1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveDebugVariables analysis. 11 // 12 // Remove all DBG_VALUE instructions referencing virtual registers and replace 13 // them with a data structure tracking where live user variables are kept - in a 14 // virtual register or in a stack slot. 15 // 16 // Allow the data structure to be updated during register allocation when values 17 // are moved between registers and stack slots. Finally emit new DBG_VALUE 18 // instructions after register allocation is complete. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #define DEBUG_TYPE "livedebug" 23 #include "LiveDebugVariables.h" 24 #include "llvm/Constants.h" 25 #include "llvm/Metadata.h" 26 #include "llvm/Value.h" 27 #include "llvm/ADT/IntervalMap.h" 28 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineDominators.h" 31 #include "llvm/CodeGen/Passes.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include "llvm/Target/TargetRegisterInfo.h" 36 37 using namespace llvm; 38 39 static cl::opt<bool> 40 EnableLDV("live-debug-variables", 41 cl::desc("Enable the live debug variables pass"), cl::Hidden); 42 43 char LiveDebugVariables::ID = 0; 44 45 INITIALIZE_PASS_BEGIN(LiveDebugVariables, "livedebugvars", 46 "Debug Variable Analysis", false, false) 47 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 48 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 49 INITIALIZE_PASS_END(LiveDebugVariables, "livedebugvars", 50 "Debug Variable Analysis", false, false) 51 52 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { 53 AU.addRequired<MachineDominatorTree>(); 54 AU.addRequiredTransitive<LiveIntervals>(); 55 AU.setPreservesAll(); 56 MachineFunctionPass::getAnalysisUsage(AU); 57 } 58 59 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID), pImpl(0) { 60 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 61 } 62 63 /// Location - All the different places a user value can reside. 64 /// Note that this includes immediate values that technically aren't locations. 65 namespace { 66 struct Location { 67 /// kind - What kind of location is this? 68 enum Kind { 69 locUndef = 0, 70 locImm = 0x80000000, 71 locFPImm 72 }; 73 /// Kind - One of the following: 74 /// 1. locUndef 75 /// 2. Register number (physical or virtual), data.SubIdx is the subreg index. 76 /// 3. ~Frame index, data.Offset is the offset. 77 /// 4. locImm, data.ImmVal is the constant integer value. 78 /// 5. locFPImm, data.CFP points to the floating point constant. 79 unsigned Kind; 80 81 /// Data - Extra data about location. 82 union { 83 unsigned SubIdx; ///< For virtual registers. 84 int64_t Offset; ///< For frame indices. 85 int64_t ImmVal; ///< For locImm. 86 const ConstantFP *CFP; ///< For locFPImm. 87 } Data; 88 89 Location(const MachineOperand &MO) { 90 switch(MO.getType()) { 91 case MachineOperand::MO_Register: 92 Kind = MO.getReg(); 93 Data.SubIdx = MO.getSubReg(); 94 return; 95 case MachineOperand::MO_Immediate: 96 Kind = locImm; 97 Data.ImmVal = MO.getImm(); 98 return; 99 case MachineOperand::MO_FPImmediate: 100 Kind = locFPImm; 101 Data.CFP = MO.getFPImm(); 102 return; 103 case MachineOperand::MO_FrameIndex: 104 Kind = ~MO.getIndex(); 105 // FIXME: MO_FrameIndex should support an offset. 