "]"; 437 } 438 } 439 } 440 441 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 442 auto *DV = cast<DILocalVariable>(Variable); 443 OS << "!\""; 444 printExtendedName(OS, DV, dl); 445 446 OS << "\"\t"; 447 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 448 OS << " [" << I.start() << ';' << I.stop() << "):"; 449 if (I.value().isUndef()) 450 OS << "undef"; 451 else { 452 OS << I.value().locNo(); 453 if (I.value().wasIndirect()) 454 OS << " ind"; 455 } 456 } 457 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 458 OS << " Loc" << i << '='; 459 locations[i].print(OS, TRI); 460 } 461 OS << '\n'; 462 } 463 464 void LDVImpl::print(raw_ostream &OS) { 465 OS << "********** DEBUG VARIABLES **********\n"; 466 for (unsigned i = 0, e = userValues.size(); i != e; ++i) 467 userValues[i]->print(OS, TRI); 468 } 469 #endif 470 471 void UserValue::mapVirtRegs(LDVImpl *LDV) { 472 for (unsigned i = 0, e = locations.size(); i != e; ++i) 473 if (locations[i].isReg() && 474 TargetRegisterInfo::isVirtualRegister(locations[i].getReg())) 475 LDV->mapVirtReg(locations[i].getReg(), this); 476 } 477 478 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var, 479 const DIExpression *Expr, const DebugLoc &DL) { 480 UserValue *&Leader = userVarMap[Var]; 481 if (Leader) { 482 UserValue *UV = Leader->getLeader(); 483 Leader = UV; 484 for (; UV; UV = UV->getNext()) 485 if (UV->match(Var, Expr, DL->getInlinedAt())) 486 return UV; 487 } 488 489 userValues.push_back( 490 llvm::make_unique<UserValue>(Var, Expr, DL, allocator)); 491 UserValue *UV = userValues.back().get(); 492 Leader = UserValue::merge(Leader, UV); 493 return UV; 494 } 495 496 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) { 497 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs"); 498 UserValue *&Leader = virtRegToEqClass[VirtReg]; 499 Leader = UserValue::merge(Leader, EC); 500 } 501 502 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) { 503 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) 504 return UV->getLeader(); 505 return nullptr; 506 } 507 508 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) { 509 // DBG_VALUE loc, offset, variable 510 if (MI.getNumOperands() != 4 || 511 !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) || 512 !MI.getOperand(2).isMetadata()) { 513 DEBUG(dbgs() << "Can't handle " << MI); 514 return false; 515 } 516 517 // Get or create the UserValue for (variable,offset) here. 518 bool IsIndirect = MI.getOperand(1).isImm(); 519 if (IsIndirect) 520 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); 521 const DILocalVariable *Var = MI.getDebugVariable(); 522 const DIExpression *Expr = MI.getDebugExpression(); 523 UserValue *UV = 524 getUserValue(Var, Expr, MI.getDebugLoc()); 525 UV->addDef(Idx, MI.getOperand(0), IsIndirect); 526 return true; 527 } 528 529 bool LDVImpl::collectDebugValues(MachineFunction &mf) { 530 bool Changed = false; 531 for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE; 532 ++MFI) { 533 MachineBasicBlock *MBB = &*MFI; 534 for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end(); 535 MBBI != MBBE;) { 536 if (!MBBI->isDebugValue()) { 537 ++MBBI; 538 continue; 539 } 540 // DBG_VALUE has no slot index, use the previous instruction instead. 541 SlotIndex Idx = 542 MBBI == MBB->begin() 543 ? LIS->getMBBStartIdx(MBB) 544 : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); 545 // Handle consecutive DBG_VALUE instructions with the same slot index. 546 do { 547 if (handleDebugValue(*MBBI, Idx)) { 548 MBBI = MBB->erase(MBBI); 549 Changed = true; 550 } else 551 ++MBBI; 552 } while (MBBI != MBBE && MBBI->isDebugValue()); 553 } 554 } 555 return Changed; 556 } 557 558 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a 559 /// data-flow analysis to propagate them beyond basic block boundaries. 