xref: /llvm-project/llvm/lib/CodeGen/LiveDebugVariables.cpp (revision 97edcbc4e0ff1f1d689b9b70e43ff4cd28379d20)
1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveDebugVariables analysis.
11 //
12 // Remove all DBG_VALUE instructions referencing virtual registers and replace
13 // them with a data structure tracking where live user variables are kept - in a
14 // virtual register or in a stack slot.
15 //
16 // Allow the data structure to be updated during register allocation when values
17 // are moved between registers and stack slots. Finally emit new DBG_VALUE
18 // instructions after register allocation is complete.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "LiveDebugVariables.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/IntervalMap.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/CodeGen/LexicalScopes.h"
32 #include "llvm/CodeGen/LiveInterval.h"
33 #include "llvm/CodeGen/LiveIntervals.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineDominators.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/SlotIndexes.h"
42 #include "llvm/CodeGen/TargetInstrInfo.h"
43 #include "llvm/CodeGen/TargetOpcodes.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/VirtRegMap.h"
47 #include "llvm/Config/llvm-config.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/MC/MCRegisterInfo.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <iterator>
62 #include <memory>
63 #include <utility>
64 
65 using namespace llvm;
66 
67 #define DEBUG_TYPE "livedebugvars"
68 
69 static cl::opt<bool>
70 EnableLDV("live-debug-variables", cl::init(true),
71           cl::desc("Enable the live debug variables pass"), cl::Hidden);
72 
73 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted");
74 
75 char LiveDebugVariables::ID = 0;
76 
77 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE,
78                 "Debug Variable Analysis", false, false)
79 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
80 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
81 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE,
82                 "Debug Variable Analysis", false, false)
83 
84 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const {
85   AU.addRequired<MachineDominatorTree>();
86   AU.addRequiredTransitive<LiveIntervals>();
87   AU.setPreservesAll();
88   MachineFunctionPass::getAnalysisUsage(AU);
89 }
90 
91 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) {
92   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
93 }
94 
95 enum : unsigned { UndefLocNo = ~0U };
96 
97 /// Describes a location by number along with some flags about the original
98 /// usage of the location.
99 class DbgValueLocation {
100 public:
101   DbgValueLocation(unsigned LocNo, bool WasIndirect)
102       : LocNo(LocNo), WasIndirect(WasIndirect) {
103     static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing");
104     assert(locNo() == LocNo && "location truncation");
105   }
106 
107   DbgValueLocation() : LocNo(0), WasIndirect(0) {}
108 
109   unsigned locNo() const {
110     // Fix up the undef location number, which gets truncated.
111     return LocNo == INT_MAX ? UndefLocNo : LocNo;
112   }
113   bool wasIndirect() const { return WasIndirect; }
114   bool isUndef() const { return locNo() == UndefLocNo; }
115 
116   DbgValueLocation changeLocNo(unsigned NewLocNo) const {
117     return DbgValueLocation(NewLocNo, WasIndirect);
118   }
119 
120   friend inline bool operator==(const DbgValueLocation &LHS,
121                                 const DbgValueLocation &RHS) {
122     return LHS.LocNo == RHS.LocNo && LHS.WasIndirect == RHS.WasIndirect;
123   }
124 
125   friend inline bool operator!=(const DbgValueLocation &LHS,
126                                 const DbgValueLocation &RHS) {
127     return !(LHS == RHS);
128   }
129 
130 private:
131   unsigned LocNo : 31;
132   unsigned WasIndirect : 1;
133 };
134 
135 /// LocMap - Map of where a user value is live, and its location.
136 using LocMap = IntervalMap<SlotIndex, DbgValueLocation, 4>;
137 
138 namespace {
139 
140 class LDVImpl;
141 
142 /// UserValue - A user value is a part of a debug info user variable.
143 ///
144 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
145 /// holds part of a user variable. The part is identified by a byte offset.
146 ///
147 /// UserValues are grouped into equivalence classes for easier searching. Two
148 /// user values are related if they refer to the same variable, or if they are
149 /// held by the same virtual register. The equivalence class is the transitive
150 /// closure of that relation.
151 class UserValue {
152   const DILocalVariable *Variable; ///< The debug info variable we are part of.
153   const DIExpression *Expression; ///< Any complex address expression.
154   DebugLoc dl;            ///< The debug location for the variable. This is
155                           ///< used by dwarf writer to find lexical scope.
156   UserValue *leader;      ///< Equivalence class leader.
157   UserValue *next = nullptr; ///< Next value in equivalence class, or null.
158 
159   /// Numbered locations referenced by locmap.
160   SmallVector<MachineOperand, 4> locations;
161 
162   /// Map of slot indices where this value is live.
163   LocMap locInts;
164 
165   /// Set of interval start indexes that have been trimmed to the
166   /// lexical scope.
167   SmallSet<SlotIndex, 2> trimmedDefs;
168 
169   /// insertDebugValue - Insert a DBG_VALUE into MBB at Idx for LocNo.
170   void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
171                         SlotIndex StopIdx,
172                         DbgValueLocation Loc, bool Spilled, LiveIntervals &LIS,
173                         const TargetInstrInfo &TII,
174                         const TargetRegisterInfo &TRI);
175 
176   /// splitLocation - Replace OldLocNo ranges with NewRegs ranges where NewRegs
177   /// is live. Returns true if any changes were made.
178   bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
179                      LiveIntervals &LIS);
180 
181 public:
182   /// UserValue - Create a new UserValue.
183   UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L,
184             LocMap::Allocator &alloc)
185       : Variable(var), Expression(expr), dl(std::move(L)), leader(this),
186         locInts(alloc) {}
187 
188   /// getLeader - Get the leader of this value's equivalence class.
189   UserValue *getLeader() {
190     UserValue *l = leader;
191     while (l != l->leader)
192       l = l->leader;
193     return leader = l;
194   }
195 
196   /// getNext - Return the next UserValue in the equivalence class.
