xref: /llvm-project/llvm/lib/CodeGen/LiveDebugVariables.cpp (revision 45acc9610bc61fe3f76ff192cf70e1757440f383)
1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveDebugVariables analysis.
11 //
12 // Remove all DBG_VALUE instructions referencing virtual registers and replace
13 // them with a data structure tracking where live user variables are kept - in a
14 // virtual register or in a stack slot.
15 //
16 // Allow the data structure to be updated during register allocation when values
17 // are moved between registers and stack slots. Finally emit new DBG_VALUE
18 // instructions after register allocation is complete.
19 //
20 //===----------------------------------------------------------------------===//
21 
22 #include "LiveDebugVariables.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/IntervalMap.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/CodeGen/LexicalScopes.h"
32 #include "llvm/CodeGen/LiveInterval.h"
33 #include "llvm/CodeGen/LiveIntervals.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineDominators.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/SlotIndexes.h"
42 #include "llvm/CodeGen/TargetInstrInfo.h"
43 #include "llvm/CodeGen/TargetOpcodes.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/VirtRegMap.h"
47 #include "llvm/Config/llvm-config.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/MC/MCRegisterInfo.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <iterator>
62 #include <memory>
63 #include <utility>
64 
65 using namespace llvm;
66 
67 #define DEBUG_TYPE "livedebugvars"
68 
69 static cl::opt<bool>
70 EnableLDV("live-debug-variables", cl::init(true),
71           cl::desc("Enable the live debug variables pass"), cl::Hidden);
72 
73 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted");
74 
75 char LiveDebugVariables::ID = 0;
76 
77 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE,
78                 "Debug Variable Analysis", false, false)
79 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
80 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
81 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE,
82                 "Debug Variable Analysis", false, false)
83 
84 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const {
85   AU.addRequired<MachineDominatorTree>();
86   AU.addRequiredTransitive<LiveIntervals>();
87   AU.setPreservesAll();
88   MachineFunctionPass::getAnalysisUsage(AU);
89 }
90 
91 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) {
92   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
93 }
94 
95 enum : unsigned { UndefLocNo = ~0U };
96 
97 /// Describes a location by number along with some flags about the original
98 /// usage of the location.
99 class DbgValueLocation {
100 public:
101   DbgValueLocation(unsigned LocNo, bool WasIndirect)
102       : LocNo(LocNo), WasIndirect(WasIndirect) {
103     static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing");
104     assert(locNo() == LocNo && "location truncation");
105   }
106 
107   DbgValueLocation() : LocNo(0), WasIndirect(0) {}
108 
109   unsigned locNo() const {
110     // Fix up the undef location number, which gets truncated.
111     return LocNo == INT_MAX ? UndefLocNo : LocNo;
112   }
113   bool wasIndirect() const { return WasIndirect; }
114   bool isUndef() const { return locNo() == UndefLocNo; }
115 
116   DbgValueLocation changeLocNo(unsigned NewLocNo) const {
117     return DbgValueLocation(NewLocNo, WasIndirect);
118   }
119 
120   friend inline bool operator==(const DbgValueLocation &LHS,
121                                 const DbgValueLocation &RHS) {
122     return LHS.LocNo == RHS.LocNo && LHS.WasIndirect == RHS.WasIndirect;
123   }
124 
125   friend inline bool operator!=(const DbgValueLocation &LHS,
126                                 const DbgValueLocation &RHS) {
127     return !(LHS == RHS);
128   }
129 
130 private:
131   unsigned LocNo : 31;
132   unsigned WasIndirect : 1;
133 };
134 
135 /// LocMap - Map of where a user value is live, and its location.
136 using LocMap = IntervalMap<SlotIndex, DbgValueLocation, 4>;
137 
138 /// SpillOffsetMap - Map of stack slot offsets for spilled locations.
139 /// Non-spilled locations are not added to the map.