560 void UserValue::extendDef(SlotIndex Idx, DbgValueLocation Loc, LiveRange *LR, 561 const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills, 562 LiveIntervals &LIS) { 563 SlotIndex Start = Idx; 564 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 565 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 566 LocMap::iterator I = locInts.find(Start); 567 568 // Limit to VNI's live range. 569 bool ToEnd = true; 570 if (LR && VNI) { 571 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); 572 if (!Segment || Segment->valno != VNI) { 573 if (Kills) 574 Kills->push_back(Start); 575 return; 576 } 577 if (Segment->end < Stop) { 578 Stop = Segment->end; 579 ToEnd = false; 580 } 581 } 582 583 // There could already be a short def at Start. 584 if (I.valid() && I.start() <= Start) { 585 // Stop when meeting a different location or an already extended interval. 586 Start = Start.getNextSlot(); 587 if (I.value() != Loc || I.stop() != Start) 588 return; 589 // This is a one-slot placeholder. Just skip it. 590 ++I; 591 } 592 593 // Limited by the next def. 594 if (I.valid() && I.start() < Stop) { 595 Stop = I.start(); 596 ToEnd = false; 597 } 598 // Limited by VNI's live range. 599 else if (!ToEnd && Kills) 600 Kills->push_back(Stop); 601 602 if (Start < Stop) 603 I.insert(Start, Stop, Loc); 604 } 605 606 void UserValue::addDefsFromCopies( 607 LiveInterval *LI, unsigned LocNo, bool WasIndirect, 608 const SmallVectorImpl<SlotIndex> &Kills, 609 SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs, 610 MachineRegisterInfo &MRI, LiveIntervals &LIS) { 611 if (Kills.empty()) 612 return; 613 // Don't track copies from physregs, there are too many uses. 614 if (!TargetRegisterInfo::isVirtualRegister(LI->reg)) 615 return; 616 617 // Collect all the (vreg, valno) pairs that are copies of LI. 618 SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues; 619 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) { 620 MachineInstr *MI = MO.getParent(); 621 // Copies of the full value. 622 if (MO.getSubReg() || !MI->isCopy()) 623 continue; 624 unsigned DstReg = MI->getOperand(0).getReg(); 625 626 // Don't follow copies to physregs. These are usually setting up call 627 // arguments, and the argument registers are always call clobbered. We are 628 // better off in the source register which could be a callee-saved register, 629 // or it could be spilled. 630 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 631 continue; 632 633 // Is LocNo extended to reach this copy? If not, another def may be blocking 634 // it, or we are looking at a wrong value of LI. 635 SlotIndex Idx = LIS.getInstructionIndex(*MI); 636 LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); 637 if (!I.valid() || I.value().locNo() != LocNo) 638 continue; 639 640 if (!LIS.hasInterval(DstReg)) 641 continue; 642 LiveInterval *DstLI = &LIS.getInterval(DstReg); 643 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); 644 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); 645 CopyValues.push_back(std::make_pair(DstLI, DstVNI)); 646 } 647 648 if (CopyValues.empty()) 649 return; 650 651 DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI << '\n'); 652 653 // Try to add defs of the copied values for each kill point. 654 for (unsigned i = 0, e = Kills.size(); i != e; ++i) { 655 SlotIndex Idx = Kills[i]; 656 for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) { 657 LiveInterval *DstLI = CopyValues[j].first; 658 const VNInfo *DstVNI = CopyValues[j].second; 659 if (DstLI->getVNInfoAt(Idx) != DstVNI) 660 continue; 661 // Check that there isn't already a def at Idx 662 LocMap::iterator I = locInts.find(Idx); 663 if (I.valid() && I.start() <= Idx) 664 continue; 665 DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #" 666 << DstVNI->id << " in " << *DstLI << '\n'); 667 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); 668 assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); 669 unsigned LocNo = getLocationNo(CopyMI->getOperand(0)); 670 DbgValueLocation NewLoc(LocNo, WasIndirect); 671 I.insert(Idx, Idx.getNextSlot(), NewLoc); 672 NewDefs.push_back(std::make_pair(Idx, NewLoc)); 673 break; 674 } 675 } 676 } 677 678 void UserValue::computeIntervals(MachineRegisterInfo &MRI, 679 const TargetRegisterInfo &TRI, 680 LiveIntervals &LIS, LexicalScopes &LS) { 681 SmallVector<std::pair<SlotIndex, DbgValueLocation>, 16> Defs; 682 683 // Collect all defs to be extended (Skipping undefs). 