xref: /llvm-project/llvm/lib/CodeGen/LiveDebugVariables.cpp (revision 66609a825588f1df1e226709c1d171f79dcea179)
1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveDebugVariables analysis.
11 //
12 // Remove all DBG_VALUE instructions referencing virtual registers and replace
13 // them with a data structure tracking where live user variables are kept - in a
14 // virtual register or in a stack slot.
15 //
16 // Allow the data structure to be updated during register allocation when values
17 // are moved between registers and stack slots. Finally emit new DBG_VALUE
18 // instructions after register allocation is complete.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "LiveDebugVariables.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/IntervalMap.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/CodeGen/LexicalScopes.h"
32 #include "llvm/CodeGen/LiveInterval.h"
33 #include "llvm/CodeGen/LiveIntervals.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineDominators.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/SlotIndexes.h"
42 #include "llvm/CodeGen/TargetInstrInfo.h"
43 #include "llvm/CodeGen/TargetOpcodes.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/VirtRegMap.h"
47 #include "llvm/Config/llvm-config.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/MC/MCRegisterInfo.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <iterator>
62 #include <memory>
63 #include <utility>
64 
65 using namespace llvm;
66 
67 #define DEBUG_TYPE "livedebugvars"
68 
69 static cl::opt<bool>
70 EnableLDV("live-debug-variables", cl::init(true),
71           cl::desc("Enable the live debug variables pass"), cl::Hidden);
72 
73 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted");
74 STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted");
75 
76 char LiveDebugVariables::ID = 0;
77 
78 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE,
79                 "Debug Variable Analysis", false, false)
80 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
81 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
82 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE,
83                 "Debug Variable Analysis", false, false)
84 
85 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const {
86   AU.addRequired<MachineDominatorTree>();
87   AU.addRequiredTransitive<LiveIntervals>();
88   AU.setPreservesAll();
89   MachineFunctionPass::getAnalysisUsage(AU);
90 }
91 
92 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) {
93   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
94 }
95 
96 enum : unsigned { UndefLocNo = ~0U };
97 
98 /// Describes a location by number along with some flags about the original
99 /// usage of the location.
100 class DbgValueLocation {
101 public:
102   DbgValueLocation(unsigned LocNo, bool WasIndirect)
103       : LocNo(LocNo), WasIndirect(WasIndirect) {
104     static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing");
105     assert(locNo() == LocNo && "location truncation");
106   }
107 
108   DbgValueLocation() : LocNo(0), WasIndirect(0) {}
109 
110   unsigned locNo() const {
111     // Fix up the undef location number, which gets truncated.
112     return LocNo == INT_MAX ? UndefLocNo : LocNo;
113   }
114   bool wasIndirect() const { return WasIndirect; }
115   bool isUndef() const { return locNo() == UndefLocNo; }
116 
117   DbgValueLocation changeLocNo(unsigned NewLocNo) const {
118     return DbgValueLocation(NewLocNo, WasIndirect);
119   }
120 
121   friend inline bool operator==(const DbgValueLocation &LHS,
122                                 const DbgValueLocation &RHS) {
123     return LHS.LocNo == RHS.LocNo && LHS.WasIndirect == RHS.WasIndirect;
124   }
125 
126   friend inline bool operator!=(const DbgValueLocation &LHS,
127                                 const DbgValueLocation &RHS) {
128     return !(LHS == RHS);
129   }
130 
131 private:
132   unsigned LocNo : 31;
133   unsigned WasIndirect : 1;
134 };
135 
136 /// Map of where a user value is live, and its location.
137 using LocMap = IntervalMap<SlotIndex, DbgValueLocation, 4>;
138 
139 /// Map of stack slot offsets for spilled locations.
140 /// Non-spilled locations are not added to the map.
141 using SpillOffsetMap = DenseMap<unsigned, unsigned>;
142 
143 namespace {
144 
145 class LDVImpl;
146 
147 /// A user value is a part of a debug info user variable.
148 ///
149 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
150 /// holds part of a user variable. The part is identified by a byte offset.
151 ///
152 /// UserValues are grouped into equivalence classes for easier searching. Two
153 /// user values are related if they refer to the same variable, or if they are
154 /// held by the same virtual register. The equivalence class is the transitive
155 /// closure of that relation.
156 class UserValue {
157   const DILocalVariable *Variable; ///< The debug info variable we are part of.
158   const DIExpression *Expression; ///< Any complex address expression.
159   DebugLoc dl;            ///< The debug location for the variable. This is
160                           ///< used by dwarf writer to find lexical scope.
161   UserValue *leader;      ///< Equivalence class leader.
162   UserValue *next = nullptr; ///< Next value in equivalence class, or null.
163 
164   /// Numbered locations referenced by locmap.
165   SmallVector<MachineOperand, 4> locations;
166 
167   /// Map of slot indices where this value is live.
168   LocMap locInts;
169 
170   /// Set of interval start indexes that have been trimmed to the
171   /// lexical scope.
172   SmallSet<SlotIndex, 2> trimmedDefs;
173 
174   /// Insert a DBG_VALUE into MBB at Idx for LocNo.
175   void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
176                         SlotIndex StopIdx, DbgValueLocation Loc, bool Spilled,
177                         unsigned SpillOffset, LiveIntervals &LIS,
178                         const TargetInstrInfo &TII,
179                         const TargetRegisterInfo &TRI);
180 
181   /// Replace OldLocNo ranges with NewRegs ranges where NewRegs
182   /// is live. Returns true if any changes were made.
183   bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
184                      LiveIntervals &LIS);
185 
186 public:
187   /// Create a new UserValue.
188   UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L,
189             LocMap::Allocator &alloc)
190       : Variable(var), Expression(expr), dl(std::move(L)), leader(this),
191         locInts(alloc) {}
192 
193   /// Get the leader of this value's equivalence class.
194   UserValue *getLeader() {
195     UserValue *l = leader;
196     while (l != l->leader)
197       l = l->leader;
198     return leader = l;
199   }
200 
201   /// Return the next UserValue in the equivalence class.
202   UserValue *getNext() const { return next; }
203 
204   /// Does this UserValue match the parameters?
205   bool match(const DILocalVariable *Var, const DIExpression *Expr,
206              const DILocation *IA) const {
207     // FIXME: The fragment should be part of the equivalence class, but not
208     // other things in the expression like stack values.
209     return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA;
210   }
211 
212   /// Merge equivalence classes.
213   static UserValue *merge(UserValue *L1, UserValue *L2) {
214     L2 = L2->getLeader();
215     if (!L1)
216       return L2;
217     L1 = L1->getLeader();
218     if (L1 == L2)
219       return L1;
220     // Splice L2 before L1's members.