140 using SpillOffsetMap = DenseMap<unsigned, unsigned>;
141 
142 namespace {
143 
144 class LDVImpl;
145 
146 /// UserValue - A user value is a part of a debug info user variable.
147 ///
148 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
149 /// holds part of a user variable. The part is identified by a byte offset.
150 ///
151 /// UserValues are grouped into equivalence classes for easier searching. Two
152 /// user values are related if they refer to the same variable, or if they are
153 /// held by the same virtual register. The equivalence class is the transitive
154 /// closure of that relation.
155 class UserValue {
156   const DILocalVariable *Variable; ///< The debug info variable we are part of.
157   const DIExpression *Expression; ///< Any complex address expression.
158   DebugLoc dl;            ///< The debug location for the variable. This is
159                           ///< used by dwarf writer to find lexical scope.
160   UserValue *leader;      ///< Equivalence class leader.
161   UserValue *next = nullptr; ///< Next value in equivalence class, or null.
162 
163   /// Numbered locations referenced by locmap.
164   SmallVector<MachineOperand, 4> locations;
165 
166   /// Map of slot indices where this value is live.
167   LocMap locInts;
168 
169   /// Set of interval start indexes that have been trimmed to the
170   /// lexical scope.
171   SmallSet<SlotIndex, 2> trimmedDefs;
172 
173   /// insertDebugValue - Insert a DBG_VALUE into MBB at Idx for LocNo.
174   void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
175                         SlotIndex StopIdx, DbgValueLocation Loc, bool Spilled,
176                         unsigned SpillOffset, LiveIntervals &LIS,
177                         const TargetInstrInfo &TII,
178                         const TargetRegisterInfo &TRI);
179 
180   /// splitLocation - Replace OldLocNo ranges with NewRegs ranges where NewRegs
181   /// is live. Returns true if any changes were made.
182   bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
183                      LiveIntervals &LIS);
184 
185 public:
186   /// UserValue - Create a new UserValue.
187   UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L,
188             LocMap::Allocator &alloc)
189       : Variable(var), Expression(expr), dl(std::move(L)), leader(this),
190         locInts(alloc) {}
191 
192   /// getLeader - Get the leader of this value's equivalence class.
193   UserValue *getLeader() {
194     UserValue *l = leader;
195     while (l != l->leader)
196       l = l->leader;
197     return leader = l;
198   }
199 
200   /// getNext - Return the next UserValue in the equivalence class.
201   UserValue *getNext() const { return next; }
202 
203   /// match - Does this UserValue match the parameters?
204   bool match(const DILocalVariable *Var, const DIExpression *Expr,
205              const DILocation *IA) const {
206     // FIXME: The fragment should be part of the equivalence class, but not
207     // other things in the expression like stack values.
208     return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA;
209   }
210 
211   /// merge - Merge equivalence classes.
212   static UserValue *merge(UserValue *L1, UserValue *L2) {
213     L2 = L2->getLeader();
214     if (!L1)
215       return L2;
216     L1 = L1->getLeader();
217     if (L1 == L2)
218       return L1;
219     // Splice L2 before L1's members.
220     UserValue *End = L2;
221     while (End->next) {
222       End->leader = L1;
223       End = End->next;
224     }
225     End->leader = L1;
226     End->next = L1->next;
227     L1->next = L2;
228     return L1;
229   }
230 
231   /// Return the location number that matches Loc.
232   ///
233   /// For undef values we always return location number UndefLocNo without
234   /// inserting anything in locations. Since locations is a vector and the
235   /// location number is the position in the vector and UndefLocNo is ~0,
236   /// we would need a very big vector to put the value at the right position.
237   unsigned getLocationNo(const MachineOperand &LocMO) {
238     if (LocMO.isReg()) {
239       if (LocMO.getReg() == 0)
240         return UndefLocNo;
241       // For register locations we dont care about use/def and other flags.