684 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 685 if (!I.value().isUndef()) 686 Defs.push_back(std::make_pair(I.start(), I.value())); 687 688 // Extend all defs, and possibly add new ones along the way. 689 for (unsigned i = 0; i != Defs.size(); ++i) { 690 SlotIndex Idx = Defs[i].first; 691 DbgValueLocation Loc = Defs[i].second; 692 const MachineOperand &LocMO = locations[Loc.locNo()]; 693 694 if (!LocMO.isReg()) { 695 extendDef(Idx, Loc, nullptr, nullptr, nullptr, LIS); 696 continue; 697 } 698 699 // Register locations are constrained to where the register value is live. 700 if (TargetRegisterInfo::isVirtualRegister(LocMO.getReg())) { 701 LiveInterval *LI = nullptr; 702 const VNInfo *VNI = nullptr; 703 if (LIS.hasInterval(LocMO.getReg())) { 704 LI = &LIS.getInterval(LocMO.getReg()); 705 VNI = LI->getVNInfoAt(Idx); 706 } 707 SmallVector<SlotIndex, 16> Kills; 708 extendDef(Idx, Loc, LI, VNI, &Kills, LIS); 709 if (LI) 710 addDefsFromCopies(LI, Loc.locNo(), Loc.wasIndirect(), Kills, Defs, MRI, 711 LIS); 712 continue; 713 } 714 715 // For physregs, we only mark the start slot idx. DwarfDebug will see it 716 // as if the DBG_VALUE is valid up until the end of the basic block, or 717 // the next def of the physical register. So we do not need to extend the 718 // range. It might actually happen that the DBG_VALUE is the last use of 719 // the physical register (e.g. if this is an unused input argument to a 720 // function). 721 } 722 723 // Erase all the undefs. 724 for (LocMap::iterator I = locInts.begin(); I.valid();) 725 if (I.value().isUndef()) 726 I.erase(); 727 else 728 ++I; 729 730 // The computed intervals may extend beyond the range of the debug 731 // location's lexical scope. In this case, splitting of an interval 732 // can result in an interval outside of the scope being created, 733 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent 734 // this, trim the intervals to the lexical scope. 735 736 LexicalScope *Scope = LS.findLexicalScope(dl); 737 if (!Scope) 738 return; 739 740 SlotIndex PrevEnd; 741 LocMap::iterator I = locInts.begin(); 742 743 // Iterate over the lexical scope ranges. Each time round the loop 744 // we check the intervals for overlap with the end of the previous 745 // range and the start of the next. The first range is handled as 746 // a special case where there is no PrevEnd. 747 for (const InsnRange &Range : Scope->getRanges()) { 748 SlotIndex RStart = LIS.getInstructionIndex(*Range.first); 749 SlotIndex REnd = LIS.getInstructionIndex(*Range.second); 750 751 // At the start of each iteration I has been advanced so that 752 // I.stop() >= PrevEnd. Check for overlap. 753 if (PrevEnd && I.start() < PrevEnd) { 754 SlotIndex IStop = I.stop(); 755 DbgValueLocation Loc = I.value(); 756 757 // Stop overlaps previous end - trim the end of the interval to 758 // the scope range. 759 I.setStopUnchecked(PrevEnd); 760 ++I; 761 762 // If the interval also overlaps the start of the "next" (i.e. 763 // current) range create a new interval for the remainder (which 764 // may be further trimmed). 765 if (RStart < IStop) 766 I.insert(RStart, IStop, Loc); 767 } 768 769 // Advance I so that I.stop() >= RStart, and check for overlap. 770 I.advanceTo(RStart); 771 if (!I.valid()) 772 return; 773 774 if (I.start() < RStart) { 775 // Interval start overlaps range - trim to the scope range. 