xref: /llvm-project/llvm/lib/CodeGen/LiveDebugVariables.cpp (revision 715a5efaadec7c354f3d004232ecc4d4062929ae)
1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveDebugVariables analysis.
11 //
12 // Remove all DBG_VALUE instructions referencing virtual registers and replace
13 // them with a data structure tracking where live user variables are kept - in a
14 // virtual register or in a stack slot.
15 //
16 // Allow the data structure to be updated during register allocation when values
17 // are moved between registers and stack slots. Finally emit new DBG_VALUE
18 // instructions after register allocation is complete.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "LiveDebugVariables.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/IntervalMap.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/CodeGen/LexicalScopes.h"
32 #include "llvm/CodeGen/LiveInterval.h"
33 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineDominators.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/SlotIndexes.h"
42 #include "llvm/CodeGen/VirtRegMap.h"
43 #include "llvm/IR/DebugInfoMetadata.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/Metadata.h"
47 #include "llvm/MC/MCRegisterInfo.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetInstrInfo.h"
55 #include "llvm/Target/TargetOpcodes.h"
56 #include "llvm/Target/TargetRegisterInfo.h"
57 #include "llvm/Target/TargetSubtargetInfo.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <iterator>
61 #include <memory>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "livedebugvars"
67 
68 static cl::opt<bool>
69 EnableLDV("live-debug-variables", cl::init(true),
70           cl::desc("Enable the live debug variables pass"), cl::Hidden);
71 
72 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted");
73 
74 char LiveDebugVariables::ID = 0;
75 
76 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE,
77                 "Debug Variable Analysis", false, false)
78 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
79 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
80 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE,
81                 "Debug Variable Analysis", false, false)
82 
83 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const {
84   AU.addRequired<MachineDominatorTree>();
85   AU.addRequiredTransitive<LiveIntervals>();
86   AU.setPreservesAll();
87   MachineFunctionPass::getAnalysisUsage(AU);
88 }
89 
90 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) {
91   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
92 }
93 
94 /// LocMap - Map of where a user value is live, and its location.
95 using LocMap = IntervalMap<SlotIndex, unsigned, 4>;
96 
97 namespace {
98 
99 class LDVImpl;
100 
101 /// UserValue - A user value is a part of a debug info user variable.
102 ///
103 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
104 /// holds part of a user variable. The part is identified by a byte offset.
105 ///
106 /// UserValues are grouped into equivalence classes for easier searching. Two
107 /// user values are related if they refer to the same variable, or if they are
108 /// held by the same virtual register. The equivalence class is the transitive
109 /// closure of that relation.
110 class UserValue {
111   const DILocalVariable *Variable; ///< The debug info variable we are part of.
112   const DIExpression *Expression; ///< Any complex address expression.
113   bool IsIndirect;        ///< true if this is a register-indirect+offset value.
114   DebugLoc dl;            ///< The debug location for the variable. This is
115                           ///< used by dwarf writer to find lexical scope.
116   UserValue *leader;      ///< Equivalence class leader.
117   UserValue *next = nullptr; ///< Next value in equivalence class, or null.
118 
119   /// Numbered locations referenced by locmap.
120   SmallVector<MachineOperand, 4> locations;
121 
122   /// Map of slot indices where this value is live.
123   LocMap locInts;
124 
125   /// Set of interval start indexes that have been trimmed to the
126   /// lexical scope.
127   SmallSet<SlotIndex, 2> trimmedDefs;
128 
129   /// insertDebugValue - Insert a DBG_VALUE into MBB at Idx for LocNo.
130   void insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx,
131                         unsigned LocNo, bool Spilled, LiveIntervals &LIS,
132                         const TargetInstrInfo &TII);
133 
134   /// splitLocation - Replace OldLocNo ranges with NewRegs ranges where NewRegs
135   /// is live. Returns true if any changes were made.
136   bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
137                      LiveIntervals &LIS);
138 
139 public:
140   /// UserValue - Create a new UserValue.
141   UserValue(const DILocalVariable *var, const DIExpression *expr, bool i,
142             DebugLoc L, LocMap::Allocator &alloc)
143       : Variable(var), Expression(expr), IsIndirect(i), dl(std::move(L)),
144         leader(this), locInts(alloc) {}
145 
146   /// getLeader - Get the leader of this value's equivalence class.
147   UserValue *getLeader() {
148     UserValue *l = leader;
149     while (l != l->leader)
150       l = l->leader;
151     return leader = l;
152   }
153 
154   /// getNext - Return the next UserValue in the equivalence class.
155   UserValue *getNext() const { return next; }
156 
157   /// match - Does this UserValue match the parameters?
158   bool match(const DILocalVariable *Var, const DIExpression *Expr,
159              const DILocation *IA, bool indirect) const {
160     return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA &&
161            indirect == IsIndirect;
162   }
163 
164   enum : unsigned { UndefLocNo = ~0U };
165 
166   /// merge - Merge equivalence classes.
167   static UserValue *merge(UserValue *L1, UserValue *L2) {
168     L2 = L2->getLeader();
169     if (!L1)
170       return L2;
171     L1 = L1->getLeader();
172     if (L1 == L2)
173       return L1;
174     // Splice L2 before L1's members.