242       for (unsigned i = 0, e = locations.size(); i != e; ++i)
243         if (locations[i].isReg() &&
244             locations[i].getReg() == LocMO.getReg() &&
245             locations[i].getSubReg() == LocMO.getSubReg())
246           return i;
247     } else
248       for (unsigned i = 0, e = locations.size(); i != e; ++i)
249         if (LocMO.isIdenticalTo(locations[i]))
250           return i;
251     locations.push_back(LocMO);
252     // We are storing a MachineOperand outside a MachineInstr.
253     locations.back().clearParent();
254     // Don't store def operands.
255     if (locations.back().isReg()) {
256       if (locations.back().isDef())
257         locations.back().setIsDead(false);
258       locations.back().setIsUse();
259     }
260     return locations.size() - 1;
261   }
262 
263   /// mapVirtRegs - Ensure that all virtual register locations are mapped.
264   void mapVirtRegs(LDVImpl *LDV);
265 
266   /// addDef - Add a definition point to this value.
267   void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect) {
268     DbgValueLocation Loc(getLocationNo(LocMO), IsIndirect);
269     // Add a singular (Idx,Idx) -> Loc mapping.
270     LocMap::iterator I = locInts.find(Idx);
271     if (!I.valid() || I.start() != Idx)
272       I.insert(Idx, Idx.getNextSlot(), Loc);
273     else
274       // A later DBG_VALUE at the same SlotIndex overrides the old location.
275       I.setValue(Loc);
276   }
277 
278   /// extendDef - Extend the current definition as far as possible down.
279   /// Stop when meeting an existing def or when leaving the live
280   /// range of VNI.
281   /// End points where VNI is no longer live are added to Kills.
282   /// @param Idx   Starting point for the definition.
283   /// @param Loc   Location number to propagate.
284   /// @param LR    Restrict liveness to where LR has the value VNI. May be null.
285   /// @param VNI   When LR is not null, this is the value to restrict to.
286   /// @param Kills Append end points of VNI's live range to Kills.
287   /// @param LIS   Live intervals analysis.
288   void extendDef(SlotIndex Idx, DbgValueLocation Loc,
289                  LiveRange *LR, const VNInfo *VNI,
290                  SmallVectorImpl<SlotIndex> *Kills,
291                  LiveIntervals &LIS);
292 
293   /// addDefsFromCopies - The value in LI/LocNo may be copies to other
294   /// registers. Determine if any of the copies are available at the kill
295   /// points, and add defs if possible.
296   /// @param LI      Scan for copies of the value in LI->reg.
297   /// @param LocNo   Location number of LI->reg.
298   /// @param WasIndirect Indicates if the original use of LI->reg was indirect
299   /// @param Kills   Points where the range of LocNo could be extended.
300   /// @param NewDefs Append (Idx, LocNo) of inserted defs here.
301   void addDefsFromCopies(
302       LiveInterval *LI, unsigned LocNo, bool WasIndirect,
303       const SmallVectorImpl<SlotIndex> &Kills,
304       SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
305       MachineRegisterInfo &MRI, LiveIntervals &LIS);
306 
307   /// computeIntervals - Compute the live intervals of all locations after
308   /// collecting all their def points.
309   void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
310                         LiveIntervals &LIS, LexicalScopes &LS);
311 
312   /// splitRegister - Replace OldReg ranges with NewRegs ranges where NewRegs is
313   /// live. Returns true if any changes were made.
314   bool splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
315                      LiveIntervals &LIS);
316 
317   /// rewriteLocations - Rewrite virtual register locations according to the
318   /// provided virtual register map. Record the stack slot offsets for the
319   /// locations that were spilled.
320   void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
321                         const TargetInstrInfo &TII,
322                         const TargetRegisterInfo &TRI,
323                         SpillOffsetMap &SpillOffsets);
324 
325   /// emitDebugValues - Recreate DBG_VALUE instruction from data structures.
326   void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
327                        const TargetInstrInfo &TII,
328                        const TargetRegisterInfo &TRI,
329                        const SpillOffsetMap &SpillOffsets);
330 
331   /// getDebugLoc - Return DebugLoc of this UserValue.