776 I.setStartUnchecked(RStart); 777 // Remember that this interval was trimmed. 778 trimmedDefs.insert(RStart); 779 } 780 781 // The end of a lexical scope range is the last instruction in the 782 // range. To convert to an interval we need the index of the 783 // instruction after it. 784 REnd = REnd.getNextIndex(); 785 786 // Advance I to first interval outside current range. 787 I.advanceTo(REnd); 788 if (!I.valid()) 789 return; 790 791 PrevEnd = REnd; 792 } 793 794 // Check for overlap with end of final range. 795 if (PrevEnd && I.start() < PrevEnd) 796 I.setStopUnchecked(PrevEnd); 797 } 798 799 void LDVImpl::computeIntervals() { 800 LexicalScopes LS; 801 LS.initialize(*MF); 802 803 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 804 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS); 805 userValues[i]->mapVirtRegs(this); 806 } 807 } 808 809 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) { 810 clear(); 811 MF = &mf; 812 LIS = &pass.getAnalysis<LiveIntervals>(); 813 TRI = mf.getSubtarget().getRegisterInfo(); 814 DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 815 << mf.getName() << " **********\n"); 816 817 bool Changed = collectDebugValues(mf); 818 computeIntervals(); 819 DEBUG(print(dbgs())); 820 ModifiedMF = Changed; 821 return Changed; 822 } 823 824 static void removeDebugValues(MachineFunction &mf) { 825 for (MachineBasicBlock &MBB : mf) { 826 for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) { 827 if (!MBBI->isDebugValue()) { 828 ++MBBI; 829 continue; 830 } 831 MBBI = MBB.erase(MBBI); 832 } 833 } 834 } 835 836 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { 837 if (!EnableLDV) 838 return false; 839 if (!mf.getFunction().getSubprogram()) { 840 removeDebugValues(mf); 841 return false; 842 } 843 if (!pImpl) 844 pImpl = new LDVImpl(this); 845 return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf); 846 } 847 848 void LiveDebugVariables::releaseMemory() { 849 if (pImpl) 850 static_cast<LDVImpl*>(pImpl)->clear(); 851 } 852 853 LiveDebugVariables::~LiveDebugVariables() { 854 if (pImpl) 855 delete static_cast<LDVImpl*>(pImpl); 856 } 857 858 //===----------------------------------------------------------------------===// 859 // Live Range Splitting 860 //===----------------------------------------------------------------------===// 861 862 bool 863 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 864 LiveIntervals& LIS) { 865 DEBUG({ 866 dbgs() << "Splitting Loc" << OldLocNo << '\t'; 867 print(dbgs(), nullptr); 868 }); 869 bool DidChange = false; 870 LocMap::iterator LocMapI; 871 LocMapI.setMap(locInts); 872 for (unsigned i = 0; i != NewRegs.size(); ++i) { 873 LiveInterval *LI = &LIS.getInterval(NewRegs[i]); 874 if (LI->empty()) 875 continue; 876 877 // Don't allocate the new LocNo until it is needed. 878 unsigned NewLocNo = UndefLocNo; 879 880 // Iterate over the overlaps between locInts and LI. 881 LocMapI.find(LI->beginIndex()); 882 if (!LocMapI.valid()) 883 continue; 884 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); 885 LiveInterval::iterator LIE = LI->end(); 886 while (LocMapI.valid() && LII != LIE) { 887 // At this point, we know that LocMapI.stop() > LII->start. 888 LII = LI->advanceTo(LII, LocMapI.start()); 889 if (LII == LIE) 890 break; 891 892 // Now LII->end > LocMapI.start(). Do we have an overlap? 893 if (LocMapI.value().locNo() == OldLocNo && LII->start < LocMapI.stop()) { 894 // Overlapping correct location. Allocate NewLocNo now. 895 if (NewLocNo == UndefLocNo) { 896 MachineOperand MO = MachineOperand::CreateReg(LI->reg, false); 897 MO.setSubReg(locations[OldLocNo].getSubReg()); 898 NewLocNo = getLocationNo(MO); 899 DidChange = true; 900 } 901 902 SlotIndex LStart = LocMapI.start(); 903 SlotIndex LStop = LocMapI.stop(); 904 DbgValueLocation OldLoc = LocMapI.value(); 905 906 // Trim LocMapI down to the LII overlap. 