197   UserValue *getNext() const { return next; }
198 
199   /// match - Does this UserValue match the parameters?
200   bool match(const DILocalVariable *Var, const DIExpression *Expr,
201              const DILocation *IA) const {
202     // FIXME: The fragment should be part of the equivalence class, but not
203     // other things in the expression like stack values.
204     return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA;
205   }
206 
207   /// merge - Merge equivalence classes.
208   static UserValue *merge(UserValue *L1, UserValue *L2) {
209     L2 = L2->getLeader();
210     if (!L1)
211       return L2;
212     L1 = L1->getLeader();
213     if (L1 == L2)
214       return L1;
215     // Splice L2 before L1's members.
216     UserValue *End = L2;
217     while (End->next) {
218       End->leader = L1;
219       End = End->next;
220     }
221     End->leader = L1;
222     End->next = L1->next;
223     L1->next = L2;
224     return L1;
225   }
226 
227   /// Return the location number that matches Loc.
228   ///
229   /// For undef values we always return location number UndefLocNo without
230   /// inserting anything in locations. Since locations is a vector and the
231   /// location number is the position in the vector and UndefLocNo is ~0,
232   /// we would need a very big vector to put the value at the right position.
233   unsigned getLocationNo(const MachineOperand &LocMO) {
234     if (LocMO.isReg()) {
235       if (LocMO.getReg() == 0)
236         return UndefLocNo;
237       // For register locations we dont care about use/def and other flags.
238       for (unsigned i = 0, e = locations.size(); i != e; ++i)
239         if (locations[i].isReg() &&
240             locations[i].getReg() == LocMO.getReg() &&
241             locations[i].getSubReg() == LocMO.getSubReg())
242           return i;
243     } else
244       for (unsigned i = 0, e = locations.size(); i != e; ++i)
245         if (LocMO.isIdenticalTo(locations[i]))
246           return i;
247     locations.push_back(LocMO);
248     // We are storing a MachineOperand outside a MachineInstr.
249     locations.back().clearParent();
250     // Don't store def operands.
251     if (locations.back().isReg()) {
252       if (locations.back().isDef())
253         locations.back().setIsDead(false);
254       locations.back().setIsUse();
255     }
256     return locations.size() - 1;
257   }
258 
259   /// mapVirtRegs - Ensure that all virtual register locations are mapped.
260   void mapVirtRegs(LDVImpl *LDV);
261 
262   /// addDef - Add a definition point to this value.
263   void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect) {
264     DbgValueLocation Loc(getLocationNo(LocMO), IsIndirect);
265     // Add a singular (Idx,Idx) -> Loc mapping.
266     LocMap::iterator I = locInts.find(Idx);
267     if (!I.valid() || I.start() != Idx)
268       I.insert(Idx, Idx.getNextSlot(), Loc);
269     else
270       // A later DBG_VALUE at the same SlotIndex overrides the old location.
271       I.setValue(Loc);
272   }
273 
274   /// extendDef - Extend the current definition as far as possible down.
275   /// Stop when meeting an existing def or when leaving the live
276   /// range of VNI.
277   /// End points where VNI is no longer live are added to Kills.
278   /// @param Idx   Starting point for the definition.
279   /// @param Loc   Location number to propagate.
280   /// @param LR    Restrict liveness to where LR has the value VNI. May be null.
281   /// @param VNI   When LR is not null, this is the value to restrict to.
282   /// @param Kills Append end points of VNI's live range to Kills.
283   /// @param LIS   Live intervals analysis.
284   void extendDef(SlotIndex Idx, DbgValueLocation Loc,
285                  LiveRange *LR, const VNInfo *VNI,
286                  SmallVectorImpl<SlotIndex> *Kills,
287                  LiveIntervals &LIS);
288 
289   /// addDefsFromCopies - The value in LI/LocNo may be copies to other
290   /// registers. Determine if any of the copies are available at the kill
291   /// points, and add defs if possible.
292   /// @param LI      Scan for copies of the value in LI->reg.
293   /// @param LocNo   Location number of LI->reg.
294   /// @param WasIndirect Indicates if the original use of LI->reg was indirect
295   /// @param Kills   Points where the range of LocNo could be extended.
296   /// @param NewDefs Append (Idx, LocNo) of inserted defs here.
297   void addDefsFromCopies(
298       LiveInterval *LI, unsigned LocNo, bool WasIndirect,
299       const SmallVectorImpl<SlotIndex> &Kills,
300       SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
301       MachineRegisterInfo &MRI, LiveIntervals &LIS);
302 
303   /// computeIntervals - Compute the live intervals of all locations after
304   /// collecting all their def points.
305   void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
306                         LiveIntervals &LIS, LexicalScopes &LS);
307 
308   /// splitRegister - Replace OldReg ranges with NewRegs ranges where NewRegs is
309   /// live. Returns true if any changes were made.
310   bool splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
311                      LiveIntervals &LIS);
312 
313   /// rewriteLocations - Rewrite virtual register locations according to the
314   /// provided virtual register map. Record which locations were spilled.
315   void rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI,
316                         BitVector &SpilledLocations);
317 
318   /// emitDebugValues - Recreate DBG_VALUE instruction from data structures.
319   void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
320                        const TargetInstrInfo &TII,
321                        const TargetRegisterInfo &TRI,
322                        const BitVector &SpilledLocations);
323 
324   /// getDebugLoc - Return DebugLoc of this UserValue.
325   DebugLoc getDebugLoc() { return dl;}
326 
327   void print(raw_ostream &, const TargetRegisterInfo *);
328 };
329 
330 /// LDVImpl - Implementation of the LiveDebugVariables pass.
331 class LDVImpl {
332   LiveDebugVariables &pass;
333   LocMap::Allocator allocator;
334   MachineFunction *MF = nullptr;
335   LiveIntervals *LIS;
336   const TargetRegisterInfo *TRI;
337 
338   /// Whether emitDebugValues is called.