332   DebugLoc getDebugLoc() { return dl;}
333 
334   void print(raw_ostream &, const TargetRegisterInfo *);
335 };
336 
337 /// LDVImpl - Implementation of the LiveDebugVariables pass.
338 class LDVImpl {
339   LiveDebugVariables &pass;
340   LocMap::Allocator allocator;
341   MachineFunction *MF = nullptr;
342   LiveIntervals *LIS;
343   const TargetRegisterInfo *TRI;
344 
345   /// Whether emitDebugValues is called.
346   bool EmitDone = false;
347 
348   /// Whether the machine function is modified during the pass.
349   bool ModifiedMF = false;
350 
351   /// userValues - All allocated UserValue instances.
352   SmallVector<std::unique_ptr<UserValue>, 8> userValues;
353 
354   /// Map virtual register to eq class leader.
355   using VRMap = DenseMap<unsigned, UserValue *>;
356   VRMap virtRegToEqClass;
357 
358   /// Map user variable to eq class leader.
359   using UVMap = DenseMap<const DILocalVariable *, UserValue *>;
360   UVMap userVarMap;
361 
362   /// getUserValue - Find or create a UserValue.
363   UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr,
364                           const DebugLoc &DL);
365 
366   /// lookupVirtReg - Find the EC leader for VirtReg or null.
367   UserValue *lookupVirtReg(unsigned VirtReg);
368 
369   /// handleDebugValue - Add DBG_VALUE instruction to our maps.
370   /// @param MI  DBG_VALUE instruction
371   /// @param Idx Last valid SLotIndex before instruction.
372   /// @return    True if the DBG_VALUE instruction should be deleted.
373   bool handleDebugValue(MachineInstr &MI, SlotIndex Idx);
374 
375   /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding
376   /// a UserValue def for each instruction.
377   /// @param mf MachineFunction to be scanned.
378   /// @return True if any debug values were found.
379   bool collectDebugValues(MachineFunction &mf);
380 
381   /// computeIntervals - Compute the live intervals of all user values after
382   /// collecting all their def points.
383   void computeIntervals();
384 
385 public:
386   LDVImpl(LiveDebugVariables *ps) : pass(*ps) {}
387 
388   bool runOnMachineFunction(MachineFunction &mf);
389 
390   /// clear - Release all memory.
391   void clear() {
392     MF = nullptr;
393     userValues.clear();
394     virtRegToEqClass.clear();
395     userVarMap.clear();
396     // Make sure we call emitDebugValues if the machine function was modified.
397     assert((!ModifiedMF || EmitDone) &&
398            "Dbg values are not emitted in LDV");
399     EmitDone = false;
400     ModifiedMF = false;
401   }
402 
403   /// mapVirtReg - Map virtual register to an equivalence class.
404   void mapVirtReg(unsigned VirtReg, UserValue *EC);
405 
406   /// splitRegister -  Replace all references to OldReg with NewRegs.
407   void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs);
408 
409   /// emitDebugValues - Recreate DBG_VALUE instruction from data structures.
410   void emitDebugValues(VirtRegMap *VRM);
411 
412   void print(raw_ostream&);
413 };
414 
415 } // end anonymous namespace
416 
417 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
418 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS,
419                           const LLVMContext &Ctx) {
420   if (!DL)
421     return;
422 
423   auto *Scope = cast<DIScope>(DL.getScope());
424   // Omit the directory, because it's likely to be long and uninteresting.