221     UserValue *End = L2;
222     while (End->next) {
223       End->leader = L1;
224       End = End->next;
225     }
226     End->leader = L1;
227     End->next = L1->next;
228     L1->next = L2;
229     return L1;
230   }
231 
232   /// Return the location number that matches Loc.
233   ///
234   /// For undef values we always return location number UndefLocNo without
235   /// inserting anything in locations. Since locations is a vector and the
236   /// location number is the position in the vector and UndefLocNo is ~0,
237   /// we would need a very big vector to put the value at the right position.
238   unsigned getLocationNo(const MachineOperand &LocMO) {
239     if (LocMO.isReg()) {
240       if (LocMO.getReg() == 0)
241         return UndefLocNo;
242       // For register locations we dont care about use/def and other flags.
243       for (unsigned i = 0, e = locations.size(); i != e; ++i)
244         if (locations[i].isReg() &&
245             locations[i].getReg() == LocMO.getReg() &&
246             locations[i].getSubReg() == LocMO.getSubReg())
247           return i;
248     } else
249       for (unsigned i = 0, e = locations.size(); i != e; ++i)
250         if (LocMO.isIdenticalTo(locations[i]))
251           return i;
252     locations.push_back(LocMO);
253     // We are storing a MachineOperand outside a MachineInstr.
254     locations.back().clearParent();
255     // Don't store def operands.
256     if (locations.back().isReg()) {
257       if (locations.back().isDef())
258         locations.back().setIsDead(false);
259       locations.back().setIsUse();
260     }
261     return locations.size() - 1;
262   }
263 
264   /// Ensure that all virtual register locations are mapped.
265   void mapVirtRegs(LDVImpl *LDV);
266 
267   /// Add a definition point to this value.
268   void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect) {
269     DbgValueLocation Loc(getLocationNo(LocMO), IsIndirect);
270     // Add a singular (Idx,Idx) -> Loc mapping.
271     LocMap::iterator I = locInts.find(Idx);
272     if (!I.valid() || I.start() != Idx)
273       I.insert(Idx, Idx.getNextSlot(), Loc);
274     else
275       // A later DBG_VALUE at the same SlotIndex overrides the old location.
276       I.setValue(Loc);
277   }
278 
279   /// Extend the current definition as far as possible down.
280   ///
281   /// Stop when meeting an existing def or when leaving the live
282   /// range of VNI. End points where VNI is no longer live are added to Kills.
283   ///
284   /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a
285   /// data-flow analysis to propagate them beyond basic block boundaries.
286   ///
287   /// \param Idx Starting point for the definition.
288   /// \param Loc Location number to propagate.
289   /// \param LR Restrict liveness to where LR has the value VNI. May be null.
290   /// \param VNI When LR is not null, this is the value to restrict to.
291   /// \param [out] Kills Append end points of VNI's live range to Kills.
292   /// \param LIS Live intervals analysis.
293   void extendDef(SlotIndex Idx, DbgValueLocation Loc,
294                  LiveRange *LR, const VNInfo *VNI,
295                  SmallVectorImpl<SlotIndex> *Kills,
296                  LiveIntervals &LIS);
297 
298   /// The value in LI/LocNo may be copies to other registers. Determine if
299   /// any of the copies are available at the kill points, and add defs if
300   /// possible.
301   ///
302   /// \param LI Scan for copies of the value in LI->reg.
303   /// \param LocNo Location number of LI->reg.
304   /// \param WasIndirect Indicates if the original use of LI->reg was indirect
305   /// \param Kills Points where the range of LocNo could be extended.
306   /// \param [in,out] NewDefs Append (Idx, LocNo) of inserted defs here.
307   void addDefsFromCopies(
308       LiveInterval *LI, unsigned LocNo, bool WasIndirect,
309       const SmallVectorImpl<SlotIndex> &Kills,
310       SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
311       MachineRegisterInfo &MRI, LiveIntervals &LIS);
312 
313   /// Compute the live intervals of all locations after collecting all their
314   /// def points.
315   void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
316                         LiveIntervals &LIS, LexicalScopes &LS);
317 
318   /// Replace OldReg ranges with NewRegs ranges where NewRegs is
319   /// live. Returns true if any changes were made.
320   bool splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
321                      LiveIntervals &LIS);
322 
323   /// Rewrite virtual register locations according to the provided virtual
324   /// register map. Record the stack slot offsets for the locations that
325   /// were spilled.
326   void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
327                         const TargetInstrInfo &TII,
328                         const TargetRegisterInfo &TRI,
329                         SpillOffsetMap &SpillOffsets);
330 
331   /// Recreate DBG_VALUE instruction from data structures.
332   void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
333                        const TargetInstrInfo &TII,
334                        const TargetRegisterInfo &TRI,
335                        const SpillOffsetMap &SpillOffsets);
336 
337   /// Return DebugLoc of this UserValue.
338   DebugLoc getDebugLoc() { return dl;}
339 
340   void print(raw_ostream &, const TargetRegisterInfo *);
341 };
342 
343 /// A user label is a part of a debug info user label.
344 class UserLabel {
345   const DILabel *Label; ///< The debug info label we are part of.
346   DebugLoc dl;          ///< The debug location for the label. This is
347                         ///< used by dwarf writer to find lexical scope.
348   SlotIndex loc;        ///< Slot used by the debug label.
349 
350   /// Insert a DBG_LABEL into MBB at Idx.
351   void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx,
352                         LiveIntervals &LIS, const TargetInstrInfo &TII);
353 
354 public:
355   /// Create a new UserLabel.
356   UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx)
357       : Label(label), dl(std::move(L)), loc(Idx) {}
358 
359   /// Does this UserLabel match the parameters?
360   bool match(const DILabel *L, const DILocation *IA,
361              const SlotIndex Index) const {
362     return Label == L && dl->getInlinedAt() == IA && loc == Index;
363   }
364 
365   /// Recreate DBG_LABEL instruction from data structures.
366   void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII);
367 
368   /// Return DebugLoc of this UserLabel.
369   DebugLoc getDebugLoc() { return dl; }
370 
371   void print(raw_ostream &, const TargetRegisterInfo *);
372 };
373 
374 /// Implementation of the LiveDebugVariables pass.
375 class LDVImpl {
376   LiveDebugVariables &pass;
377   LocMap::Allocator allocator;
378   MachineFunction *MF = nullptr;
379   LiveIntervals *LIS;
380   const TargetRegisterInfo *TRI;
381 
382   /// Whether emitDebugValues is called.