339   bool EmitDone = false;
340 
341   /// Whether the machine function is modified during the pass.
342   bool ModifiedMF = false;
343 
344   /// userValues - All allocated UserValue instances.
345   SmallVector<std::unique_ptr<UserValue>, 8> userValues;
346 
347   /// Map virtual register to eq class leader.
348   using VRMap = DenseMap<unsigned, UserValue *>;
349   VRMap virtRegToEqClass;
350 
351   /// Map user variable to eq class leader.
352   using UVMap = DenseMap<const DILocalVariable *, UserValue *>;
353   UVMap userVarMap;
354 
355   /// getUserValue - Find or create a UserValue.
356   UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr,
357                           const DebugLoc &DL);
358 
359   /// lookupVirtReg - Find the EC leader for VirtReg or null.
360   UserValue *lookupVirtReg(unsigned VirtReg);
361 
362   /// handleDebugValue - Add DBG_VALUE instruction to our maps.
363   /// @param MI  DBG_VALUE instruction
364   /// @param Idx Last valid SLotIndex before instruction.
365   /// @return    True if the DBG_VALUE instruction should be deleted.
366   bool handleDebugValue(MachineInstr &MI, SlotIndex Idx);
367 
368   /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding
369   /// a UserValue def for each instruction.
370   /// @param mf MachineFunction to be scanned.
371   /// @return True if any debug values were found.
372   bool collectDebugValues(MachineFunction &mf);
373 
374   /// computeIntervals - Compute the live intervals of all user values after
375   /// collecting all their def points.
376   void computeIntervals();
377 
378 public:
379   LDVImpl(LiveDebugVariables *ps) : pass(*ps) {}
380 
381   bool runOnMachineFunction(MachineFunction &mf);
382 
383   /// clear - Release all memory.
384   void clear() {
385     MF = nullptr;
386     userValues.clear();
387     virtRegToEqClass.clear();
388     userVarMap.clear();
389     // Make sure we call emitDebugValues if the machine function was modified.
390     assert((!ModifiedMF || EmitDone) &&
391            "Dbg values are not emitted in LDV");
392     EmitDone = false;
393     ModifiedMF = false;
394   }
395 
396   /// mapVirtReg - Map virtual register to an equivalence class.
397   void mapVirtReg(unsigned VirtReg, UserValue *EC);
398 
399   /// splitRegister -  Replace all references to OldReg with NewRegs.
400   void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs);
401 
402   /// emitDebugValues - Recreate DBG_VALUE instruction from data structures.
403   void emitDebugValues(VirtRegMap *VRM);
404 
405   void print(raw_ostream&);
406 };
407 
408 } // end anonymous namespace
409 
410 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
411 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS,
412                           const LLVMContext &Ctx) {
413   if (!DL)
414     return;
415 
416   auto *Scope = cast<DIScope>(DL.getScope());
417   // Omit the directory, because it's likely to be long and uninteresting.
418   CommentOS << Scope->getFilename();
419   CommentOS << ':' << DL.getLine();
420   if (DL.getCol() != 0)
421     CommentOS << ':' << DL.getCol();
422 
423   DebugLoc InlinedAtDL = DL.getInlinedAt();
424   if (!InlinedAtDL)
425     return;
426 
427   CommentOS << " @[ ";
428   printDebugLoc(InlinedAtDL, CommentOS, Ctx);
429   CommentOS << " ]";
430 }
431 
432 static void printExtendedName(raw_ostream &OS, const DILocalVariable *V,
433                               const DILocation *DL) {
434   const LLVMContext &Ctx = V->getContext();
435   StringRef Res = V->getName();
436   if (!Res.empty())
437     OS << Res << "," << V->getLine();
438   if (auto *InlinedAt = DL->getInlinedAt()) {
439     if (DebugLoc InlinedAtDL = InlinedAt) {
440       OS << " @[";
441       printDebugLoc(InlinedAtDL, OS, Ctx);
442       OS << "]";
443     }
444   }
445 }
446 
447 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
448   auto *DV = cast<DILocalVariable>(Variable);
449   OS << "!\"";
450   printExtendedName(OS, DV, dl);
451 
452   OS << "\"\t";
453   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
454     OS << " [" << I.start() << ';' << I.stop() << "):";
455     if (I.value().isUndef())
456       OS << "undef";
457     else {
458       OS << I.value().locNo();
459       if (I.value().wasIndirect())
460         OS << " ind";
461     }
462   }
463   for (unsigned i = 0, e = locations.size(); i != e; ++i) {
464     OS << " Loc" << i << '=';
465     locations[i].print(OS, TRI);
466   }
467   OS << '\n';
468 }
469 
470 void LDVImpl::print(raw_ostream &OS) {
471   OS << "********** DEBUG VARIABLES **********\n";
472   for (unsigned i = 0, e = userValues.size(); i != e; ++i)
473     userValues[i]->print(OS, TRI);
474 }
475 #endif
476 
477 void UserValue::mapVirtRegs(LDVImpl *LDV) {
478   for (unsigned i = 0, e = locations.size(); i != e; ++i)
479     if (locations[i].isReg() &&
480         TargetRegisterInfo::isVirtualRegister(locations[i].getReg()))
481       LDV->mapVirtReg(locations[i].getReg(), this);
482 }
483 
484 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var,
485                                  const DIExpression *Expr, const DebugLoc &DL) {
486   UserValue *&Leader = userVarMap[Var];
487   if (Leader) {
488     UserValue *UV = Leader->getLeader();
489     Leader = UV;
490     for (; UV; UV = UV->getNext())
491       if (UV->match(Var, Expr, DL->getInlinedAt()))
492         return UV;
493   }
494 
495   userValues.push_back(
496       llvm::make_unique<UserValue>(Var, Expr, DL, allocator));
497   UserValue *UV = userValues.back().get();
498   Leader = UserValue::merge(Leader, UV);
499   return UV;
500 }
501 
502 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) {
503   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs");
504   UserValue *&Leader = virtRegToEqClass[VirtReg];
505   Leader = UserValue::merge(Leader, EC);
506 }
507 
508 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) {
509   if (UserValue *UV = virtRegToEqClass.lookup(VirtReg))
510     return UV->getLeader();
511   return nullptr;
512 }
513 
514 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) {
515   // DBG_VALUE loc, offset, variable
516   if (MI.getNumOperands() != 4 ||
517       !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) ||
518       !MI.getOperand(2).isMetadata()) {
519     LLVM_DEBUG(dbgs() << "Can't handle " << MI);
520     return false;
521   }
522 
523   // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual
524   // register that hasn't been defined yet. If we do not remove those here, then
525   // the re-insertion of the DBG_VALUE instruction after register allocation
526   // will be incorrect.