907 if (LStart < LII->start) 908 LocMapI.setStartUnchecked(LII->start); 909 if (LStop > LII->end) 910 LocMapI.setStopUnchecked(LII->end); 911 912 // Change the value in the overlap. This may trigger coalescing. 913 LocMapI.setValue(OldLoc.changeLocNo(NewLocNo)); 914 915 // Re-insert any removed OldLocNo ranges. 916 if (LStart < LocMapI.start()) { 917 LocMapI.insert(LStart, LocMapI.start(), OldLoc); 918 ++LocMapI; 919 assert(LocMapI.valid() && "Unexpected coalescing"); 920 } 921 if (LStop > LocMapI.stop()) { 922 ++LocMapI; 923 LocMapI.insert(LII->end, LStop, OldLoc); 924 --LocMapI; 925 } 926 } 927 928 // Advance to the next overlap. 929 if (LII->end < LocMapI.stop()) { 930 if (++LII == LIE) 931 break; 932 LocMapI.advanceTo(LII->start); 933 } else { 934 ++LocMapI; 935 if (!LocMapI.valid()) 936 break; 937 LII = LI->advanceTo(LII, LocMapI.start()); 938 } 939 } 940 } 941 942 // Finally, remove any remaining OldLocNo intervals and OldLocNo itself. 943 locations.erase(locations.begin() + OldLocNo); 944 LocMapI.goToBegin(); 945 while (LocMapI.valid()) { 946 DbgValueLocation v = LocMapI.value(); 947 if (v.locNo() == OldLocNo) { 948 DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';' 949 << LocMapI.stop() << ")\n"); 950 LocMapI.erase(); 951 } else { 952 if (v.locNo() > OldLocNo) 953 LocMapI.setValueUnchecked(v.changeLocNo(v.locNo() - 1)); 954 ++LocMapI; 955 } 956 } 957 958 DEBUG({dbgs() << "Split result: \t"; print(dbgs(), nullptr);}); 959 return DidChange; 960 } 961 962 bool 963 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, 964 LiveIntervals &LIS) { 965 bool DidChange = false; 966 // Split locations referring to OldReg. Iterate backwards so splitLocation can 967 // safely erase unused locations. 968 for (unsigned i = locations.size(); i ; --i) { 969 unsigned LocNo = i-1; 970 const MachineOperand *Loc = &locations[LocNo]; 971 if (!Loc->isReg() || Loc->getReg() != OldReg) 972 continue; 973 DidChange |= splitLocation(LocNo, NewRegs, LIS); 974 } 975 return DidChange; 976 } 977 978 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) { 979 bool DidChange = false; 980 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) 981 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); 982 983 if (!DidChange) 984 return; 985 986 // Map all of the new virtual registers. 987 UserValue *UV = lookupVirtReg(OldReg); 988 for (unsigned i = 0; i != NewRegs.size(); ++i) 989 mapVirtReg(NewRegs[i], UV); 990 } 991 992 void LiveDebugVariables:: 993 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) { 994 if (pImpl) 995 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); 996 } 997 998 void UserValue::rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI, 999 BitVector &SpilledLocations) { 1000 // Build a set of new locations with new numbers so we can coalesce our 1001 // IntervalMap if two vreg intervals collapse to the same physical location. 1002 // Use MapVector instead of SetVector because MapVector::insert returns the 1003 // position of the previously or newly inserted element. The boolean value 1004 // tracks if the location was produced by a spill. 1005 // FIXME: This will be problematic if we ever support direct and indirect 1006 // frame index locations, i.e. expressing both variables in memory and 1007 // 'int x, *px = &x'. The "spilled" bit must become part of the location. 1008 MapVector<MachineOperand, bool> NewLocations; 1009 SmallVector<unsigned, 4> LocNoMap(locations.size()); 1010 for (unsigned I = 0, E = locations.size(); I != E; ++I) { 1011 bool Spilled = false; 1012 MachineOperand Loc = locations[I]; 1013 // Only virtual registers are rewritten. 