175     UserValue *End = L2;
176     while (End->next) {
177       End->leader = L1;
178       End = End->next;
179     }
180     End->leader = L1;
181     End->next = L1->next;
182     L1->next = L2;
183     return L1;
184   }
185 
186   /// getLocationNo - Return the location number that matches Loc.
187   unsigned getLocationNo(const MachineOperand &LocMO) {
188     if (LocMO.isReg()) {
189       if (LocMO.getReg() == 0)
190         return UndefLocNo;
191       // For register locations we dont care about use/def and other flags.
192       for (unsigned i = 0, e = locations.size(); i != e; ++i)
193         if (locations[i].isReg() &&
194             locations[i].getReg() == LocMO.getReg() &&
195             locations[i].getSubReg() == LocMO.getSubReg())
196           return i;
197     } else
198       for (unsigned i = 0, e = locations.size(); i != e; ++i)
199         if (LocMO.isIdenticalTo(locations[i]))
200           return i;
201     locations.push_back(LocMO);
202     // We are storing a MachineOperand outside a MachineInstr.
203     locations.back().clearParent();
204     // Don't store def operands.
205     if (locations.back().isReg())
206       locations.back().setIsUse();
207     return locations.size() - 1;
208   }
209 
210   /// mapVirtRegs - Ensure that all virtual register locations are mapped.
211   void mapVirtRegs(LDVImpl *LDV);
212 
213   /// addDef - Add a definition point to this value.
214   void addDef(SlotIndex Idx, const MachineOperand &LocMO) {
215     // Add a singular (Idx,Idx) -> Loc mapping.
216     LocMap::iterator I = locInts.find(Idx);
217     if (!I.valid() || I.start() != Idx)
218       I.insert(Idx, Idx.getNextSlot(), getLocationNo(LocMO));
219     else
220       // A later DBG_VALUE at the same SlotIndex overrides the old location.
221       I.setValue(getLocationNo(LocMO));
222   }
223 
224   /// extendDef - Extend the current definition as far as possible down.
225   /// Stop when meeting an existing def or when leaving the live
226   /// range of VNI.
227   /// End points where VNI is no longer live are added to Kills.
228   /// @param Idx   Starting point for the definition.
229   /// @param LocNo Location number to propagate.
230   /// @param LR    Restrict liveness to where LR has the value VNI. May be null.
231   /// @param VNI   When LR is not null, this is the value to restrict to.
232   /// @param Kills Append end points of VNI's live range to Kills.
233   /// @param LIS   Live intervals analysis.
234   void extendDef(SlotIndex Idx, unsigned LocNo,
235                  LiveRange *LR, const VNInfo *VNI,
236                  SmallVectorImpl<SlotIndex> *Kills,
237                  LiveIntervals &LIS);
238 
239   /// addDefsFromCopies - The value in LI/LocNo may be copies to other
240   /// registers. Determine if any of the copies are available at the kill
241   /// points, and add defs if possible.
242   /// @param LI      Scan for copies of the value in LI->reg.
243   /// @param LocNo   Location number of LI->reg.
244   /// @param Kills   Points where the range of LocNo could be extended.
245   /// @param NewDefs Append (Idx, LocNo) of inserted defs here.
246   void addDefsFromCopies(LiveInterval *LI, unsigned LocNo,
247                        const SmallVectorImpl<SlotIndex> &Kills,
248                        SmallVectorImpl<std::pair<SlotIndex, unsigned>> &NewDefs,
249                        MachineRegisterInfo &MRI,
250                        LiveIntervals &LIS);
251 
252   /// computeIntervals - Compute the live intervals of all locations after
253   /// collecting all their def points.
254   void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
255                         LiveIntervals &LIS, LexicalScopes &LS);
256 
257   /// splitRegister - Replace OldReg ranges with NewRegs ranges where NewRegs is
258   /// live. Returns true if any changes were made.
259   bool splitRegister(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
260                      LiveIntervals &LIS);
261 
262   /// rewriteLocations - Rewrite virtual register locations according to the
263   /// provided virtual register map. Record which locations were spilled.
264   void rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI,
265                         BitVector &SpilledLocations);
266 
267   /// emitDebugValues - Recreate DBG_VALUE instruction from data structures.
268   void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
269                        const TargetInstrInfo &TRI,
270                        const BitVector &SpilledLocations);
271 
272   /// getDebugLoc - Return DebugLoc of this UserValue.
273   DebugLoc getDebugLoc() { return dl;}
274 
275   void print(raw_ostream &, const TargetRegisterInfo *);
276 };
277 
278 /// LDVImpl - Implementation of the LiveDebugVariables pass.
279 class LDVImpl {
280   LiveDebugVariables &pass;
281   LocMap::Allocator allocator;
282   MachineFunction *MF = nullptr;
283   LiveIntervals *LIS;
284   const TargetRegisterInfo *TRI;
285 
286   /// Whether emitDebugValues is called.
287   bool EmitDone = false;
288 
289   /// Whether the machine function is modified during the pass.
290   bool ModifiedMF = false;
291 
292   /// userValues - All allocated UserValue instances.
293   SmallVector<std::unique_ptr<UserValue>, 8> userValues;
294 
295   /// Map virtual register to eq class leader.