383   bool EmitDone = false;
384 
385   /// Whether the machine function is modified during the pass.
386   bool ModifiedMF = false;
387 
388   /// All allocated UserValue instances.
389   SmallVector<std::unique_ptr<UserValue>, 8> userValues;
390 
391   /// All allocated UserLabel instances.
392   SmallVector<std::unique_ptr<UserLabel>, 2> userLabels;
393 
394   /// Map virtual register to eq class leader.
395   using VRMap = DenseMap<unsigned, UserValue *>;
396   VRMap virtRegToEqClass;
397 
398   /// Map user variable to eq class leader.
399   using UVMap = DenseMap<const DILocalVariable *, UserValue *>;
400   UVMap userVarMap;
401 
402   /// Find or create a UserValue.
403   UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr,
404                           const DebugLoc &DL);
405 
406   /// Find the EC leader for VirtReg or null.
407   UserValue *lookupVirtReg(unsigned VirtReg);
408 
409   /// Add DBG_VALUE instruction to our maps.
410   ///
411   /// \param MI DBG_VALUE instruction
412   /// \param Idx Last valid SLotIndex before instruction.
413   ///
414   /// \returns True if the DBG_VALUE instruction should be deleted.
415   bool handleDebugValue(MachineInstr &MI, SlotIndex Idx);
416 
417   /// Add DBG_LABEL instruction to UserLabel.
418   ///
419   /// \param MI DBG_LABEL instruction
420   /// \param Idx Last valid SlotIndex before instruction.
421   ///
422   /// \returns True if the DBG_LABEL instruction should be deleted.
423   bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx);
424 
425   /// Collect and erase all DBG_VALUE instructions, adding a UserValue def
426   /// for each instruction.
427   ///
428   /// \param mf MachineFunction to be scanned.
429   ///
430   /// \returns True if any debug values were found.
431   bool collectDebugValues(MachineFunction &mf);
432 
433   /// Compute the live intervals of all user values after collecting all
434   /// their def points.
435   void computeIntervals();
436 
437 public:
438   LDVImpl(LiveDebugVariables *ps) : pass(*ps) {}
439 
440   bool runOnMachineFunction(MachineFunction &mf);
441 
442   /// Release all memory.
443   void clear() {
444     MF = nullptr;
445     userValues.clear();
446     userLabels.clear();
447     virtRegToEqClass.clear();
448     userVarMap.clear();
449     // Make sure we call emitDebugValues if the machine function was modified.
450     assert((!ModifiedMF || EmitDone) &&
451            "Dbg values are not emitted in LDV");
452     EmitDone = false;
453     ModifiedMF = false;
454   }
455 
456   /// Map virtual register to an equivalence class.
457   void mapVirtReg(unsigned VirtReg, UserValue *EC);
458 
459   /// Replace all references to OldReg with NewRegs.
460   void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs);
461 
462   /// Recreate DBG_VALUE instruction from data structures.
463   void emitDebugValues(VirtRegMap *VRM);
464 
465   void print(raw_ostream&);
466 };
467 
468 } // end anonymous namespace
469 
470 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
471 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS,
472                           const LLVMContext &Ctx) {
473   if (!DL)
474     return;
475 
476   auto *Scope = cast<DIScope>(DL.getScope());
477   // Omit the directory, because it's likely to be long and uninteresting.
478   CommentOS << Scope->getFilename();
479   CommentOS << ':' << DL.getLine();
480   if (DL.getCol() != 0)
481     CommentOS << ':' << DL.getCol();
482 
483   DebugLoc InlinedAtDL = DL.getInlinedAt();
484   if (!InlinedAtDL)
485     return;
486 
487   CommentOS << " @[ ";
488   printDebugLoc(InlinedAtDL, CommentOS, Ctx);
489   CommentOS << " ]";
490 }
491 
492 static void printExtendedName(raw_ostream &OS, const DINode *Node,
493                               const DILocation *DL) {
494   const LLVMContext &Ctx = Node->getContext();
495   StringRef Res;
496   unsigned Line;
497   if (const auto *V = dyn_cast<const DILocalVariable>(Node)) {
498     Res = V->getName();
499     Line = V->getLine();
500   } else if (const auto *L = dyn_cast<const DILabel>(Node)) {
501     Res = L->getName();
502     Line = L->getLine();
503   }
504 
505   if (!Res.empty())
506     OS << Res << "," << Line;
507   if (auto *InlinedAt = DL->getInlinedAt()) {
508     if (DebugLoc InlinedAtDL = InlinedAt) {
509       OS << " @[";
510       printDebugLoc(InlinedAtDL, OS, Ctx);
511       OS << "]";
512     }
513   }
514 }
515 
516 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
517   OS << "!\"";
518   printExtendedName(OS, Variable, dl);
519 
520   OS << "\"\t";
521   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
522     OS << " [" << I.start() << ';' << I.stop() << "):";
523     if (I.value().isUndef())
524       OS << "undef";
525     else {
526       OS << I.value().locNo();
527       if (I.value().wasIndirect())
528         OS << " ind";
529     }
530   }
531   for (unsigned i = 0, e = locations.size(); i != e; ++i) {
532     OS << " Loc" << i << '=';
533     locations[i].print(OS, TRI);
534   }
535   OS << '\n';
536 }
537 
538 void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
539   OS << "!\"";
540   printExtendedName(OS, Label, dl);
541 
542   OS << "\"\t";
543   OS << loc;
544   OS << '\n';
545 }
546 
547 void LDVImpl::print(raw_ostream &OS) {
548   OS << "********** DEBUG VARIABLES **********\n";
549   for (auto &userValue : userValues)
550     userValue->print(OS, TRI);
551   OS << "********** DEBUG LABELS **********\n";
552   for (auto &userLabel : userLabels)
553     userLabel->print(OS, TRI);
554 }
555 #endif
556 
557 void UserValue::mapVirtRegs(LDVImpl *LDV) {
558   for (unsigned i = 0, e = locations.size(); i != e; ++i)
559     if (locations[i].isReg() &&
560         TargetRegisterInfo::isVirtualRegister(locations[i].getReg()))
561       LDV->mapVirtReg(locations[i].getReg(), this);
562 }
563 
564 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var,
565                                  const DIExpression *Expr, const DebugLoc &DL) {
566   UserValue *&Leader = userVarMap[Var];
567   if (Leader) {
568     UserValue *UV = Leader->getLeader();
569     Leader = UV;
570     for (; UV; UV = UV->getNext())
571       if (UV->match(Var, Expr, DL->getInlinedAt()))
572         return UV;
573   }
574 
575   userValues.push_back(
576       llvm::make_unique<UserValue>(Var, Expr, DL, allocator));
577   UserValue *UV = userValues.back().get();
578   Leader = UserValue::merge(Leader, UV);
579   return UV;
580 }
581 
582 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) {
583   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs");
584   UserValue *&Leader = virtRegToEqClass[VirtReg];
585   Leader = UserValue::merge(Leader, EC);
586 }
587 
588 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) {
589   if (UserValue *UV = virtRegToEqClass.lookup(VirtReg))
590     return UV->getLeader();
591   return nullptr;
592 }
593 
594 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) {
595   // DBG_VALUE loc, offset, variable
596   if (MI.getNumOperands() != 4 ||
597       !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) ||
598       !MI.getOperand(2).isMetadata()) {
599     LLVM_DEBUG(dbgs() << "Can't handle " << MI);
600     return false;
601   }
602 
603   // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual
604   // register that hasn't been defined yet. If we do not remove those here, then
605   // the re-insertion of the DBG_VALUE instruction after register allocation
606   // will be incorrect.