106 Data.Offset = 0; 107 return; 108 default: 109 Kind = locUndef; 110 return; 111 } 112 } 113 114 bool operator==(const Location &RHS) const { 115 if (Kind != RHS.Kind) 116 return false; 117 switch (Kind) { 118 case locUndef: 119 return true; 120 case locImm: 121 return Data.ImmVal == RHS.Data.ImmVal; 122 case locFPImm: 123 return Data.CFP == RHS.Data.CFP; 124 default: 125 if (isReg()) 126 return Data.SubIdx == RHS.Data.SubIdx; 127 else 128 return Data.Offset == RHS.Data.Offset; 129 } 130 } 131 132 /// isUndef - is this the singleton undef? 133 bool isUndef() const { return Kind == locUndef; } 134 135 /// isReg - is this a register location? 136 bool isReg() const { return Kind && Kind < locImm; } 137 138 void print(raw_ostream&, const TargetRegisterInfo*); 139 }; 140 } 141 142 /// LocMap - Map of where a user value is live, and its location. 143 typedef IntervalMap<SlotIndex, unsigned, 4> LocMap; 144 145 /// UserValue - A user value is a part of a debug info user variable. 146 /// 147 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 148 /// holds part of a user variable. The part is identified by a byte offset. 149 /// 150 /// UserValues are grouped into equivalence classes for easier searching. Two 151 /// user values are related if they refer to the same variable, or if they are 152 /// held by the same virtual register. The equivalence class is the transitive 153 /// closure of that relation. 154 namespace { 155 class UserValue { 156 const MDNode *variable; ///< The debug info variable we are part of. 157 unsigned offset; ///< Byte offset into variable. 158 159 UserValue *leader; ///< Equivalence class leader. 160 UserValue *next; ///< Next value in equivalence class, or null. 161 162 /// Numbered locations referenced by locmap. 163 SmallVector<Location, 4> locations; 164 165 /// Map of slot indices where this value is live. 166 LocMap locInts; 167 168 public: 169 /// UserValue - Create a new UserValue. 170 UserValue(const MDNode *var, unsigned o, LocMap::Allocator &alloc) 171 : variable(var), offset(o), leader(this), next(0), locInts(alloc) 172 {} 173 174 /// getLeader - Get the leader of this value's equivalence class. 175 UserValue *getLeader() { 176 UserValue *l = leader; 177 while (l != l->leader) 178 l = l->leader; 179 return leader = l; 180 } 181 182 /// getNext - Return the next UserValue in the equivalence class. 183 UserValue *getNext() const { return next; } 184 185 /// match - Does this UserValue match the aprameters? 186 bool match(const MDNode *Var, unsigned Offset) const { 187 return Var == variable && Offset == offset; 188 } 189 190 /// merge - Merge equivalence classes. 191 static UserValue *merge(UserValue *L1, UserValue *L2) { 192 L2 = L2->getLeader(); 193 if (!L1) 194 return L2; 195 L1 = L1->getLeader(); 196 if (L1 == L2) 197 return L1; 198 // Splice L2 before L1's members. 199 UserValue *End = L2; 200 while (End->next) 201 End->leader = L1, End = End->next; 202 End->leader = L1; 203 End->next = L1->next; 204 L1->next = L2; 205 return L1; 206 } 207 208 /// getLocationNo - Return the location number that matches Loc. 209 unsigned getLocationNo(Location Loc) { 210 if (Loc.isUndef()) 211 return ~0u; 212 unsigned n = std::find(locations.begin(), locations.end(), Loc) - 213 locations.begin(); 214 if (n == locations.size()) 215 locations.push_back(Loc); 216 return n; 217 } 218 219 /// addDef - Add a definition point to this value. 220 void addDef(SlotIndex Idx, const MachineOperand &LocMO) { 221 // Add a singular (Idx,Idx) -> Loc mapping. 