296   using VRMap = DenseMap<unsigned, UserValue *>;
297   VRMap virtRegToEqClass;
298 
299   /// Map user variable to eq class leader.
300   using UVMap = DenseMap<const DILocalVariable *, UserValue *>;
301   UVMap userVarMap;
302 
303   /// getUserValue - Find or create a UserValue.
304   UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr,
305                           bool IsIndirect, const DebugLoc &DL);
306 
307   /// lookupVirtReg - Find the EC leader for VirtReg or null.
308   UserValue *lookupVirtReg(unsigned VirtReg);
309 
310   /// handleDebugValue - Add DBG_VALUE instruction to our maps.
311   /// @param MI  DBG_VALUE instruction
312   /// @param Idx Last valid SLotIndex before instruction.
313   /// @return    True if the DBG_VALUE instruction should be deleted.
314   bool handleDebugValue(MachineInstr &MI, SlotIndex Idx);
315 
316   /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding
317   /// a UserValue def for each instruction.
318   /// @param mf MachineFunction to be scanned.
319   /// @return True if any debug values were found.
320   bool collectDebugValues(MachineFunction &mf);
321 
322   /// computeIntervals - Compute the live intervals of all user values after
323   /// collecting all their def points.
324   void computeIntervals();
325 
326 public:
327   LDVImpl(LiveDebugVariables *ps) : pass(*ps) {}
328 
329   bool runOnMachineFunction(MachineFunction &mf);
330 
331   /// clear - Release all memory.
332   void clear() {
333     MF = nullptr;
334     userValues.clear();
335     virtRegToEqClass.clear();
336     userVarMap.clear();
337     // Make sure we call emitDebugValues if the machine function was modified.
338     assert((!ModifiedMF || EmitDone) &&
339            "Dbg values are not emitted in LDV");
340     EmitDone = false;
341     ModifiedMF = false;
342   }
343 
344   /// mapVirtReg - Map virtual register to an equivalence class.
345   void mapVirtReg(unsigned VirtReg, UserValue *EC);
346 
347   /// splitRegister -  Replace all references to OldReg with NewRegs.
348   void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs);
349 
350   /// emitDebugValues - Recreate DBG_VALUE instruction from data structures.
351   void emitDebugValues(VirtRegMap *VRM);
352 
353   void print(raw_ostream&);
354 };
355 
356 } // end anonymous namespace
357 
358 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
359 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS,
360                           const LLVMContext &Ctx) {
361   if (!DL)
362     return;
363 
364   auto *Scope = cast<DIScope>(DL.getScope());
365   // Omit the directory, because it's likely to be long and uninteresting.
366   CommentOS << Scope->getFilename();
367   CommentOS << ':' << DL.getLine();
368   if (DL.getCol() != 0)
369     CommentOS << ':' << DL.getCol();
370 
371   DebugLoc InlinedAtDL = DL.getInlinedAt();
372   if (!InlinedAtDL)
373     return;
374 
375   CommentOS << " @[ ";
376   printDebugLoc(InlinedAtDL, CommentOS, Ctx);
377   CommentOS << " ]";
378 }
379 
380 static void printExtendedName(raw_ostream &OS, const DILocalVariable *V,
381                               const DILocation *DL) {
382   const LLVMContext &Ctx = V->getContext();
383   StringRef Res = V->getName();
384   if (!Res.empty())
385     OS << Res << "," << V->getLine();
386   if (auto *InlinedAt = DL->getInlinedAt()) {
387     if (DebugLoc InlinedAtDL = InlinedAt) {
388       OS << " @[";
389       printDebugLoc(InlinedAtDL, OS, Ctx);
390       OS << "]";
391     }
392   }
393 }
394 
395 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
396   auto *DV = cast<DILocalVariable>(Variable);
397   OS << "!\"";
398   printExtendedName(OS, DV, dl);
399 
400   OS << "\"\t";
401   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
402     OS << " [" << I.start() << ';' << I.stop() << "):";
403     if (I.value() == UndefLocNo)
404       OS << "undef";
405     else
406       OS << I.value();
407   }
408   for (unsigned i = 0, e = locations.size(); i != e; ++i) {
409     OS << " Loc" << i << '=';
410     locations[i].print(OS, TRI);
411   }
412   OS << '\n';
413 }
414 
415 void LDVImpl::print(raw_ostream &OS) {
416   OS << "********** DEBUG VARIABLES **********\n";
417   for (unsigned i = 0, e = userValues.size(); i != e; ++i)
418     userValues[i]->print(OS, TRI);
419 }
420 #endif
421 
422 void UserValue::mapVirtRegs(LDVImpl *LDV) {
423   for (unsigned i = 0, e = locations.size(); i != e; ++i)
424     if (locations[i].isReg() &&
425         TargetRegisterInfo::isVirtualRegister(locations[i].getReg()))
426       LDV->mapVirtReg(locations[i].getReg(), this);
427 }
428 
429 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var,
430                                  const DIExpression *Expr, bool IsIndirect,
431                                  const DebugLoc &DL) {
432   UserValue *&Leader = userVarMap[Var];
433   if (Leader) {
434     UserValue *UV = Leader->getLeader();
435     Leader = UV;
436     for (; UV; UV = UV->getNext())
437       if (UV->match(Var, Expr, DL->getInlinedAt(), IsIndirect))
438         return UV;
439   }
440 
441   userValues.push_back(
442       llvm::make_unique<UserValue>(Var, Expr, IsIndirect, DL, allocator));
443   UserValue *UV = userValues.back().get();
444   Leader = UserValue::merge(Leader, UV);
445   return UV;
446 }
447 
448 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) {
449   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs");
450   UserValue *&Leader = virtRegToEqClass[VirtReg];
451   Leader = UserValue::merge(Leader, EC);
452 }
453 
454 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) {
455   if (UserValue *UV = virtRegToEqClass.lookup(VirtReg))
456     return UV->getLeader();
457   return nullptr;
458 }
459 
460 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) {
461   // DBG_VALUE loc, offset, variable
462   if (MI.getNumOperands() != 4 ||
463       !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) ||
464       !MI.getOperand(2).isMetadata()) {
465     DEBUG(dbgs() << "Can't handle " << MI);
466     return false;
467   }
468 
469   // Get or create the UserValue for (variable,offset).