607   // TODO: If earlier passes are corrected to generate sane debug information
608   // (and if the machine verifier is improved to catch this), then these checks
609   // could be removed or replaced by asserts.
610   bool Discard = false;
611   if (MI.getOperand(0).isReg() &&
612       TargetRegisterInfo::isVirtualRegister(MI.getOperand(0).getReg())) {
613     const unsigned Reg = MI.getOperand(0).getReg();
614     if (!LIS->hasInterval(Reg)) {
615       // The DBG_VALUE is described by a virtual register that does not have a
616       // live interval. Discard the DBG_VALUE.
617       Discard = true;
618       LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx
619                         << " " << MI);
620     } else {
621       // The DBG_VALUE is only valid if either Reg is live out from Idx, or Reg
622       // is defined dead at Idx (where Idx is the slot index for the instruction
623       // preceeding the DBG_VALUE).
624       const LiveInterval &LI = LIS->getInterval(Reg);
625       LiveQueryResult LRQ = LI.Query(Idx);
626       if (!LRQ.valueOutOrDead()) {
627         // We have found a DBG_VALUE with the value in a virtual register that
628         // is not live. Discard the DBG_VALUE.
629         Discard = true;
630         LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx
631                           << " " << MI);
632       }
633     }
634   }
635 
636   // Get or create the UserValue for (variable,offset) here.
637   bool IsIndirect = MI.getOperand(1).isImm();
638   if (IsIndirect)
639     assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
640   const DILocalVariable *Var = MI.getDebugVariable();
641   const DIExpression *Expr = MI.getDebugExpression();
642   UserValue *UV =
643       getUserValue(Var, Expr, MI.getDebugLoc());
644   if (!Discard)
645     UV->addDef(Idx, MI.getOperand(0), IsIndirect);
646   else {
647     MachineOperand MO = MachineOperand::CreateReg(0U, false);
648     MO.setIsDebug();
649     UV->addDef(Idx, MO, false);
650   }
651   return true;
652 }
653 
654 bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) {
655   // DBG_LABEL label
656   if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) {
657     LLVM_DEBUG(dbgs() << "Can't handle " << MI);
658     return false;
659   }
660 
661   // Get or create the UserLabel for label here.
662   const DILabel *Label = MI.getDebugLabel();
663   const DebugLoc &DL = MI.getDebugLoc();
664   bool Found = false;
665   for (auto const &L : userLabels) {
666     if (L->match(Label, DL->getInlinedAt(), Idx)) {
667       Found = true;
668       break;
669     }
670   }
671   if (!Found)
672     userLabels.push_back(llvm::make_unique<UserLabel>(Label, DL, Idx));
673 
674   return true;
675 }
676 
677 bool LDVImpl::collectDebugValues(MachineFunction &mf) {
678   bool Changed = false;
679   for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE;
680        ++MFI) {
681     MachineBasicBlock *MBB = &*MFI;
682     for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end();
683          MBBI != MBBE;) {
684       // Use the first debug instruction in the sequence to get a SlotIndex
685       // for following consecutive debug instructions.
686       if (!MBBI->isDebugInstr()) {
687         ++MBBI;
688         continue;
689       }
690       // Debug instructions has no slot index. Use the previous
691       // non-debug instruction's SlotIndex as its SlotIndex.
692       SlotIndex Idx =
693           MBBI == MBB->begin()
694               ? LIS->getMBBStartIdx(MBB)
695               : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot();
696       // Handle consecutive debug instructions with the same slot index.
697       do {
698         // Only handle DBG_VALUE in handleDebugValue(). Skip all other
699         // kinds of debug instructions.
700         if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) ||
701             (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) {
702           MBBI = MBB->erase(MBBI);
703           Changed = true;
704         } else
705           ++MBBI;
706       } while (MBBI != MBBE && MBBI->isDebugInstr());
707     }
708   }
709   return Changed;
710 }
711 
712 void UserValue::extendDef(SlotIndex Idx, DbgValueLocation Loc, LiveRange *LR,
713                           const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills,
714                           LiveIntervals &LIS) {
715   SlotIndex Start = Idx;
716   MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
717   SlotIndex Stop = LIS.getMBBEndIdx(MBB);
718   LocMap::iterator I = locInts.find(Start);
719 
720   // Limit to VNI's live range.
721   bool ToEnd = true;
722   if (LR && VNI) {
723     LiveInterval::Segment *Segment = LR->getSegmentContaining(Start);
724     if (!Segment || Segment->valno != VNI) {
725       if (Kills)
726         Kills->push_back(Start);
727       return;
728     }
729     if (Segment->end < Stop) {
730       Stop = Segment->end;
731       ToEnd = false;
732     }
733   }
734 
735   // There could already be a short def at Start.
736   if (I.valid() && I.start() <= Start) {
737     // Stop when meeting a different location or an already extended interval.
738     Start = Start.getNextSlot();
739     if (I.value() != Loc || I.stop() != Start)
740       return;
741     // This is a one-slot placeholder. Just skip it.
742     ++I;
743   }
744 
745   // Limited by the next def.
746   if (I.valid() && I.start() < Stop) {
747     Stop = I.start();
748     ToEnd = false;
749   }
750   // Limited by VNI's live range.