527   // TODO: If earlier passes are corrected to generate sane debug information
528   // (and if the machine verifier is improved to catch this), then these checks
529   // could be removed or replaced by asserts.
530   bool Discard = false;
531   if (MI.getOperand(0).isReg() &&
532       TargetRegisterInfo::isVirtualRegister(MI.getOperand(0).getReg())) {
533     const unsigned Reg = MI.getOperand(0).getReg();
534     if (!LIS->hasInterval(Reg)) {
535       // The DBG_VALUE is described by a virtual register that does not have a
536       // live interval. Discard the DBG_VALUE.
537       Discard = true;
538       LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx
539                         << " " << MI);
540     } else {
541       // The DBG_VALUE is only valid if either Reg is live out from Idx, or Reg
542       // is defined dead at Idx (where Idx is the slot index for the instruction
543       // preceeding the DBG_VALUE).
544       const LiveInterval &LI = LIS->getInterval(Reg);
545       LiveQueryResult LRQ = LI.Query(Idx);
546       if (!LRQ.valueOutOrDead()) {
547         // We have found a DBG_VALUE with the value in a virtual register that
548         // is not live. Discard the DBG_VALUE.
549         Discard = true;
550         LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx
551                           << " " << MI);
552       }
553     }
554   }
555 
556   // Get or create the UserValue for (variable,offset) here.
557   bool IsIndirect = MI.getOperand(1).isImm();
558   if (IsIndirect)
559     assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
560   const DILocalVariable *Var = MI.getDebugVariable();
561   const DIExpression *Expr = MI.getDebugExpression();
562   UserValue *UV =
563       getUserValue(Var, Expr, MI.getDebugLoc());
564   if (!Discard)
565     UV->addDef(Idx, MI.getOperand(0), IsIndirect);
566   else {
567     MachineOperand MO = MachineOperand::CreateReg(0U, false);
568     MO.setIsDebug();
569     UV->addDef(Idx, MO, false);
570   }
571   return true;
572 }
573 
574 bool LDVImpl::collectDebugValues(MachineFunction &mf) {
575   bool Changed = false;
576   for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE;
577        ++MFI) {
578     MachineBasicBlock *MBB = &*MFI;
579     for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end();
580          MBBI != MBBE;) {
581       // Use the first debug instruction in the sequence to get a SlotIndex
582       // for following consecutive debug instructions.
583       if (!MBBI->isDebugInstr()) {
584         ++MBBI;
585         continue;
586       }
587       // Debug instructions has no slot index. Use the previous
588       // non-debug instruction's SlotIndex as its SlotIndex.
589       SlotIndex Idx =
590           MBBI == MBB->begin()
591               ? LIS->getMBBStartIdx(MBB)
592               : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot();
593       // Handle consecutive debug instructions with the same slot index.
594       do {
595         // Only handle DBG_VALUE in handleDebugValue(). Skip all other
596         // kinds of debug instructions.
597         if (MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) {
598           MBBI = MBB->erase(MBBI);
599           Changed = true;
600         } else
601           ++MBBI;
602       } while (MBBI != MBBE && MBBI->isDebugInstr());
603     }
604   }
605   return Changed;
606 }
607 
608 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a
609 /// data-flow analysis to propagate them beyond basic block boundaries.
610 void UserValue::extendDef(SlotIndex Idx, DbgValueLocation Loc, LiveRange *LR,
611                           const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills,
612                           LiveIntervals &LIS) {
613   SlotIndex Start = Idx;
614   MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
615   SlotIndex Stop = LIS.getMBBEndIdx(MBB);
616   LocMap::iterator I = locInts.find(Start);
617 
618   // Limit to VNI's live range.
619   bool ToEnd = true;
620   if (LR && VNI) {
621     LiveInterval::Segment *Segment = LR->getSegmentContaining(Start);
622     if (!Segment || Segment->valno != VNI) {
623       if (Kills)
624         Kills->push_back(Start);
625       return;
626     }
627     if (Segment->end < Stop) {
628       Stop = Segment->end;
629       ToEnd = false;
630     }
631   }
632 
633   // There could already be a short def at Start.
634   if (I.valid() && I.start() <= Start) {
635     // Stop when meeting a different location or an already extended interval.
636     Start = Start.getNextSlot();
637     if (I.value() != Loc || I.stop() != Start)
638       return;
639     // This is a one-slot placeholder. Just skip it.
640     ++I;
641   }
642 
643   // Limited by the next def.
644   if (I.valid() && I.start() < Stop) {
645     Stop = I.start();
646     ToEnd = false;
647   }
648   // Limited by VNI's live range.
649   else if (!ToEnd && Kills)
650     Kills->push_back(Stop);
651 
652   if (Start < Stop)
653     I.insert(Start, Stop, Loc);
654 }
655 
656 void UserValue::addDefsFromCopies(
657     LiveInterval *LI, unsigned LocNo, bool WasIndirect,
658     const SmallVectorImpl<SlotIndex> &Kills,
659     SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
660     MachineRegisterInfo &MRI, LiveIntervals &LIS) {
661   if (Kills.empty())
662     return;
663   // Don't track copies from physregs, there are too many uses.