1014 if (Loc.isReg() && Loc.getReg() && 1015 TargetRegisterInfo::isVirtualRegister(Loc.getReg())) { 1016 unsigned VirtReg = Loc.getReg(); 1017 if (VRM.isAssignedReg(VirtReg) && 1018 TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) { 1019 // This can create a %noreg operand in rare cases when the sub-register 1020 // index is no longer available. That means the user value is in a 1021 // non-existent sub-register, and %noreg is exactly what we want. 1022 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); 1023 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { 1024 // FIXME: Translate SubIdx to a stackslot offset. 1025 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); 1026 Spilled = true; 1027 } else { 1028 Loc.setReg(0); 1029 Loc.setSubReg(0); 1030 } 1031 } 1032 1033 // Insert this location if it doesn't already exist and record a mapping 1034 // from the old number to the new number. 1035 auto InsertResult = NewLocations.insert({Loc, Spilled}); 1036 unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first); 1037 LocNoMap[I] = NewLocNo; 1038 } 1039 1040 // Rewrite the locations and record which ones were spill slots. 1041 locations.clear(); 1042 SpilledLocations.clear(); 1043 SpilledLocations.resize(NewLocations.size()); 1044 for (auto &Pair : NewLocations) { 1045 locations.push_back(Pair.first); 1046 if (Pair.second) { 1047 unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair); 1048 SpilledLocations.set(NewLocNo); 1049 } 1050 } 1051 1052 // Update the interval map, but only coalesce left, since intervals to the 1053 // right use the old location numbers. This should merge two contiguous 1054 // DBG_VALUE intervals with different vregs that were allocated to the same 1055 // physical register. 1056 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 1057 DbgValueLocation Loc = I.value(); 1058 unsigned NewLocNo = LocNoMap[Loc.locNo()]; 1059 I.setValueUnchecked(Loc.changeLocNo(NewLocNo)); 1060 I.setStart(I.start()); 1061 } 1062 } 1063 1064 /// Find an iterator for inserting a DBG_VALUE instruction. 1065 static MachineBasicBlock::iterator 1066 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, 1067 LiveIntervals &LIS) { 1068 SlotIndex Start = LIS.getMBBStartIdx(MBB); 1069 Idx = Idx.getBaseIndex(); 1070 1071 // Try to find an insert location by going backwards from Idx. 1072 MachineInstr *MI; 1073 while (!(MI = LIS.getInstructionFromIndex(Idx))) { 1074 // We've reached the beginning of MBB. 1075 if (Idx == Start) { 1076 MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 1077 return I; 1078 } 1079 Idx = Idx.getPrevIndex(); 1080 } 1081 1082 // Don't insert anything after the first terminator, though. 1083 return MI->isTerminator() ? MBB->getFirstTerminator() : 1084 std::next(MachineBasicBlock::iterator(MI)); 1085 } 1086 1087 /// Find an iterator for inserting the next DBG_VALUE instruction 1088 /// (or end if no more insert locations found). 1089 static MachineBasicBlock::iterator 1090 findNextInsertLocation(MachineBasicBlock *MBB, 1091 MachineBasicBlock::iterator I, 1092 SlotIndex StopIdx, MachineOperand &LocMO, 1093 LiveIntervals &LIS, 1094 const TargetRegisterInfo &TRI) { 1095 if (!LocMO.isReg()) 1096 return MBB->instr_end(); 1097 unsigned Reg = LocMO.getReg(); 1098 1099 // Find the next instruction in the MBB that define the register Reg. 1100 while (I != MBB->end() && !I->isTerminator()) { 1101 if (!LIS.isNotInMIMap(*I) && 1102 SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I))) 1103 break; 1104 if (I->definesRegister(Reg, &TRI)) 1105 // The insert location is directly after the instruction/bundle. 1106 return std::next(I); 1107 ++I; 1108 } 1109 return MBB->end(); 1110 } 1111 1112 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 1113 SlotIndex StopIdx, 1114 DbgValueLocation Loc, bool Spilled, 1115 LiveIntervals &LIS, 1116 const TargetInstrInfo &TII, 1117 const TargetRegisterInfo &TRI) { 1118 SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB); 1119 // Only search within the current MBB. 1120 StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx; 1121 MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS); 1122 MachineOperand &MO = locations[Loc.locNo()]; 1123 ++NumInsertedDebugValues; 1124 1125 assert(cast<DILocalVariable>(Variable) 1126 ->isValidLocationForIntrinsic(getDebugLoc()) && 1127 "Expected inlined-at fields to agree"); 1128 1129 // If the location was spilled, the new DBG_VALUE will be indirect. If the 1130 // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate 1131 // that the original virtual register was a pointer. 