751   else if (!ToEnd && Kills)
752     Kills->push_back(Stop);
753 
754   if (Start < Stop)
755     I.insert(Start, Stop, Loc);
756 }
757 
758 void UserValue::addDefsFromCopies(
759     LiveInterval *LI, unsigned LocNo, bool WasIndirect,
760     const SmallVectorImpl<SlotIndex> &Kills,
761     SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
762     MachineRegisterInfo &MRI, LiveIntervals &LIS) {
763   if (Kills.empty())
764     return;
765   // Don't track copies from physregs, there are too many uses.
766   if (!TargetRegisterInfo::isVirtualRegister(LI->reg))
767     return;
768 
769   // Collect all the (vreg, valno) pairs that are copies of LI.
770   SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues;
771   for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) {
772     MachineInstr *MI = MO.getParent();
773     // Copies of the full value.
774     if (MO.getSubReg() || !MI->isCopy())
775       continue;
776     unsigned DstReg = MI->getOperand(0).getReg();
777 
778     // Don't follow copies to physregs. These are usually setting up call
779     // arguments, and the argument registers are always call clobbered. We are
780     // better off in the source register which could be a callee-saved register,
781     // or it could be spilled.
782     if (!TargetRegisterInfo::isVirtualRegister(DstReg))
783       continue;
784 
785     // Is LocNo extended to reach this copy? If not, another def may be blocking
786     // it, or we are looking at a wrong value of LI.
787     SlotIndex Idx = LIS.getInstructionIndex(*MI);
788     LocMap::iterator I = locInts.find(Idx.getRegSlot(true));
789     if (!I.valid() || I.value().locNo() != LocNo)
790       continue;
791 
792     if (!LIS.hasInterval(DstReg))
793       continue;
794     LiveInterval *DstLI = &LIS.getInterval(DstReg);
795     const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot());
796     assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value");
797     CopyValues.push_back(std::make_pair(DstLI, DstVNI));
798   }
799 
800   if (CopyValues.empty())
801     return;
802 
803   LLVM_DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI
804                     << '\n');
805 
806   // Try to add defs of the copied values for each kill point.
807   for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
808     SlotIndex Idx = Kills[i];
809     for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) {
810       LiveInterval *DstLI = CopyValues[j].first;
811       const VNInfo *DstVNI = CopyValues[j].second;
812       if (DstLI->getVNInfoAt(Idx) != DstVNI)
813         continue;
814       // Check that there isn't already a def at Idx
815       LocMap::iterator I = locInts.find(Idx);
816       if (I.valid() && I.start() <= Idx)
817         continue;
818       LLVM_DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #"
819                         << DstVNI->id << " in " << *DstLI << '\n');
820       MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def);
821       assert(CopyMI && CopyMI->isCopy() && "Bad copy value");
822       unsigned LocNo = getLocationNo(CopyMI->getOperand(0));
823       DbgValueLocation NewLoc(LocNo, WasIndirect);
824       I.insert(Idx, Idx.getNextSlot(), NewLoc);
825       NewDefs.push_back(std::make_pair(Idx, NewLoc));
826       break;
827     }
828   }
829 }
830 
831 void UserValue::computeIntervals(MachineRegisterInfo &MRI,
832                                  const TargetRegisterInfo &TRI,
833                                  LiveIntervals &LIS, LexicalScopes &LS) {
834   SmallVector<std::pair<SlotIndex, DbgValueLocation>, 16> Defs;
835 
836   // Collect all defs to be extended (Skipping undefs).
837   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I)
838     if (!I.value().isUndef())
839       Defs.push_back(std::make_pair(I.start(), I.value()));
840 
841   // Extend all defs, and possibly add new ones along the way.
842   for (unsigned i = 0; i != Defs.size(); ++i) {
843     SlotIndex Idx = Defs[i].first;
844     DbgValueLocation Loc = Defs[i].second;
845     const MachineOperand &LocMO = locations[Loc.locNo()];
846 
847     if (!LocMO.isReg()) {
848       extendDef(Idx, Loc, nullptr, nullptr, nullptr, LIS);
849       continue;
850     }
851 
852     // Register locations are constrained to where the register value is live.
853     if (TargetRegisterInfo::isVirtualRegister(LocMO.getReg())) {
854       LiveInterval *LI = nullptr;
855       const VNInfo *VNI = nullptr;
856       if (LIS.hasInterval(LocMO.getReg())) {
857         LI = &LIS.getInterval(LocMO.getReg());
858         VNI = LI->getVNInfoAt(Idx);
859       }
860       SmallVector<SlotIndex, 16> Kills;
861       extendDef(Idx, Loc, LI, VNI, &Kills, LIS);
862       // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that
863       // if the original location for example is %vreg0:sub_hi, and we find a
864       // full register copy in addDefsFromCopies (at the moment it only handles
865       // full register copies), then we must add the sub1 sub-register index to
866       // the new location. However, that is only possible if the new virtual
867       // register is of the same regclass (or if there is an equivalent
868       // sub-register in that regclass). For now, simply skip handling copies if
869       // a sub-register is involved.
870       if (LI && !LocMO.getSubReg())
871         addDefsFromCopies(LI, Loc.locNo(), Loc.wasIndirect(), Kills, Defs, MRI,
872                           LIS);
873       continue;
874     }
875 
876     // For physregs, we only mark the start slot idx. DwarfDebug will see it
877     // as if the DBG_VALUE is valid up until the end of the basic block, or
878     // the next def of the physical register. So we do not need to extend the
879     // range. It might actually happen that the DBG_VALUE is the last use of
880     // the physical register (e.g. if this is an unused input argument to a
881     // function).
882   }
883 
884   // The computed intervals may extend beyond the range of the debug
885   // location's lexical scope. In this case, splitting of an interval
886   // can result in an interval outside of the scope being created,
887   // causing extra unnecessary DBG_VALUEs to be emitted. To prevent
888   // this, trim the intervals to the lexical scope.
889 
890   LexicalScope *Scope = LS.findLexicalScope(dl);
891   if (!Scope)
892     return;
893 
894   SlotIndex PrevEnd;
895   LocMap::iterator I = locInts.begin();
896 
897   // Iterate over the lexical scope ranges. Each time round the loop
898   // we check the intervals for overlap with the end of the previous
899   // range and the start of the next. The first range is handled as
900   // a special case where there is no PrevEnd.
901   for (const InsnRange &Range : Scope->getRanges()) {
902     SlotIndex RStart = LIS.getInstructionIndex(*Range.first);
903     SlotIndex REnd = LIS.getInstructionIndex(*Range.second);
904 
905     // At the start of each iteration I has been advanced so that
906     // I.stop() >= PrevEnd. Check for overlap.