425   CommentOS << Scope->getFilename();
426   CommentOS << ':' << DL.getLine();
427   if (DL.getCol() != 0)
428     CommentOS << ':' << DL.getCol();
429 
430   DebugLoc InlinedAtDL = DL.getInlinedAt();
431   if (!InlinedAtDL)
432     return;
433 
434   CommentOS << " @[ ";
435   printDebugLoc(InlinedAtDL, CommentOS, Ctx);
436   CommentOS << " ]";
437 }
438 
439 static void printExtendedName(raw_ostream &OS, const DILocalVariable *V,
440                               const DILocation *DL) {
441   const LLVMContext &Ctx = V->getContext();
442   StringRef Res = V->getName();
443   if (!Res.empty())
444     OS << Res << "," << V->getLine();
445   if (auto *InlinedAt = DL->getInlinedAt()) {
446     if (DebugLoc InlinedAtDL = InlinedAt) {
447       OS << " @[";
448       printDebugLoc(InlinedAtDL, OS, Ctx);
449       OS << "]";
450     }
451   }
452 }
453 
454 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
455   auto *DV = cast<DILocalVariable>(Variable);
456   OS << "!\"";
457   printExtendedName(OS, DV, dl);
458 
459   OS << "\"\t";
460   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
461     OS << " [" << I.start() << ';' << I.stop() << "):";
462     if (I.value().isUndef())
463       OS << "undef";
464     else {
465       OS << I.value().locNo();
466       if (I.value().wasIndirect())
467         OS << " ind";
468     }
469   }
470   for (unsigned i = 0, e = locations.size(); i != e; ++i) {
471     OS << " Loc" << i << '=';
472     locations[i].print(OS, TRI);
473   }
474   OS << '\n';
475 }
476 
477 void LDVImpl::print(raw_ostream &OS) {
478   OS << "********** DEBUG VARIABLES **********\n";
479   for (unsigned i = 0, e = userValues.size(); i != e; ++i)
480     userValues[i]->print(OS, TRI);
481 }
482 #endif
483 
484 void UserValue::mapVirtRegs(LDVImpl *LDV) {
485   for (unsigned i = 0, e = locations.size(); i != e; ++i)
486     if (locations[i].isReg() &&
487         TargetRegisterInfo::isVirtualRegister(locations[i].getReg()))
488       LDV->mapVirtReg(locations[i].getReg(), this);
489 }
490 
491 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var,
492                                  const DIExpression *Expr, const DebugLoc &DL) {
493   UserValue *&Leader = userVarMap[Var];
494   if (Leader) {
495     UserValue *UV = Leader->getLeader();
496     Leader = UV;
497     for (; UV; UV = UV->getNext())
498       if (UV->match(Var, Expr, DL->getInlinedAt()))
499         return UV;
500   }
501 
502   userValues.push_back(
503       llvm::make_unique<UserValue>(Var, Expr, DL, allocator));
504   UserValue *UV = userValues.back().get();
505   Leader = UserValue::merge(Leader, UV);
506   return UV;
507 }
508 
509 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) {
510   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs");
511   UserValue *&Leader = virtRegToEqClass[VirtReg];
512   Leader = UserValue::merge(Leader, EC);
513 }
514 
515 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) {
516   if (UserValue *UV = virtRegToEqClass.lookup(VirtReg))
517     return UV->getLeader();
518   return nullptr;
519 }
520 
521 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) {
522   // DBG_VALUE loc, offset, variable
523   if (MI.getNumOperands() != 4 ||
524       !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) ||
525       !MI.getOperand(2).isMetadata()) {
526     LLVM_DEBUG(dbgs() << "Can't handle " << MI);
527     return false;
528   }
529 
530   // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual
531   // register that hasn't been defined yet. If we do not remove those here, then
532   // the re-insertion of the DBG_VALUE instruction after register allocation
533   // will be incorrect.
534   // TODO: If earlier passes are corrected to generate sane debug information
535   // (and if the machine verifier is improved to catch this), then these checks
536   // could be removed or replaced by asserts.
537   bool Discard = false;
538   if (MI.getOperand(0).isReg() &&
539       TargetRegisterInfo::isVirtualRegister(MI.getOperand(0).getReg())) {
540     const unsigned Reg = MI.getOperand(0).getReg();
541     if (!LIS->hasInterval(Reg)) {
542       // The DBG_VALUE is described by a virtual register that does not have a
543       // live interval. Discard the DBG_VALUE.