222 LocMap::iterator I = locInts.find(Idx); 223 if (!I.valid() || I.start() != Idx) 224 I.insert(Idx, Idx.getNextSlot(), getLocationNo(LocMO)); 225 } 226 227 /// extendDef - Extend the current definition as far as possible down the 228 /// dominator tree. Stop when meeting an existing def or when leaving the live 229 /// range of VNI. 230 /// @param Idx Starting point for the definition. 231 /// @param LocNo Location number to propagate. 232 /// @param LI Restrict liveness to where LI has the value VNI. May be null. 233 /// @param VNI When LI is not null, this is the value to restrict to. 234 /// @param LIS Live intervals analysis. 235 /// @param MDT Dominator tree. 236 void extendDef(SlotIndex Idx, unsigned LocNo, 237 LiveInterval *LI, const VNInfo *VNI, 238 LiveIntervals &LIS, MachineDominatorTree &MDT); 239 240 /// computeIntervals - Compute the live intervals of all locations after 241 /// collecting all their def points. 242 void computeIntervals(LiveIntervals &LIS, MachineDominatorTree &MDT); 243 244 void print(raw_ostream&, const TargetRegisterInfo*); 245 }; 246 } // namespace 247 248 /// LDVImpl - Implementation of the LiveDebugVariables pass. 249 namespace { 250 class LDVImpl { 251 LiveDebugVariables &pass; 252 LocMap::Allocator allocator; 253 MachineFunction *MF; 254 LiveIntervals *LIS; 255 MachineDominatorTree *MDT; 256 const TargetRegisterInfo *TRI; 257 258 /// userValues - All allocated UserValue instances. 259 SmallVector<UserValue*, 8> userValues; 260 261 /// Map virtual register to eq class leader. 262 typedef DenseMap<unsigned, UserValue*> VRMap; 263 VRMap virtRegMap; 264 265 /// Map user variable to eq class leader. 266 typedef DenseMap<const MDNode *, UserValue*> UVMap; 267 UVMap userVarMap; 268 269 /// getUserValue - Find or create a UserValue. 270 UserValue *getUserValue(const MDNode *Var, unsigned Offset); 271 272 /// mapVirtReg - Map virtual register to an equivalence class. 273 void mapVirtReg(unsigned VirtReg, UserValue *EC); 274 275 /// handleDebugValue - Add DBG_VALUE instruction to our maps. 276 /// @param MI DBG_VALUE instruction 277 /// @param Idx Last valid SLotIndex before instruction. 278 /// @return True if the DBG_VALUE instruction should be deleted. 279 bool handleDebugValue(MachineInstr *MI, SlotIndex Idx); 280 281 /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding 282 /// a UserValue def for each instruction. 283 /// @param mf MachineFunction to be scanned. 284 /// @return True if any debug values were found. 285 bool collectDebugValues(MachineFunction &mf); 286 287 /// computeIntervals - Compute the live intervals of all user values after 288 /// collecting all their def points. 289 void computeIntervals(); 290 291 public: 292 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} 293 bool runOnMachineFunction(MachineFunction &mf); 294 295 /// clear - Relase all memory. 296 void clear() { 297 DeleteContainerPointers(userValues); 298 userValues.clear(); 299 virtRegMap.clear(); 300 userVarMap.clear(); 301 } 302 303 void print(raw_ostream&); 304 }; 305 } // namespace 306 307 void Location::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 308 switch (Kind) { 309 case locUndef: 310 OS << "undef"; 311 return; 312 case locImm: 313 OS << "int:" << Data.ImmVal; 314 return; 315 case locFPImm: 316 OS << "fp:" << Data.CFP->getValueAPF().convertToDouble(); 317 return; 318 default: 319 if (isReg()) { 320 if (TargetRegisterInfo::isVirtualRegister(Kind)) { 321 OS << "%reg" << Kind; 322 if (Data.SubIdx) 323 OS << ':' << TRI->getSubRegIndexName(Data.SubIdx); 324 } else 325 OS << '%' << TRI->getName(Kind); 326 } else { 327 OS << "fi#" << ~Kind; 328 if (Data.Offset) 329 OS << '+' << Data.Offset; 330 } 331 return; 332 } 333 } 334 335 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 336 if (const MDString *MDS = dyn_cast<MDString>(variable->getOperand(2))) 337 OS << "!