907     if (PrevEnd && I.start() < PrevEnd) {
908       SlotIndex IStop = I.stop();
909       DbgValueLocation Loc = I.value();
910 
911       // Stop overlaps previous end - trim the end of the interval to
912       // the scope range.
913       I.setStopUnchecked(PrevEnd);
914       ++I;
915 
916       // If the interval also overlaps the start of the "next" (i.e.
917       // current) range create a new interval for the remainder (which
918       // may be further trimmed).
919       if (RStart < IStop)
920         I.insert(RStart, IStop, Loc);
921     }
922 
923     // Advance I so that I.stop() >= RStart, and check for overlap.
924     I.advanceTo(RStart);
925     if (!I.valid())
926       return;
927 
928     if (I.start() < RStart) {
929       // Interval start overlaps range - trim to the scope range.
930       I.setStartUnchecked(RStart);
931       // Remember that this interval was trimmed.
932       trimmedDefs.insert(RStart);
933     }
934 
935     // The end of a lexical scope range is the last instruction in the
936     // range. To convert to an interval we need the index of the
937     // instruction after it.
938     REnd = REnd.getNextIndex();
939 
940     // Advance I to first interval outside current range.
941     I.advanceTo(REnd);
942     if (!I.valid())
943       return;
944 
945     PrevEnd = REnd;
946   }
947 
948   // Check for overlap with end of final range.
949   if (PrevEnd && I.start() < PrevEnd)
950     I.setStopUnchecked(PrevEnd);
951 }
952 
953 void LDVImpl::computeIntervals() {
954   LexicalScopes LS;
955   LS.initialize(*MF);
956 
957   for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
958     userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS);
959     userValues[i]->mapVirtRegs(this);
960   }
961 }
962 
963 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) {
964   clear();
965   MF = &mf;
966   LIS = &pass.getAnalysis<LiveIntervals>();
967   TRI = mf.getSubtarget().getRegisterInfo();
968   LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
969                     << mf.getName() << " **********\n");
970 
971   bool Changed = collectDebugValues(mf);
972   computeIntervals();
973   LLVM_DEBUG(print(dbgs()));
974   ModifiedMF = Changed;
975   return Changed;
976 }
977 
978 static void removeDebugValues(MachineFunction &mf) {
979   for (MachineBasicBlock &MBB : mf) {
980     for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) {
981       if (!MBBI->isDebugValue()) {
982         ++MBBI;
983         continue;
984       }
985       MBBI = MBB.erase(MBBI);
986     }
987   }
988 }
989 
990 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
991   if (!EnableLDV)
992     return false;
993   if (!mf.getFunction().getSubprogram()) {
994     removeDebugValues(mf);
995     return false;
996   }
997   if (!pImpl)
998     pImpl = new LDVImpl(this);
999   return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf);
1000 }
1001 
1002 void LiveDebugVariables::releaseMemory() {
1003   if (pImpl)
1004     static_cast<LDVImpl*>(pImpl)->clear();
1005 }
1006 
1007 LiveDebugVariables::~LiveDebugVariables() {
1008   if (pImpl)
1009     delete static_cast<LDVImpl*>(pImpl);
1010 }
1011 
1012 //===----------------------------------------------------------------------===//
1013 //                           Live Range Splitting
1014 //===----------------------------------------------------------------------===//
1015 
1016 bool
1017 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
1018                          LiveIntervals& LIS) {
1019   LLVM_DEBUG({
1020     dbgs() << "Splitting Loc" << OldLocNo << '\t';
1021     print(dbgs(), nullptr);
1022   });
1023   bool DidChange = false;
1024   LocMap::iterator LocMapI;
1025   LocMapI.setMap(locInts);
1026   for (unsigned i = 0; i != NewRegs.size(); ++i) {
1027     LiveInterval *LI = &LIS.getInterval(NewRegs[i]);
1028     if (LI->empty())
1029       continue;
1030 
1031     // Don't allocate the new LocNo until it is needed.
1032     unsigned NewLocNo = UndefLocNo;
1033 
1034     // Iterate over the overlaps between locInts and LI.
1035     LocMapI.find(LI->beginIndex());
1036     if (!LocMapI.valid())
1037       continue;
1038     LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start());
1039     LiveInterval::iterator LIE = LI->end();
1040     while (LocMapI.valid() && LII != LIE) {
1041       // At this point, we know that LocMapI.stop() > LII->start.
1042       LII = LI->advanceTo(LII, LocMapI.start());
1043       if (LII == LIE)
1044         break;
1045 
1046       // Now LII->end > LocMapI.start(). Do we have an overlap?
1047       if (LocMapI.value().locNo() == OldLocNo && LII->start < LocMapI.stop()) {
1048         // Overlapping correct location. Allocate NewLocNo now.
1049         if (NewLocNo == UndefLocNo) {
1050           MachineOperand MO = MachineOperand::CreateReg(LI->reg, false);
1051           MO.setSubReg(locations[OldLocNo].getSubReg());
1052           NewLocNo = getLocationNo(MO);
1053           DidChange = true;
1054         }
1055 
1056         SlotIndex LStart = LocMapI.start();
1057         SlotIndex LStop  = LocMapI.stop();
1058         DbgValueLocation OldLoc = LocMapI.value();
1059 
1060         // Trim LocMapI down to the LII overlap.
1061         if (LStart < LII->start)
1062           LocMapI.setStartUnchecked(LII->start);
1063         if (LStop > LII->end)
1064           LocMapI.setStopUnchecked(LII->end);
1065 
1066         // Change the value in the overlap. This may trigger coalescing.
1067         LocMapI.setValue(OldLoc.changeLocNo(NewLocNo));
1068 
1069         // Re-insert any removed OldLocNo ranges.
1070         if (LStart < LocMapI.start()) {
1071           LocMapI.insert(LStart, LocMapI.start(), OldLoc);
1072           ++LocMapI;
1073           assert(LocMapI.valid() && "Unexpected coalescing");
1074         }
1075         if (LStop > LocMapI.stop()) {
1076           ++LocMapI;
1077           LocMapI.insert(LII->end, LStop, OldLoc);
1078           --LocMapI;
1079         }
1080       }
1081 
1082       // Advance to the next overlap.
1083       if (LII->end < LocMapI.stop()) {
1084         if (++LII == LIE)
1085           break;
1086         LocMapI.advanceTo(LII->start);
1087       } else {
1088         ++LocMapI;
1089         if (!LocMapI.valid())
1090           break;
1091         LII = LI->advanceTo(LII, LocMapI.start());
1092       }
1093     }
1094   }
1095 
1096   // Finally, remove any remaining OldLocNo intervals and OldLocNo itself.