664   if (!TargetRegisterInfo::isVirtualRegister(LI->reg))
665     return;
666 
667   // Collect all the (vreg, valno) pairs that are copies of LI.
668   SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues;
669   for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) {
670     MachineInstr *MI = MO.getParent();
671     // Copies of the full value.
672     if (MO.getSubReg() || !MI->isCopy())
673       continue;
674     unsigned DstReg = MI->getOperand(0).getReg();
675 
676     // Don't follow copies to physregs. These are usually setting up call
677     // arguments, and the argument registers are always call clobbered. We are
678     // better off in the source register which could be a callee-saved register,
679     // or it could be spilled.
680     if (!TargetRegisterInfo::isVirtualRegister(DstReg))
681       continue;
682 
683     // Is LocNo extended to reach this copy? If not, another def may be blocking
684     // it, or we are looking at a wrong value of LI.
685     SlotIndex Idx = LIS.getInstructionIndex(*MI);
686     LocMap::iterator I = locInts.find(Idx.getRegSlot(true));
687     if (!I.valid() || I.value().locNo() != LocNo)
688       continue;
689 
690     if (!LIS.hasInterval(DstReg))
691       continue;
692     LiveInterval *DstLI = &LIS.getInterval(DstReg);
693     const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot());
694     assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value");
695     CopyValues.push_back(std::make_pair(DstLI, DstVNI));
696   }
697 
698   if (CopyValues.empty())
699     return;
700 
701   LLVM_DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI
702                     << '\n');
703 
704   // Try to add defs of the copied values for each kill point.
705   for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
706     SlotIndex Idx = Kills[i];
707     for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) {
708       LiveInterval *DstLI = CopyValues[j].first;
709       const VNInfo *DstVNI = CopyValues[j].second;
710       if (DstLI->getVNInfoAt(Idx) != DstVNI)
711         continue;
712       // Check that there isn't already a def at Idx
713       LocMap::iterator I = locInts.find(Idx);
714       if (I.valid() && I.start() <= Idx)
715         continue;
716       LLVM_DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #"
717                         << DstVNI->id << " in " << *DstLI << '\n');
718       MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def);
719       assert(CopyMI && CopyMI->isCopy() && "Bad copy value");
720       unsigned LocNo = getLocationNo(CopyMI->getOperand(0));
721       DbgValueLocation NewLoc(LocNo, WasIndirect);
722       I.insert(Idx, Idx.getNextSlot(), NewLoc);
723       NewDefs.push_back(std::make_pair(Idx, NewLoc));
724       break;
725     }
726   }
727 }
728 
729 void UserValue::computeIntervals(MachineRegisterInfo &MRI,
730                                  const TargetRegisterInfo &TRI,
731                                  LiveIntervals &LIS, LexicalScopes &LS) {
732   SmallVector<std::pair<SlotIndex, DbgValueLocation>, 16> Defs;
733 
734   // Collect all defs to be extended (Skipping undefs).
735   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I)
736     if (!I.value().isUndef())
737       Defs.push_back(std::make_pair(I.start(), I.value()));
738 
739   // Extend all defs, and possibly add new ones along the way.
740   for (unsigned i = 0; i != Defs.size(); ++i) {
741     SlotIndex Idx = Defs[i].first;
742     DbgValueLocation Loc = Defs[i].second;
743     const MachineOperand &LocMO = locations[Loc.locNo()];
744 
745     if (!LocMO.isReg()) {
746       extendDef(Idx, Loc, nullptr, nullptr, nullptr, LIS);
747       continue;
748     }
749 
750     // Register locations are constrained to where the register value is live.
751     if (TargetRegisterInfo::isVirtualRegister(LocMO.getReg())) {
752       LiveInterval *LI = nullptr;
753       const VNInfo *VNI = nullptr;
754       if (LIS.hasInterval(LocMO.getReg())) {
755         LI = &LIS.getInterval(LocMO.getReg());
756         VNI = LI->getVNInfoAt(Idx);
757       }
758       SmallVector<SlotIndex, 16> Kills;
759       extendDef(Idx, Loc, LI, VNI, &Kills, LIS);
760       if (LI)
761         addDefsFromCopies(LI, Loc.locNo(), Loc.wasIndirect(), Kills, Defs, MRI,
762                           LIS);
763       continue;
764     }
765 
766     // For physregs, we only mark the start slot idx. DwarfDebug will see it
767     // as if the DBG_VALUE is valid up until the end of the basic block, or
768     // the next def of the physical register. So we do not need to extend the
769     // range. It might actually happen that the DBG_VALUE is the last use of
770     // the physical register (e.g. if this is an unused input argument to a
771     // function).
772   }
773 
774   // The computed intervals may extend beyond the range of the debug
775   // location's lexical scope. In this case, splitting of an interval
776   // can result in an interval outside of the scope being created,
777   // causing extra unnecessary DBG_VALUEs to be emitted. To prevent
778   // this, trim the intervals to the lexical scope.
779 
780   LexicalScope *Scope = LS.findLexicalScope(dl);
781   if (!Scope)
782     return;
783 
784   SlotIndex PrevEnd;
785   LocMap::iterator I = locInts.begin();
786 
787   // Iterate over the lexical scope ranges. Each time round the loop
788   // we check the intervals for overlap with the end of the previous
789   // range and the start of the next. The first range is handled as
790   // a special case where there is no PrevEnd.
791   for (const InsnRange &Range : Scope->getRanges()) {
792     SlotIndex RStart = LIS.getInstructionIndex(*Range.first);
793     SlotIndex REnd = LIS.getInstructionIndex(*Range.second);
794 
795     // At the start of each iteration I has been advanced so that
796     // I.stop() >= PrevEnd. Check for overlap.
797     if (PrevEnd && I.start() < PrevEnd) {
798       SlotIndex IStop = I.stop();
799       DbgValueLocation Loc = I.value();
800 
801       // Stop overlaps previous end - trim the end of the interval to
802       // the scope range.