\"" << MDS->getString() << "\"\t"; 338 if (offset) 339 OS << '+' << offset; 340 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 341 OS << " [" << I.start() << ';' << I.stop() << "):"; 342 if (I.value() == ~0u) 343 OS << "undef"; 344 else 345 OS << I.value(); 346 } 347 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 348 OS << " Loc" << i << '='; 349 locations[i].print(OS, TRI); 350 } 351 OS << '\n'; 352 } 353 354 void LDVImpl::print(raw_ostream &OS) { 355 OS << "********** DEBUG VARIABLES **********\n"; 356 for (unsigned i = 0, e = userValues.size(); i != e; ++i) 357 userValues[i]->print(OS, TRI); 358 } 359 360 UserValue *LDVImpl::getUserValue(const MDNode *Var, unsigned Offset) { 361 UserValue *&Leader = userVarMap[Var]; 362 if (Leader) { 363 UserValue *UV = Leader->getLeader(); 364 Leader = UV; 365 for (; UV; UV = UV->getNext()) 366 if (UV->match(Var, Offset)) 367 return UV; 368 } 369 370 UserValue *UV = new UserValue(Var, Offset, allocator); 371 userValues.push_back(UV); 372 Leader = UserValue::merge(Leader, UV); 373 return UV; 374 } 375 376 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) { 377 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs"); 378 UserValue *&Leader = virtRegMap[VirtReg]; 379 Leader = UserValue::merge(Leader, EC); 380 } 381 382 bool LDVImpl::handleDebugValue(MachineInstr *MI, SlotIndex Idx) { 383 // DBG_VALUE loc, offset, variable 384 if (MI->getNumOperands() != 3 || 385 !MI->getOperand(1).isImm() || !MI->getOperand(2).isMetadata()) { 386 DEBUG(dbgs() << "Can't handle " << *MI); 387 return false; 388 } 389 390 // Get or create the UserValue for (variable,offset). 391 unsigned Offset = MI->getOperand(1).getImm(); 392 const MDNode *Var = MI->getOperand(2).getMetadata(); 393 UserValue *UV = getUserValue(Var, Offset); 394 395 // If the location is a virtual register, make sure it is mapped. 396 if (MI->getOperand(0).isReg()) { 397 unsigned Reg = MI->getOperand(0).getReg(); 398 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) 399 mapVirtReg(Reg, UV); 400 } 401 402 UV->addDef(Idx, MI->getOperand(0)); 403 return true; 404 } 405 406 bool LDVImpl::collectDebugValues(MachineFunction &mf) { 407 bool Changed = false; 408 for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE; 409 ++MFI) { 410 MachineBasicBlock *MBB = MFI; 411 for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end(); 412 MBBI != MBBE;) { 413 if (!MBBI->isDebugValue()) { 414 ++MBBI; 415 continue; 416 } 417 // DBG_VALUE has no slot index, use the previous instruction instead. 418 SlotIndex Idx = MBBI == MBB->begin() ? 419 LIS->getMBBStartIdx(MBB) : 420 LIS->getInstructionIndex(llvm::prior(MBBI)).getDefIndex(); 421 // Handle consecutive DBG_VALUE instructions with the same slot index. 422 do { 423 if (handleDebugValue(MBBI, Idx)) { 424 MBBI = MBB->erase(MBBI); 425 Changed = true; 426 } else 427 ++MBBI; 428 } while (MBBI != MBBE && MBBI->isDebugValue()); 429 } 430 } 431 return Changed; 432 } 433 434 void UserValue::extendDef(SlotIndex Idx, unsigned LocNo, 435 LiveInterval *LI, const VNInfo *VNI, 436 LiveIntervals &LIS, MachineDominatorTree &MDT) { 437 SmallVector<SlotIndex, 16> Todo; 438 Todo.push_back(Idx); 439 440 do { 441 SlotIndex Start = Todo.pop_back_val(); 442 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 443 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 444 LocMap::iterator I = locInts.find(Idx); 445 446 // Limit to VNI's live range. 