1097   locations.erase(locations.begin() + OldLocNo);
1098   LocMapI.goToBegin();
1099   while (LocMapI.valid()) {
1100     DbgValueLocation v = LocMapI.value();
1101     if (v.locNo() == OldLocNo) {
1102       LLVM_DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';'
1103                         << LocMapI.stop() << ")\n");
1104       LocMapI.erase();
1105     } else {
1106       // Undef values always have location number UndefLocNo, so don't change
1107       // locNo in that case. See getLocationNo().
1108       if (!v.isUndef() && v.locNo() > OldLocNo)
1109         LocMapI.setValueUnchecked(v.changeLocNo(v.locNo() - 1));
1110       ++LocMapI;
1111     }
1112   }
1113 
1114   LLVM_DEBUG({
1115     dbgs() << "Split result: \t";
1116     print(dbgs(), nullptr);
1117   });
1118   return DidChange;
1119 }
1120 
1121 bool
1122 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
1123                          LiveIntervals &LIS) {
1124   bool DidChange = false;
1125   // Split locations referring to OldReg. Iterate backwards so splitLocation can
1126   // safely erase unused locations.
1127   for (unsigned i = locations.size(); i ; --i) {
1128     unsigned LocNo = i-1;
1129     const MachineOperand *Loc = &locations[LocNo];
1130     if (!Loc->isReg() || Loc->getReg() != OldReg)
1131       continue;
1132     DidChange |= splitLocation(LocNo, NewRegs, LIS);
1133   }
1134   return DidChange;
1135 }
1136 
1137 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) {
1138   bool DidChange = false;
1139   for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext())
1140     DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS);
1141 
1142   if (!DidChange)
1143     return;
1144 
1145   // Map all of the new virtual registers.
1146   UserValue *UV = lookupVirtReg(OldReg);
1147   for (unsigned i = 0; i != NewRegs.size(); ++i)
1148     mapVirtReg(NewRegs[i], UV);
1149 }
1150 
1151 void LiveDebugVariables::
1152 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) {
1153   if (pImpl)
1154     static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs);
1155 }
1156 
1157 void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
1158                                  const TargetInstrInfo &TII,
1159                                  const TargetRegisterInfo &TRI,
1160                                  SpillOffsetMap &SpillOffsets) {
1161   // Build a set of new locations with new numbers so we can coalesce our
1162   // IntervalMap if two vreg intervals collapse to the same physical location.
1163   // Use MapVector instead of SetVector because MapVector::insert returns the
1164   // position of the previously or newly inserted element. The boolean value
1165   // tracks if the location was produced by a spill.
1166   // FIXME: This will be problematic if we ever support direct and indirect
1167   // frame index locations, i.e. expressing both variables in memory and
1168   // 'int x, *px = &x'. The "spilled" bit must become part of the location.
1169   MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations;
1170   SmallVector<unsigned, 4> LocNoMap(locations.size());
1171   for (unsigned I = 0, E = locations.size(); I != E; ++I) {
1172     bool Spilled = false;
1173     unsigned SpillOffset = 0;
1174     MachineOperand Loc = locations[I];
1175     // Only virtual registers are rewritten.
1176     if (Loc.isReg() && Loc.getReg() &&
1177         TargetRegisterInfo::isVirtualRegister(Loc.getReg())) {
1178       unsigned VirtReg = Loc.getReg();
1179       if (VRM.isAssignedReg(VirtReg) &&
1180           TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) {
1181         // This can create a %noreg operand in rare cases when the sub-register
1182         // index is no longer available. That means the user value is in a
1183         // non-existent sub-register, and %noreg is exactly what we want.
1184         Loc.substPhysReg(VRM.getPhys(VirtReg), TRI);
1185       } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) {
1186         // Retrieve the stack slot offset.
1187         unsigned SpillSize;
1188         const MachineRegisterInfo &MRI = MF.getRegInfo();
1189         const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg);
1190         bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize,
1191                                              SpillOffset, MF);
1192 
1193         // FIXME: Invalidate the location if the offset couldn't be calculated.
1194         (void)Success;
1195 
1196         Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg));
1197         Spilled = true;
1198       } else {
1199         Loc.setReg(0);
1200         Loc.setSubReg(0);
1201       }
1202     }
1203 
1204     // Insert this location if it doesn't already exist and record a mapping
1205     // from the old number to the new number.
1206     auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}});
1207     unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first);
1208     LocNoMap[I] = NewLocNo;
1209   }
1210 
1211   // Rewrite the locations and record the stack slot offsets for spills.
1212   locations.clear();
1213   SpillOffsets.clear();
1214   for (auto &Pair : NewLocations) {
1215     bool Spilled;
1216     unsigned SpillOffset;
1217     std::tie(Spilled, SpillOffset) = Pair.second;
1218     locations.push_back(Pair.first);
1219     if (Spilled) {
1220       unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair);
1221       SpillOffsets[NewLocNo] = SpillOffset;
1222     }
1223   }
1224 
1225   // Update the interval map, but only coalesce left, since intervals to the
1226   // right use the old location numbers. This should merge two contiguous
1227   // DBG_VALUE intervals with different vregs that were allocated to the same
1228   // physical register.
1229   for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
1230     DbgValueLocation Loc = I.value();
1231     // Undef values don't exist in locations (and thus not in LocNoMap either)
1232     // so skip over them. See getLocationNo().
1233     if (Loc.isUndef())
1234       continue;
1235     unsigned NewLocNo = LocNoMap[Loc.locNo()];
1236     I.setValueUnchecked(Loc.changeLocNo(NewLocNo));
1237     I.setStart(I.start());
1238   }
1239 }
1240 
1241 /// Find an iterator for inserting a DBG_VALUE instruction.
1242 static MachineBasicBlock::iterator
1243 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx,
1244                    LiveIntervals &LIS) {
1245   SlotIndex Start = LIS.getMBBStartIdx(MBB);
1246   Idx = Idx.getBaseIndex();
1247 
1248   // Try to find an insert location by going backwards from Idx.
1249   MachineInstr *MI;
1250   while (!(MI = LIS.getInstructionFromIndex(Idx))) {
1251     // We've reached the beginning of MBB.
1252     if (Idx == Start) {
1253       MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
1254       return I;
1255     }
1256     Idx = Idx.getPrevIndex();
1257   }
1258 
1259   // Don't insert anything after the first terminator, though.
1260   return MI->isTerminator() ? MBB->getFirstTerminator() :
1261                               std::next(MachineBasicBlock::iterator(MI));
1262 }
1263 
1264 /// Find an iterator for inserting the next DBG_VALUE instruction
1265 /// (or end if no more insert locations found).