470   bool IsIndirect = MI.getOperand(1).isImm();
471   if (IsIndirect)
472     assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
473   const DILocalVariable *Var = MI.getDebugVariable();
474   const DIExpression *Expr = MI.getDebugExpression();
475   //here.
476   UserValue *UV = getUserValue(Var, Expr, IsIndirect, MI.getDebugLoc());
477   UV->addDef(Idx, MI.getOperand(0));
478   return true;
479 }
480 
481 bool LDVImpl::collectDebugValues(MachineFunction &mf) {
482   bool Changed = false;
483   for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE;
484        ++MFI) {
485     MachineBasicBlock *MBB = &*MFI;
486     for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end();
487          MBBI != MBBE;) {
488       if (!MBBI->isDebugValue()) {
489         ++MBBI;
490         continue;
491       }
492       // DBG_VALUE has no slot index, use the previous instruction instead.
493       SlotIndex Idx =
494           MBBI == MBB->begin()
495               ? LIS->getMBBStartIdx(MBB)
496               : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot();
497       // Handle consecutive DBG_VALUE instructions with the same slot index.
498       do {
499         if (handleDebugValue(*MBBI, Idx)) {
500           MBBI = MBB->erase(MBBI);
501           Changed = true;
502         } else
503           ++MBBI;
504       } while (MBBI != MBBE && MBBI->isDebugValue());
505     }
506   }
507   return Changed;
508 }
509 
510 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a
511 /// data-flow analysis to propagate them beyond basic block boundaries.
512 void UserValue::extendDef(SlotIndex Idx, unsigned LocNo, LiveRange *LR,
513                           const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills,
514                           LiveIntervals &LIS) {
515   SlotIndex Start = Idx;
516   MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
517   SlotIndex Stop = LIS.getMBBEndIdx(MBB);
518   LocMap::iterator I = locInts.find(Start);
519 
520   // Limit to VNI's live range.
521   bool ToEnd = true;
522   if (LR && VNI) {
523     LiveInterval::Segment *Segment = LR->getSegmentContaining(Start);
524     if (!Segment || Segment->valno != VNI) {
525       if (Kills)
526         Kills->push_back(Start);
527       return;
528     }
529     if (Segment->end < Stop) {
530       Stop = Segment->end;
531       ToEnd = false;
532     }
533   }
534 
535   // There could already be a short def at Start.
536   if (I.valid() && I.start() <= Start) {
537     // Stop when meeting a different location or an already extended interval.
538     Start = Start.getNextSlot();
539     if (I.value() != LocNo || I.stop() != Start)
540       return;
541     // This is a one-slot placeholder. Just skip it.
542     ++I;
543   }
544 
545   // Limited by the next def.
546   if (I.valid() && I.start() < Stop) {
547     Stop = I.start();
548     ToEnd = false;
549   }
550   // Limited by VNI's live range.
551   else if (!ToEnd && Kills)
552     Kills->push_back(Stop);
553 
554   if (Start < Stop)
555     I.insert(Start, Stop, LocNo);
556 }
557 
558 void
559 UserValue::addDefsFromCopies(LiveInterval *LI, unsigned LocNo,
560                        const SmallVectorImpl<SlotIndex> &Kills,
561                        SmallVectorImpl<std::pair<SlotIndex, unsigned>> &NewDefs,
562                        MachineRegisterInfo &MRI, LiveIntervals &LIS) {
563   if (Kills.empty())
564     return;
565   // Don't track copies from physregs, there are too many uses.
566   if (!TargetRegisterInfo::isVirtualRegister(LI->reg))
567     return;
568 
569   // Collect all the (vreg, valno) pairs that are copies of LI.
570   SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues;
571   for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) {
572     MachineInstr *MI = MO.getParent();
573     // Copies of the full value.
574     if (MO.getSubReg() || !MI->isCopy())
575       continue;
576     unsigned DstReg = MI->getOperand(0).getReg();
577 
578     // Don't follow copies to physregs. These are usually setting up call
579     // arguments, and the argument registers are always call clobbered. We are
580     // better off in the source register which could be a callee-saved register,
581     // or it could be spilled.