803       I.setStopUnchecked(PrevEnd);
804       ++I;
805 
806       // If the interval also overlaps the start of the "next" (i.e.
807       // current) range create a new interval for the remainder (which
808       // may be further trimmed).
809       if (RStart < IStop)
810         I.insert(RStart, IStop, Loc);
811     }
812 
813     // Advance I so that I.stop() >= RStart, and check for overlap.
814     I.advanceTo(RStart);
815     if (!I.valid())
816       return;
817 
818     if (I.start() < RStart) {
819       // Interval start overlaps range - trim to the scope range.
820       I.setStartUnchecked(RStart);
821       // Remember that this interval was trimmed.
822       trimmedDefs.insert(RStart);
823     }
824 
825     // The end of a lexical scope range is the last instruction in the
826     // range. To convert to an interval we need the index of the
827     // instruction after it.
828     REnd = REnd.getNextIndex();
829 
830     // Advance I to first interval outside current range.
831     I.advanceTo(REnd);
832     if (!I.valid())
833       return;
834 
835     PrevEnd = REnd;
836   }
837 
838   // Check for overlap with end of final range.
839   if (PrevEnd && I.start() < PrevEnd)
840     I.setStopUnchecked(PrevEnd);
841 }
842 
843 void LDVImpl::computeIntervals() {
844   LexicalScopes LS;
845   LS.initialize(*MF);
846 
847   for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
848     userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS);
849     userValues[i]->mapVirtRegs(this);
850   }
851 }
852 
853 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) {
854   clear();
855   MF = &mf;
856   LIS = &pass.getAnalysis<LiveIntervals>();
857   TRI = mf.getSubtarget().getRegisterInfo();
858   LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
859                     << mf.getName() << " **********\n");
860 
861   bool Changed = collectDebugValues(mf);
862   computeIntervals();
863   LLVM_DEBUG(print(dbgs()));
864   ModifiedMF = Changed;
865   return Changed;
866 }
867 
868 static void removeDebugValues(MachineFunction &mf) {
869   for (MachineBasicBlock &MBB : mf) {
870     for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) {
871       if (!MBBI->isDebugValue()) {
872         ++MBBI;
873         continue;
874       }
875       MBBI = MBB.erase(MBBI);
876     }
877   }
878 }
879 
880 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
881   if (!EnableLDV)
882     return false;
883   if (!mf.getFunction().getSubprogram()) {
884     removeDebugValues(mf);
885     return false;
886   }
887   if (!pImpl)
888     pImpl = new LDVImpl(this);
889   return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf);
890 }
891 
892 void LiveDebugVariables::releaseMemory() {
893   if (pImpl)
894     static_cast<LDVImpl*>(pImpl)->clear();
895 }
896 
897 LiveDebugVariables::~LiveDebugVariables() {
898   if (pImpl)
899     delete static_cast<LDVImpl*>(pImpl);
900 }
901 
902 //===----------------------------------------------------------------------===//
903 //                           Live Range Splitting
904 //===----------------------------------------------------------------------===//
905 
906 bool
907 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
908                          LiveIntervals& LIS) {
909   LLVM_DEBUG({
910     dbgs() << "Splitting Loc" << OldLocNo << '\t';
911     print(dbgs(), nullptr);
912   });
913   bool DidChange = false;
914   LocMap::iterator LocMapI;
915   LocMapI.setMap(locInts);
916   for (unsigned i = 0; i != NewRegs.size(); ++i) {
917     LiveInterval *LI = &LIS.getInterval(NewRegs[i]);
918     if (LI->empty())
919       continue;
920 
921     // Don't allocate the new LocNo until it is needed.
922     unsigned NewLocNo = UndefLocNo;
923 
924     // Iterate over the overlaps between locInts and LI.
925     LocMapI.find(LI->beginIndex());
926     if (!LocMapI.valid())
927       continue;
928     LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start());
929     LiveInterval::iterator LIE = LI->end();
930     while (LocMapI.valid() && LII != LIE) {
931       // At this point, we know that LocMapI.stop() > LII->start.
932       LII = LI->advanceTo(LII, LocMapI.start());
933       if (LII == LIE)
934         break;
935 
936       // Now LII->end > LocMapI.start(). Do we have an overlap?
937       if (LocMapI.value().locNo() == OldLocNo && LII->start < LocMapI.stop()) {
938         // Overlapping correct location. Allocate NewLocNo now.
939         if (NewLocNo == UndefLocNo) {
940           MachineOperand MO = MachineOperand::CreateReg(LI->reg, false);
941           MO.setSubReg(locations[OldLocNo].getSubReg());
942           NewLocNo = getLocationNo(MO);
943           DidChange = true;
944         }
945 
946         SlotIndex LStart = LocMapI.start();
947         SlotIndex LStop  = LocMapI.stop();
948         DbgValueLocation OldLoc = LocMapI.value();
949 
950         // Trim LocMapI down to the LII overlap.
951         if (LStart < LII->start)
952           LocMapI.setStartUnchecked(LII->start);
953         if (LStop > LII->end)
954           LocMapI.setStopUnchecked(LII->end);
955 
956         // Change the value in the overlap. This may trigger coalescing.
957         LocMapI.setValue(OldLoc.changeLocNo(NewLocNo));
958 
959         // Re-insert any removed OldLocNo ranges.
960         if (LStart < LocMapI.start()) {
961           LocMapI.insert(LStart, LocMapI.start(), OldLoc);
962           ++LocMapI;
963           assert(LocMapI.valid() && "Unexpected coalescing");
964         }
965         if (LStop > LocMapI.stop()) {
966           ++LocMapI;
967           LocMapI.insert(LII->end, LStop, OldLoc);
968           --LocMapI;
969         }
970       }
971 
972       // Advance to the next overlap.