1266 static MachineBasicBlock::iterator
1267 findNextInsertLocation(MachineBasicBlock *MBB,
1268                        MachineBasicBlock::iterator I,
1269                        SlotIndex StopIdx, MachineOperand &LocMO,
1270                        LiveIntervals &LIS,
1271                        const TargetRegisterInfo &TRI) {
1272   if (!LocMO.isReg())
1273     return MBB->instr_end();
1274   unsigned Reg = LocMO.getReg();
1275 
1276   // Find the next instruction in the MBB that define the register Reg.
1277   while (I != MBB->end() && !I->isTerminator()) {
1278     if (!LIS.isNotInMIMap(*I) &&
1279         SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I)))
1280       break;
1281     if (I->definesRegister(Reg, &TRI))
1282       // The insert location is directly after the instruction/bundle.
1283       return std::next(I);
1284     ++I;
1285   }
1286   return MBB->end();
1287 }
1288 
1289 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
1290                                  SlotIndex StopIdx, DbgValueLocation Loc,
1291                                  bool Spilled, unsigned SpillOffset,
1292                                  LiveIntervals &LIS, const TargetInstrInfo &TII,
1293                                  const TargetRegisterInfo &TRI) {
1294   SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB);
1295   // Only search within the current MBB.
1296   StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx;
1297   MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS);
1298   // Undef values don't exist in locations so create new "noreg" register MOs
1299   // for them. See getLocationNo().
1300   MachineOperand MO = !Loc.isUndef() ?
1301     locations[Loc.locNo()] :
1302     MachineOperand::CreateReg(/* Reg */ 0, /* isDef */ false, /* isImp */ false,
1303                               /* isKill */ false, /* isDead */ false,
1304                               /* isUndef */ false, /* isEarlyClobber */ false,
1305                               /* SubReg */ 0, /* isDebug */ true);
1306 
1307   ++NumInsertedDebugValues;
1308 
1309   assert(cast<DILocalVariable>(Variable)
1310              ->isValidLocationForIntrinsic(getDebugLoc()) &&
1311          "Expected inlined-at fields to agree");
1312 
1313   // If the location was spilled, the new DBG_VALUE will be indirect. If the
1314   // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate
1315   // that the original virtual register was a pointer. Also, add the stack slot
1316   // offset for the spilled register to the expression.
1317   const DIExpression *Expr = Expression;
1318   bool IsIndirect = Loc.wasIndirect();
1319   if (Spilled) {
1320     auto Deref = IsIndirect ? DIExpression::WithDeref : DIExpression::NoDeref;
1321     Expr =
1322         DIExpression::prepend(Expr, DIExpression::NoDeref, SpillOffset, Deref);
1323     IsIndirect = true;
1324   }
1325 
1326   assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index");
1327 
1328   do {
1329     BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE),
1330             IsIndirect, MO, Variable, Expr);
1331 
1332     // Continue and insert DBG_VALUES after every redefinition of register
1333     // associated with the debug value within the range
1334     I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI);
1335   } while (I != MBB->end());
1336 }
1337 
1338 void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx,
1339                                  LiveIntervals &LIS,
1340                                  const TargetInstrInfo &TII) {
1341   MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS);
1342   ++NumInsertedDebugLabels;
1343   BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL))
1344       .addMetadata(Label);
1345 }
1346 
1347 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
1348                                 const TargetInstrInfo &TII,
1349                                 const TargetRegisterInfo &TRI,
1350                                 const SpillOffsetMap &SpillOffsets) {
1351   MachineFunction::iterator MFEnd = VRM->getMachineFunction().end();
1352 
1353   for (LocMap::const_iterator I = locInts.begin(); I.valid();) {
1354     SlotIndex Start = I.start();
1355     SlotIndex Stop = I.stop();
1356     DbgValueLocation Loc = I.value();
1357     auto SpillIt =
1358         !Loc.isUndef() ? SpillOffsets.find(Loc.locNo()) : SpillOffsets.end();
1359     bool Spilled = SpillIt != SpillOffsets.end();
1360     unsigned SpillOffset = Spilled ? SpillIt->second : 0;
1361 
1362     // If the interval start was trimmed to the lexical scope insert the
1363     // DBG_VALUE at the previous index (otherwise it appears after the
1364     // first instruction in the range).
1365     if (trimmedDefs.count(Start))
1366       Start = Start.getPrevIndex();
1367 
1368     LLVM_DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << Loc.locNo());
1369     MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1370     SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB);
1371 
1372     LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1373     insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, SpillOffset, LIS, TII,
1374                      TRI);
1375     // This interval may span multiple basic blocks.
1376     // Insert a DBG_VALUE into each one.
1377     while (Stop > MBBEnd) {
1378       // Move to the next block.
1379       Start = MBBEnd;
1380       if (++MBB == MFEnd)
1381         break;
1382       MBBEnd = LIS.getMBBEndIdx(&*MBB);
1383       LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1384       insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, SpillOffset, LIS, TII,
1385                        TRI);
1386     }
1387     LLVM_DEBUG(dbgs() << '\n');
1388     if (MBB == MFEnd)
1389       break;
1390 
1391     ++I;
1392   }
1393 }
1394 
1395 void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII) {
1396   LLVM_DEBUG(dbgs() << "\t" << loc);
1397   MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator();
1398 
1399   LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB));
1400   insertDebugLabel(&*MBB, loc, LIS, TII);
1401 
1402   LLVM_DEBUG(dbgs() << '\n');
1403 }
1404 
1405 void LDVImpl::emitDebugValues(VirtRegMap *VRM) {
1406   LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
1407   if (!MF)
1408     return;
1409   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1410   SpillOffsetMap SpillOffsets;
1411   for (auto &userValue : userValues) {
1412     LLVM_DEBUG(userValue->print(dbgs(), TRI));
1413     userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets);
1414     userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets);
1415   }
1416   LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n");
1417   for (auto &userLabel : userLabels) {
1418     LLVM_DEBUG(userLabel->print(dbgs(), TRI));
1419     userLabel->emitDebugLabel(*LIS, *TII);
1420   }
1421   EmitDone = true;
1422 }
1423 
1424 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) {
1425   if (pImpl)
1426     static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM);
1427 }
1428 
1429 bool LiveDebugVariables::doInitialization(Module &M) {
1430   return Pass::doInitialization(M);
1431 }
1432 
1433 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1434 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const {
1435   if (pImpl)
1436     static_cast<LDVImpl*>(pImpl)->print(dbgs());
1437 }
1438 #endif
1439