582     if (!TargetRegisterInfo::isVirtualRegister(DstReg))
583       continue;
584 
585     // Is LocNo extended to reach this copy? If not, another def may be blocking
586     // it, or we are looking at a wrong value of LI.
587     SlotIndex Idx = LIS.getInstructionIndex(*MI);
588     LocMap::iterator I = locInts.find(Idx.getRegSlot(true));
589     if (!I.valid() || I.value() != LocNo)
590       continue;
591 
592     if (!LIS.hasInterval(DstReg))
593       continue;
594     LiveInterval *DstLI = &LIS.getInterval(DstReg);
595     const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot());
596     assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value");
597     CopyValues.push_back(std::make_pair(DstLI, DstVNI));
598   }
599 
600   if (CopyValues.empty())
601     return;
602 
603   DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI << '\n');
604 
605   // Try to add defs of the copied values for each kill point.
606   for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
607     SlotIndex Idx = Kills[i];
608     for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) {
609       LiveInterval *DstLI = CopyValues[j].first;
610       const VNInfo *DstVNI = CopyValues[j].second;
611       if (DstLI->getVNInfoAt(Idx) != DstVNI)
612         continue;
613       // Check that there isn't already a def at Idx
614       LocMap::iterator I = locInts.find(Idx);
615       if (I.valid() && I.start() <= Idx)
616         continue;
617       DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #"
618                    << DstVNI->id << " in " << *DstLI << '\n');
619       MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def);
620       assert(CopyMI && CopyMI->isCopy() && "Bad copy value");
621       unsigned LocNo = getLocationNo(CopyMI->getOperand(0));
622       I.insert(Idx, Idx.getNextSlot(), LocNo);
623       NewDefs.push_back(std::make_pair(Idx, LocNo));
624       break;
625     }
626   }
627 }
628 
629 void UserValue::computeIntervals(MachineRegisterInfo &MRI,
630                                  const TargetRegisterInfo &TRI,
631                                  LiveIntervals &LIS, LexicalScopes &LS) {
632   SmallVector<std::pair<SlotIndex, unsigned>, 16> Defs;
633 
634   // Collect all defs to be extended (Skipping undefs).
635   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I)
636     if (I.value() != UndefLocNo)
637       Defs.push_back(std::make_pair(I.start(), I.value()));
638 
639   // Extend all defs, and possibly add new ones along the way.
640   for (unsigned i = 0; i != Defs.size(); ++i) {
641     SlotIndex Idx = Defs[i].first;
642     unsigned LocNo = Defs[i].second;
643     const MachineOperand &Loc = locations[LocNo];
644 
645     if (!Loc.isReg()) {
646       extendDef(Idx, LocNo, nullptr, nullptr, nullptr, LIS);
647       continue;
648     }
649 
650     // Register locations are constrained to where the register value is live.
651     if (TargetRegisterInfo::isVirtualRegister(Loc.getReg())) {
652       LiveInterval *LI = nullptr;
653       const VNInfo *VNI = nullptr;
654       if (LIS.hasInterval(Loc.getReg())) {
655         LI = &LIS.getInterval(Loc.getReg());
656         VNI = LI->getVNInfoAt(Idx);
657       }
658       SmallVector<SlotIndex, 16> Kills;
659       extendDef(Idx, LocNo, LI, VNI, &Kills, LIS);
660       if (LI)
661         addDefsFromCopies(LI, LocNo, Kills, Defs, MRI, LIS);
662       continue;
663     }
664 
665     // For physregs, we only mark the start slot idx. DwarfDebug will see it
666     // as if the DBG_VALUE is valid up until the end of the basic block, or
667     // the next def of the physical register. So we do not need to extend the
668     // range. It might actually happen that the DBG_VALUE is the last use of
669     // the physical register (e.g. if this is an unused input argument to a
670     // function).
671   }
672 
673   // Erase all the undefs.
674   for (LocMap::iterator I = locInts.begin(); I.valid();)
675     if (I.value() == UndefLocNo)
676       I.erase();
677     else
678       ++I;
679 
680   // The computed intervals may extend beyond the range of the debug
681   // location's lexical scope. In this case, splitting of an interval
682   // can result in an interval outside of the scope being created,
683   // causing extra unnecessary DBG_VALUEs to be emitted. To prevent
684   // this, trim the intervals to the lexical scope.
685 
686   LexicalScope *Scope = LS.findLexicalScope(dl);
687   if (!Scope)
688     return;
689 
690   SlotIndex PrevEnd;
691   LocMap::iterator I = locInts.begin();
692 
693   // Iterate over the lexical scope ranges. Each time round the loop
694   // we check the intervals for overlap with the end of the previous
695   // range and the start of the next. The first range is handled as
696   // a special case where there is no PrevEnd.
697   for (const InsnRange &Range : Scope->getRanges()) {
698     SlotIndex RStart = LIS.getInstructionIndex(*Range.first);
699     SlotIndex REnd = LIS.getInstructionIndex(*Range.second);
700 
701     // At the start of each iteration I has been advanced so that
702     // I.stop() >= PrevEnd. Check for overlap.