973       if (LII->end < LocMapI.stop()) {
974         if (++LII == LIE)
975           break;
976         LocMapI.advanceTo(LII->start);
977       } else {
978         ++LocMapI;
979         if (!LocMapI.valid())
980           break;
981         LII = LI->advanceTo(LII, LocMapI.start());
982       }
983     }
984   }
985 
986   // Finally, remove any remaining OldLocNo intervals and OldLocNo itself.
987   locations.erase(locations.begin() + OldLocNo);
988   LocMapI.goToBegin();
989   while (LocMapI.valid()) {
990     DbgValueLocation v = LocMapI.value();
991     if (v.locNo() == OldLocNo) {
992       LLVM_DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';'
993                         << LocMapI.stop() << ")\n");
994       LocMapI.erase();
995     } else {
996       // Undef values always have location number UndefLocNo, so don't change
997       // locNo in that case. See getLocationNo().
998       if (!v.isUndef() && v.locNo() > OldLocNo)
999         LocMapI.setValueUnchecked(v.changeLocNo(v.locNo() - 1));
1000       ++LocMapI;
1001     }
1002   }
1003 
1004   LLVM_DEBUG({
1005     dbgs() << "Split result: \t";
1006     print(dbgs(), nullptr);
1007   });
1008   return DidChange;
1009 }
1010 
1011 bool
1012 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
1013                          LiveIntervals &LIS) {
1014   bool DidChange = false;
1015   // Split locations referring to OldReg. Iterate backwards so splitLocation can
1016   // safely erase unused locations.
1017   for (unsigned i = locations.size(); i ; --i) {
1018     unsigned LocNo = i-1;
1019     const MachineOperand *Loc = &locations[LocNo];
1020     if (!Loc->isReg() || Loc->getReg() != OldReg)
1021       continue;
1022     DidChange |= splitLocation(LocNo, NewRegs, LIS);
1023   }
1024   return DidChange;
1025 }
1026 
1027 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) {
1028   bool DidChange = false;
1029   for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext())
1030     DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS);
1031 
1032   if (!DidChange)
1033     return;
1034 
1035   // Map all of the new virtual registers.
1036   UserValue *UV = lookupVirtReg(OldReg);
1037   for (unsigned i = 0; i != NewRegs.size(); ++i)
1038     mapVirtReg(NewRegs[i], UV);
1039 }
1040 
1041 void LiveDebugVariables::
1042 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) {
1043   if (pImpl)
1044     static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs);
1045 }
1046 
1047 void UserValue::rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI,
1048                                  BitVector &SpilledLocations) {
1049   // Build a set of new locations with new numbers so we can coalesce our
1050   // IntervalMap if two vreg intervals collapse to the same physical location.
1051   // Use MapVector instead of SetVector because MapVector::insert returns the
1052   // position of the previously or newly inserted element. The boolean value
1053   // tracks if the location was produced by a spill.
1054   // FIXME: This will be problematic if we ever support direct and indirect
1055   // frame index locations, i.e. expressing both variables in memory and
1056   // 'int x, *px = &x'. The "spilled" bit must become part of the location.
1057   MapVector<MachineOperand, bool> NewLocations;
1058   SmallVector<unsigned, 4> LocNoMap(locations.size());
1059   for (unsigned I = 0, E = locations.size(); I != E; ++I) {
1060     bool Spilled = false;
1061     MachineOperand Loc = locations[I];
1062     // Only virtual registers are rewritten.
1063     if (Loc.isReg() && Loc.getReg() &&
1064         TargetRegisterInfo::isVirtualRegister(Loc.getReg())) {
1065       unsigned VirtReg = Loc.getReg();
1066       if (VRM.isAssignedReg(VirtReg) &&
1067           TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) {
1068         // This can create a %noreg operand in rare cases when the sub-register
1069         // index is no longer available. That means the user value is in a
1070         // non-existent sub-register, and %noreg is exactly what we want.
1071         Loc.substPhysReg(VRM.getPhys(VirtReg), TRI);
1072       } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) {
1073         // FIXME: Translate SubIdx to a stackslot offset.
1074         Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg));
1075         Spilled = true;
1076       } else {
1077         Loc.setReg(0);
1078         Loc.setSubReg(0);
1079       }
1080     }
1081 
1082     // Insert this location if it doesn't already exist and record a mapping
1083     // from the old number to the new number.
1084     auto InsertResult = NewLocations.insert({Loc, Spilled});
1085     unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first);
1086     LocNoMap[I] = NewLocNo;
1087   }
1088 
1089   // Rewrite the locations and record which ones were spill slots.
1090   locations.clear();
1091   SpilledLocations.clear();
1092   SpilledLocations.resize(NewLocations.size());
1093   for (auto &Pair : NewLocations) {
1094     locations.push_back(Pair.first);
1095     if (Pair.second) {
1096       unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair);
1097       SpilledLocations.set(NewLocNo);
1098     }
1099   }
1100 
1101   // Update the interval map, but only coalesce left, since intervals to the
1102   // right use the old location numbers. This should merge two contiguous
1103   // DBG_VALUE intervals with different vregs that were allocated to the same
1104   // physical register.
1105   for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
1106     DbgValueLocation Loc = I.value();
1107     // Undef values don't exist in locations (and thus not in LocNoMap either)
1108     // so skip over them. See getLocationNo().
1109     if (Loc.isUndef())
1110       continue;
1111     unsigned NewLocNo = LocNoMap[Loc.locNo()];
1112     I.setValueUnchecked(Loc.changeLocNo(NewLocNo));
1113     I.setStart(I.start());
1114   }
1115 }
1116 
1117 /// Find an iterator for inserting a DBG_VALUE instruction.
1118 static MachineBasicBlock::iterator
1119 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx,
1120                    LiveIntervals &LIS) {
1121   SlotIndex Start = LIS.getMBBStartIdx(MBB);
1122   Idx = Idx.getBaseIndex();
1123 
1124   // Try to find an insert location by going backwards from Idx.
1125   MachineInstr *MI;
1126   while (!(MI = LIS.getInstructionFromIndex(Idx))) {
1127     // We've reached the beginning of MBB.