1132 const DIExpression *Expr = Expression; 1133 bool IsIndirect = Loc.wasIndirect(); 1134 if (Spilled) { 1135 if (IsIndirect) 1136 Expr = DIExpression::prepend(Expr, DIExpression::WithDeref); 1137 IsIndirect = true; 1138 } 1139 1140 assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index"); 1141 1142 do { 1143 MachineInstrBuilder MIB = 1144 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE)) 1145 .add(MO); 1146 if (IsIndirect) 1147 MIB.addImm(0U); 1148 else 1149 MIB.addReg(0U, RegState::Debug); 1150 MIB.addMetadata(Variable).addMetadata(Expr); 1151 1152 // Continue and insert DBG_VALUES after every redefinition of register 1153 // associated with the debug value within the range 1154 I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI); 1155 } while (I != MBB->end()); 1156 } 1157 1158 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 1159 const TargetInstrInfo &TII, 1160 const TargetRegisterInfo &TRI, 1161 const BitVector &SpilledLocations) { 1162 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); 1163 1164 for (LocMap::const_iterator I = locInts.begin(); I.valid();) { 1165 SlotIndex Start = I.start(); 1166 SlotIndex Stop = I.stop(); 1167 DbgValueLocation Loc = I.value(); 1168 bool Spilled = !Loc.isUndef() ? SpilledLocations.test(Loc.locNo()) : false; 1169 1170 // If the interval start was trimmed to the lexical scope insert the 1171 // DBG_VALUE at the previous index (otherwise it appears after the 1172 // first instruction in the range). 1173 if (trimmedDefs.count(Start)) 1174 Start = Start.getPrevIndex(); 1175 1176 DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << Loc.locNo()); 1177 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1178 SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); 1179 1180 DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1181 insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, LIS, TII, TRI); 1182 // This interval may span multiple basic blocks. 1183 // Insert a DBG_VALUE into each one. 1184 while (Stop > MBBEnd) { 1185 // Move to the next block. 1186 Start = MBBEnd; 1187 if (++MBB == MFEnd) 1188 break; 1189 MBBEnd = LIS.getMBBEndIdx(&*MBB); 1190 DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1191 insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, LIS, TII, TRI); 1192 } 1193 DEBUG(dbgs() << '\n'); 1194 if (MBB == MFEnd) 1195 break; 1196 1197 ++I; 1198 } 1199 } 1200 1201 void LDVImpl::emitDebugValues(VirtRegMap *VRM) { 1202 DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); 1203 if (!MF) 1204 return; 1205 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1206 BitVector SpilledLocations; 1207 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 1208 DEBUG(userValues[i]->print(dbgs(), TRI)); 1209 userValues[i]->rewriteLocations(*VRM, *TRI, SpilledLocations); 1210 userValues[i]->emitDebugValues(VRM, *LIS, *TII, *TRI, SpilledLocations); 1211 } 1212 EmitDone = true; 1213 } 1214 1215 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { 1216 if (pImpl) 1217 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); 1218 } 1219 1220 bool LiveDebugVariables::doInitialization(Module &M) { 1221 return Pass::doInitialization(M); 1222 } 1223 1224 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1225 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { 1226 if (pImpl) 1227 static_cast<LDVImpl*>(pImpl)->print(dbgs()); 1228 } 1229 #endif 1230