703     if (PrevEnd && I.start() < PrevEnd) {
704       SlotIndex IStop = I.stop();
705       unsigned LocNo = I.value();
706 
707       // Stop overlaps previous end - trim the end of the interval to
708       // the scope range.
709       I.setStopUnchecked(PrevEnd);
710       ++I;
711 
712       // If the interval also overlaps the start of the "next" (i.e.
713       // current) range create a new interval for the remainder (which
714       // may be further trimmed).
715       if (RStart < IStop)
716         I.insert(RStart, IStop, LocNo);
717     }
718 
719     // Advance I so that I.stop() >= RStart, and check for overlap.
720     I.advanceTo(RStart);
721     if (!I.valid())
722       return;
723 
724     if (I.start() < RStart) {
725       // Interval start overlaps range - trim to the scope range.
726       I.setStartUnchecked(RStart);
727       // Remember that this interval was trimmed.
728       trimmedDefs.insert(RStart);
729     }
730 
731     // The end of a lexical scope range is the last instruction in the
732     // range. To convert to an interval we need the index of the
733     // instruction after it.
734     REnd = REnd.getNextIndex();
735 
736     // Advance I to first interval outside current range.
737     I.advanceTo(REnd);
738     if (!I.valid())
739       return;
740 
741     PrevEnd = REnd;
742   }
743 
744   // Check for overlap with end of final range.
745   if (PrevEnd && I.start() < PrevEnd)
746     I.setStopUnchecked(PrevEnd);
747 }
748 
749 void LDVImpl::computeIntervals() {
750   LexicalScopes LS;
751   LS.initialize(*MF);
752 
753   for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
754     userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS);
755     userValues[i]->mapVirtRegs(this);
756   }
757 }
758 
759 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) {
760   clear();
761   MF = &mf;
762   LIS = &pass.getAnalysis<LiveIntervals>();
763   TRI = mf.getSubtarget().getRegisterInfo();
764   DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
765                << mf.getName() << " **********\n");
766 
767   bool Changed = collectDebugValues(mf);
768   computeIntervals();
769   DEBUG(print(dbgs()));
770   ModifiedMF = Changed;
771   return Changed;
772 }
773 
774 static void removeDebugValues(MachineFunction &mf) {
775   for (MachineBasicBlock &MBB : mf) {
776     for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) {
777       if (!MBBI->isDebugValue()) {
778         ++MBBI;
779         continue;
780       }
781       MBBI = MBB.erase(MBBI);
782     }
783   }
784 }
785 
786 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
787   if (!EnableLDV)
788     return false;
789   if (!mf.getFunction()->getSubprogram()) {
790     removeDebugValues(mf);
791     return false;
792   }
793   if (!pImpl)
794     pImpl = new LDVImpl(this);
795   return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf);
796 }
797 
798 void LiveDebugVariables::releaseMemory() {
799   if (pImpl)
800     static_cast<LDVImpl*>(pImpl)->clear();
801 }
802 
803 LiveDebugVariables::~LiveDebugVariables() {
804   if (pImpl)
805     delete static_cast<LDVImpl*>(pImpl);
806 }
807 
808 //===----------------------------------------------------------------------===//
809 //                           Live Range Splitting
810 //===----------------------------------------------------------------------===//
811 
812 bool
813 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
814                          LiveIntervals& LIS) {
815   DEBUG({
816     dbgs() << "Splitting Loc" << OldLocNo << '\t';
817     print(dbgs(), nullptr);
818   });
819   bool DidChange = false;
820   LocMap::iterator LocMapI;
821   LocMapI.setMap(locInts);
822   for (unsigned i = 0; i != NewRegs.size(); ++i) {
823     LiveInterval *LI = &LIS.getInterval(NewRegs[i]);
824     if (LI->empty())
825       continue;
826 
827     // Don't allocate the new LocNo until it is needed.
828     unsigned NewLocNo = UndefLocNo;
829 
830     // Iterate over the overlaps between locInts and LI.
831     LocMapI.find(LI->beginIndex());
832     if (!LocMapI.valid())
833       continue;
834     LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start());
835     LiveInterval::iterator LIE = LI->end();
836     while (LocMapI.valid() && LII != LIE) {
837       // At this point, we know that LocMapI.stop() > LII->start.
838       LII = LI->advanceTo(LII, LocMapI.start());
839       if (LII == LIE)
840         break;
841 
842       // Now LII->end > LocMapI.start(). Do we have an overlap?
843       if (LocMapI.value() == OldLocNo && LII->start < LocMapI.stop()) {
844         // Overlapping correct location. Allocate NewLocNo now.
845         if (NewLocNo == UndefLocNo) {
846           MachineOperand MO = MachineOperand::CreateReg(LI->reg, false);
847           MO.setSubReg(locations[OldLocNo].getSubReg());
848           NewLocNo = getLocationNo(MO);
849           DidChange = true;
850         }
851 
852         SlotIndex LStart = LocMapI.start();
853         SlotIndex LStop  = LocMapI.stop();
854 
855         // Trim LocMapI down to the LII overlap.
856         if (LStart < LII->start)
857           LocMapI.setStartUnchecked(LII->start);
858         if (LStop > LII->end)
859           LocMapI.setStopUnchecked(LII->end);
860 
861         // Change the value in the overlap. This may trigger coalescing.