1128     if (Idx == Start) {
1129       MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
1130       return I;
1131     }
1132     Idx = Idx.getPrevIndex();
1133   }
1134 
1135   // Don't insert anything after the first terminator, though.
1136   return MI->isTerminator() ? MBB->getFirstTerminator() :
1137                               std::next(MachineBasicBlock::iterator(MI));
1138 }
1139 
1140 /// Find an iterator for inserting the next DBG_VALUE instruction
1141 /// (or end if no more insert locations found).
1142 static MachineBasicBlock::iterator
1143 findNextInsertLocation(MachineBasicBlock *MBB,
1144                        MachineBasicBlock::iterator I,
1145                        SlotIndex StopIdx, MachineOperand &LocMO,
1146                        LiveIntervals &LIS,
1147                        const TargetRegisterInfo &TRI) {
1148   if (!LocMO.isReg())
1149     return MBB->instr_end();
1150   unsigned Reg = LocMO.getReg();
1151 
1152   // Find the next instruction in the MBB that define the register Reg.
1153   while (I != MBB->end() && !I->isTerminator()) {
1154     if (!LIS.isNotInMIMap(*I) &&
1155         SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I)))
1156       break;
1157     if (I->definesRegister(Reg, &TRI))
1158       // The insert location is directly after the instruction/bundle.
1159       return std::next(I);
1160     ++I;
1161   }
1162   return MBB->end();
1163 }
1164 
1165 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
1166                                  SlotIndex StopIdx,
1167                                  DbgValueLocation Loc, bool Spilled,
1168                                  LiveIntervals &LIS,
1169                                  const TargetInstrInfo &TII,
1170                                  const TargetRegisterInfo &TRI) {
1171   SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB);
1172   // Only search within the current MBB.
1173   StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx;
1174   MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS);
1175   // Undef values don't exist in locations so create new "noreg" register MOs
1176   // for them. See getLocationNo().
1177   MachineOperand MO = !Loc.isUndef() ?
1178     locations[Loc.locNo()] :
1179     MachineOperand::CreateReg(/* Reg */ 0, /* isDef */ false, /* isImp */ false,
1180                               /* isKill */ false, /* isDead */ false,
1181                               /* isUndef */ false, /* isEarlyClobber */ false,
1182                               /* SubReg */ 0, /* isDebug */ true);
1183 
1184   ++NumInsertedDebugValues;
1185 
1186   assert(cast<DILocalVariable>(Variable)
1187              ->isValidLocationForIntrinsic(getDebugLoc()) &&
1188          "Expected inlined-at fields to agree");
1189 
1190   // If the location was spilled, the new DBG_VALUE will be indirect. If the
1191   // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate
1192   // that the original virtual register was a pointer.
1193   const DIExpression *Expr = Expression;
1194   bool IsIndirect = Loc.wasIndirect();
1195   if (Spilled) {
1196     if (IsIndirect)
1197       Expr = DIExpression::prepend(Expr, DIExpression::WithDeref);
1198     IsIndirect = true;
1199   }
1200 
1201   assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index");
1202 
1203   do {
1204     BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE),
1205             IsIndirect, MO, Variable, Expr);
1206 
1207     // Continue and insert DBG_VALUES after every redefinition of register
1208     // associated with the debug value within the range
1209     I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI);
1210   } while (I != MBB->end());
1211 }
1212 
1213 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
1214                                 const TargetInstrInfo &TII,
1215                                 const TargetRegisterInfo &TRI,
1216                                 const BitVector &SpilledLocations) {
1217   MachineFunction::iterator MFEnd = VRM->getMachineFunction().end();
1218 
1219   for (LocMap::const_iterator I = locInts.begin(); I.valid();) {
1220     SlotIndex Start = I.start();
1221     SlotIndex Stop = I.stop();
1222     DbgValueLocation Loc = I.value();
1223     bool Spilled = !Loc.isUndef() ? SpilledLocations.test(Loc.locNo()) : false;
1224 
1225     // If the interval start was trimmed to the lexical scope insert the
1226     // DBG_VALUE at the previous index (otherwise it appears after the
1227     // first instruction in the range).
1228     if (trimmedDefs.count(Start))
1229       Start = Start.getPrevIndex();
1230 
1231     LLVM_DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << Loc.locNo());
1232     MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1233     SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB);
1234 
1235     LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1236     insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, LIS, TII, TRI);
1237     // This interval may span multiple basic blocks.
1238     // Insert a DBG_VALUE into each one.
1239     while (Stop > MBBEnd) {
1240       // Move to the next block.
1241       Start = MBBEnd;
1242       if (++MBB == MFEnd)
1243         break;
1244       MBBEnd = LIS.getMBBEndIdx(&*MBB);
1245       LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1246       insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, LIS, TII, TRI);
1247     }
1248     LLVM_DEBUG(dbgs() << '\n');
1249     if (MBB == MFEnd)
1250       break;
1251 
1252     ++I;
1253   }
1254 }
1255 
1256 void LDVImpl::emitDebugValues(VirtRegMap *VRM) {
1257   LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
1258   if (!MF)
1259     return;
1260   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1261   BitVector SpilledLocations;
1262   for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
1263     LLVM_DEBUG(userValues[i]->print(dbgs(), TRI));
1264     userValues[i]->rewriteLocations(*VRM, *TRI, SpilledLocations);
1265     userValues[i]->emitDebugValues(VRM, *LIS, *TII, *TRI, SpilledLocations);
1266   }
1267   EmitDone = true;
1268 }
1269 
1270 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) {
1271   if (pImpl)
1272     static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM);
1273 }
1274 
1275 bool LiveDebugVariables::doInitialization(Module &M) {
1276   return Pass::doInitialization(M);
1277 }
1278 
1279 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1280 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const {
1281   if (pImpl)
1282     static_cast<LDVImpl*>(pImpl)->print(dbgs());
1283 }
1284 #endif
1285