447 bool ToEnd = true; 448 if (LI && VNI) { 449 LiveRange *Range = LI->getLiveRangeContaining(Start); 450 if (!Range || Range->valno != VNI) 451 continue; 452 if (Range->end < Stop) 453 Stop = Range->end, ToEnd = false; 454 } 455 456 // There could already be a short def at Start. 457 if (I.valid() && I.start() <= Start) { 458 // Stop when meeting a different location or an already extended interval. 459 Start = Start.getNextSlot(); 460 if (I.value() != LocNo || I.stop() != Start) 461 continue; 462 // This is a one-slot placeholder. Just skip it. 463 ++I; 464 } 465 466 // Limited by the next def. 467 if (I.valid() && I.start() < Stop) 468 Stop = I.start(), ToEnd = false; 469 470 if (Start >= Stop) 471 continue; 472 473 I.insert(Start, Stop, LocNo); 474 475 // If we extended to the MBB end, propagate down the dominator tree. 476 if (!ToEnd) 477 continue; 478 const std::vector<MachineDomTreeNode*> &Children = 479 MDT.getNode(MBB)->getChildren(); 480 for (unsigned i = 0, e = Children.size(); i != e; ++i) 481 Todo.push_back(LIS.getMBBStartIdx(Children[i]->getBlock())); 482 } while (!Todo.empty()); 483 } 484 485 void 486 UserValue::computeIntervals(LiveIntervals &LIS, MachineDominatorTree &MDT) { 487 SmallVector<std::pair<SlotIndex, unsigned>, 16> Defs; 488 489 // Collect all defs to be extended (Skipping undefs). 490 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 491 if (I.value() != ~0u) 492 Defs.push_back(std::make_pair(I.start(), I.value())); 493 494 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 495 SlotIndex Idx = Defs[i].first; 496 unsigned LocNo = Defs[i].second; 497 const Location &Loc = locations[LocNo]; 498 499 // Register locations are constrained to where the register value is live. 500 if (Loc.isReg() && LIS.hasInterval(Loc.Kind)) { 501 LiveInterval *LI = &LIS.getInterval(Loc.Kind); 502 const VNInfo *VNI = LI->getVNInfoAt(Idx); 503 extendDef(Idx, LocNo, LI, VNI, LIS, MDT); 504 } else 505 extendDef(Idx, LocNo, 0, 0, LIS, MDT); 506 } 507 508 // Finally, erase all the undefs. 509 for (LocMap::iterator I = locInts.begin(); I.valid();) 510 if (I.value() == ~0u) 511 I.erase(); 512 else 513 ++I; 514 } 515 516 void LDVImpl::computeIntervals() { 517 for (unsigned i = 0, e = userValues.size(); i != e; ++i) 518 userValues[i]->computeIntervals(*LIS, *MDT); 519 } 520 521 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) { 522 MF = &mf; 523 LIS = &pass.getAnalysis<LiveIntervals>(); 524 MDT = &pass.getAnalysis<MachineDominatorTree>(); 525 TRI = mf.getTarget().getRegisterInfo(); 526 clear(); 527 DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 528 << ((Value*)mf.getFunction())->getName() 529 << " **********\n"); 530 531 bool Changed = collectDebugValues(mf); 532 computeIntervals(); 533 DEBUG(print(dbgs())); 534 return Changed; 535 } 536 537 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { 538 if (!EnableLDV) 539 return false; 540 if (!pImpl) 541 pImpl = new LDVImpl(this); 542 return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf); 543 } 544 545 void LiveDebugVariables::releaseMemory() { 546 if (pImpl) 547 static_cast<LDVImpl*>(pImpl)->clear(); 548 } 549 550 LiveDebugVariables::~LiveDebugVariables() { 551 if (pImpl) 552 delete static_cast<LDVImpl*>(pImpl); 553 } 554