862         LocMapI.setValue(NewLocNo);
863 
864         // Re-insert any removed OldLocNo ranges.
865         if (LStart < LocMapI.start()) {
866           LocMapI.insert(LStart, LocMapI.start(), OldLocNo);
867           ++LocMapI;
868           assert(LocMapI.valid() && "Unexpected coalescing");
869         }
870         if (LStop > LocMapI.stop()) {
871           ++LocMapI;
872           LocMapI.insert(LII->end, LStop, OldLocNo);
873           --LocMapI;
874         }
875       }
876 
877       // Advance to the next overlap.
878       if (LII->end < LocMapI.stop()) {
879         if (++LII == LIE)
880           break;
881         LocMapI.advanceTo(LII->start);
882       } else {
883         ++LocMapI;
884         if (!LocMapI.valid())
885           break;
886         LII = LI->advanceTo(LII, LocMapI.start());
887       }
888     }
889   }
890 
891   // Finally, remove any remaining OldLocNo intervals and OldLocNo itself.
892   locations.erase(locations.begin() + OldLocNo);
893   LocMapI.goToBegin();
894   while (LocMapI.valid()) {
895     unsigned v = LocMapI.value();
896     if (v == OldLocNo) {
897       DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';'
898                    << LocMapI.stop() << ")\n");
899       LocMapI.erase();
900     } else {
901       if (v > OldLocNo)
902         LocMapI.setValueUnchecked(v-1);
903       ++LocMapI;
904     }
905   }
906 
907   DEBUG({dbgs() << "Split result: \t"; print(dbgs(), nullptr);});
908   return DidChange;
909 }
910 
911 bool
912 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
913                          LiveIntervals &LIS) {
914   bool DidChange = false;
915   // Split locations referring to OldReg. Iterate backwards so splitLocation can
916   // safely erase unused locations.
917   for (unsigned i = locations.size(); i ; --i) {
918     unsigned LocNo = i-1;
919     const MachineOperand *Loc = &locations[LocNo];
920     if (!Loc->isReg() || Loc->getReg() != OldReg)
921       continue;
922     DidChange |= splitLocation(LocNo, NewRegs, LIS);
923   }
924   return DidChange;
925 }
926 
927 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) {
928   bool DidChange = false;
929   for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext())
930     DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS);
931 
932   if (!DidChange)
933     return;
934 
935   // Map all of the new virtual registers.
936   UserValue *UV = lookupVirtReg(OldReg);
937   for (unsigned i = 0; i != NewRegs.size(); ++i)
938     mapVirtReg(NewRegs[i], UV);
939 }
940 
941 void LiveDebugVariables::
942 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) {
943   if (pImpl)
944     static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs);
945 }
946 
947 void UserValue::rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI,
948                                  BitVector &SpilledLocations) {
949   // Build a set of new locations with new numbers so we can coalesce our
950   // IntervalMap if two vreg intervals collapse to the same physical location.
951   // Use MapVector instead of SetVector because MapVector::insert returns the
952   // position of the previously or newly inserted element. The boolean value
953   // tracks if the location was produced by a spill.
954   // FIXME: This will be problematic if we ever support direct and indirect
955   // frame index locations, i.e. expressing both variables in memory and
956   // 'int x, *px = &x'. The "spilled" bit must become part of the location.
957   MapVector<MachineOperand, bool> NewLocations;
958   SmallVector<unsigned, 4> LocNoMap(locations.size());
959   for (unsigned I = 0, E = locations.size(); I != E; ++I) {
960     bool Spilled = false;
961     MachineOperand Loc = locations[I];
962     // Only virtual registers are rewritten.
963     if (Loc.isReg() && Loc.getReg() &&
964         TargetRegisterInfo::isVirtualRegister(Loc.getReg())) {
965       unsigned VirtReg = Loc.getReg();
966       if (VRM.isAssignedReg(VirtReg) &&
967           TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) {
968         // This can create a %noreg operand in rare cases when the sub-register
969         // index is no longer available. That means the user value is in a
970         // non-existent sub-register, and %noreg is exactly what we want.
971         Loc.substPhysReg(VRM.getPhys(VirtReg), TRI);
972       } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) {
973         // FIXME: Translate SubIdx to a stackslot offset.
974         Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg));
975         Spilled = true;
976       } else {
977         Loc.setReg(0);
978         Loc.setSubReg(0);
979       }
980     }
981 
982     // Insert this location if it doesn't already exist and record a mapping
983     // from the old number to the new number.
984     auto InsertResult = NewLocations.insert({Loc, Spilled});
985     unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first);
986     LocNoMap[I] = NewLocNo;
987   }
988 
989   // Rewrite the locations and record which ones were spill slots.
990   locations.clear();
991   SpilledLocations.clear();
992   SpilledLocations.resize(NewLocations.size());
993   for (auto &Pair : NewLocations) {
994     locations.push_back(Pair.first);
995     if (Pair.second) {
996       unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair);
997       SpilledLocations.set(NewLocNo);
998     }
999   }
1000 
1001   // Update the interval map, but only coalesce left, since intervals to the
1002   // right use the old location numbers. This should merge two contiguous
1003   // DBG_VALUE intervals with different vregs that were allocated to the same
1004   // physical register.
1005   for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
1006     unsigned NewLocNo = LocNoMap[I.value()];
1007     I.setValueUnchecked(NewLocNo);
1008     I.setStart(I.start());
1009   }
1010 }
1011 
1012 /// findInsertLocation - Find an iterator for inserting a DBG_VALUE
1013 /// instruction.
1014 static MachineBasicBlock::iterator
1015 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx,
1016                    LiveIntervals &LIS) {
1017   SlotIndex Start = LIS.getMBBStartIdx(MBB);
1018   Idx = Idx.getBaseIndex();
1019 
1020   // Try to find an insert location by going backwards from Idx.
1021   MachineInstr *MI;
1022   while (!(MI = LIS.getInstructionFromIndex(Idx))) {
1023     // We've reached the beginning of MBB.
1024     if (Idx == Start) {
1025       MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
1026       return I;
1027     }
1028     Idx = Idx.getPrevIndex();
1029   }
1030 
1031   // Don't insert anything after the first terminator, though.
1032   return MI->isTerminator() ? MBB->getFirstTerminator() :
1033                               std::next(MachineBasicBlock::iterator(MI));
1034 }
1035 
1036 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx,
1037                                  unsigned LocNo, bool Spilled,
1038                                  LiveIntervals &LIS,
1039                                  const TargetInstrInfo &TII) {
1040   MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS);
1041   MachineOperand &Loc = locations[LocNo];
1042   ++NumInsertedDebugValues;
1043 
1044   assert(cast<DILocalVariable>(Variable)
1045              ->isValidLocationForIntrinsic(getDebugLoc()) &&
1046          "Expected inlined-at fields to agree");
1047 
1048   // If the location was spilled, the new DBG_VALUE will be indirect. If the
1049   // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate
1050   // that the original virtual register was a pointer.
1051   bool NewIndirect = IsIndirect || Spilled;
1052   const DIExpression *Expr = Expression;
1053   if (Spilled && IsIndirect)
1054     Expr = DIExpression::prepend(Expr, DIExpression::WithDeref);
1055 
1056   assert((!Spilled || Loc.isFI()) &&
1057          "a spilled location must be a frame index");
1058 
1059   MachineInstrBuilder MIB =
1060       BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE))
1061           .add(Loc);
1062   if (NewIndirect)
1063     MIB.addImm(0U);
1064   else
1065     MIB.addReg(0U, RegState::Debug);
1066   MIB.addMetadata(Variable).addMetadata(Expr);
1067 }
1068 
1069 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
1070                                 const TargetInstrInfo &TII,
1071                                 const BitVector &SpilledLocations) {
1072   MachineFunction::iterator MFEnd = VRM->getMachineFunction().end();
1073 
1074   for (LocMap::const_iterator I = locInts.begin(); I.valid();) {
1075     SlotIndex Start = I.start();
1076     SlotIndex Stop = I.stop();
1077     unsigned LocNo = I.value();
1078     bool Spilled = LocNo != UndefLocNo ? SpilledLocations.test(LocNo) : false;
1079 
1080     // If the interval start was trimmed to the lexical scope insert the
1081     // DBG_VALUE at the previous index (otherwise it appears after the
1082     // first instruction in the range).
1083     if (trimmedDefs.count(Start))
1084       Start = Start.getPrevIndex();
1085 
1086     DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << LocNo);
1087     MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1088     SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB);
1089 
1090     DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd);
1091     insertDebugValue(&*MBB, Start, LocNo, Spilled, LIS, TII);
1092     // This interval may span multiple basic blocks.
1093     // Insert a DBG_VALUE into each one.
1094     while(Stop > MBBEnd) {
1095       // Move to the next block.
1096       Start = MBBEnd;
1097       if (++MBB == MFEnd)
1098         break;
1099       MBBEnd = LIS.getMBBEndIdx(&*MBB);
1100       DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd);
1101       insertDebugValue(&*MBB, Start, LocNo, Spilled, LIS, TII);
1102     }
1103     DEBUG(dbgs() << '\n');
1104     if (MBB == MFEnd)
1105       break;
1106 
1107     ++I;
1108   }
1109 }
1110 
1111 void LDVImpl::emitDebugValues(VirtRegMap *VRM) {
1112   DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
1113   if (!MF)
1114     return;
1115   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1116   BitVector SpilledLocations;
1117   for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
1118     DEBUG(userValues[i]->print(dbgs(), TRI));
1119     userValues[i]->rewriteLocations(*VRM, *TRI, SpilledLocations);
1120     userValues[i]->emitDebugValues(VRM, *LIS, *TII, SpilledLocations);
1121   }
1122   EmitDone = true;
1123 }
1124 
1125 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) {
1126   if (pImpl)
1127     static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM);
1128 }
1129 
1130 bool LiveDebugVariables::doInitialization(Module &M) {
1131   return Pass::doInitialization(M);
1132 }
1133 
1134 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1135 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const {
1136   if (pImpl)
1137     static_cast<LDVImpl*>(pImpl)->print(dbgs());
1138 }
1139 #endif
1140