544       Discard = true;
545       LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx
546                         << " " << MI);
547     } else {
548       // The DBG_VALUE is only valid if either Reg is live out from Idx, or Reg
549       // is defined dead at Idx (where Idx is the slot index for the instruction
550       // preceeding the DBG_VALUE).
551       const LiveInterval &LI = LIS->getInterval(Reg);
552       LiveQueryResult LRQ = LI.Query(Idx);
553       if (!LRQ.valueOutOrDead()) {
554         // We have found a DBG_VALUE with the value in a virtual register that
555         // is not live. Discard the DBG_VALUE.
556         Discard = true;
557         LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx
558                           << " " << MI);
559       }
560     }
561   }
562 
563   // Get or create the UserValue for (variable,offset) here.
564   bool IsIndirect = MI.getOperand(1).isImm();
565   if (IsIndirect)
566     assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
567   const DILocalVariable *Var = MI.getDebugVariable();
568   const DIExpression *Expr = MI.getDebugExpression();
569   UserValue *UV =
570       getUserValue(Var, Expr, MI.getDebugLoc());
571   if (!Discard)
572     UV->addDef(Idx, MI.getOperand(0), IsIndirect);
573   else {
574     MachineOperand MO = MachineOperand::CreateReg(0U, false);
575     MO.setIsDebug();
576     UV->addDef(Idx, MO, false);
577   }
578   return true;
579 }
580 
581 bool LDVImpl::collectDebugValues(MachineFunction &mf) {
582   bool Changed = false;
583   for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE;
584        ++MFI) {
585     MachineBasicBlock *MBB = &*MFI;
586     for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end();
587          MBBI != MBBE;) {
588       // Use the first debug instruction in the sequence to get a SlotIndex
589       // for following consecutive debug instructions.
590       if (!MBBI->isDebugInstr()) {
591         ++MBBI;
592         continue;
593       }
594       // Debug instructions has no slot index. Use the previous
595       // non-debug instruction's SlotIndex as its SlotIndex.
596       SlotIndex Idx =
597           MBBI == MBB->begin()
598               ? LIS->getMBBStartIdx(MBB)
599               : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot();
600       // Handle consecutive debug instructions with the same slot index.
601       do {
602         // Only handle DBG_VALUE in handleDebugValue(). Skip all other
603         // kinds of debug instructions.
604         if (MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) {
605           MBBI = MBB->erase(MBBI);
606           Changed = true;
607         } else
608           ++MBBI;
609       } while (MBBI != MBBE && MBBI->isDebugInstr());
610     }
611   }
612   return Changed;
613 }
614 
615 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a
616 /// data-flow analysis to propagate them beyond basic block boundaries.
617 void UserValue::extendDef(SlotIndex Idx, DbgValueLocation Loc, LiveRange *LR,
618                           const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills,
619                           LiveIntervals &LIS) {
620   SlotIndex Start = Idx;
621   MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
622   SlotIndex Stop = LIS.getMBBEndIdx(MBB);
623   LocMap::iterator I = locInts.find(Start);
624 
625   // Limit to VNI's live range.
626   bool ToEnd = true;
627   if (LR && VNI) {
628     LiveInterval::Segment *Segment = LR->getSegmentContaining(Start);
629     if (!Segment || Segment->valno != VNI) {
630       if (Kills)
631         Kills->push_back(Start);
632       return;
633     }
634     if (Segment->end < Stop) {
635       Stop = Segment->end;
636       ToEnd = false;
637     }
638   }
639 
640   // There could already be a short def at Start.
641   if (I.valid() && I.start() <= Start) {
642     // Stop when meeting a different location or an already extended interval.
643     Start = Start.getNextSlot();
644     if (I.value() != Loc || I.stop() != Start)
645       return;
646     // This is a one-slot placeholder. Just skip it.
647     ++I;
648   }
649 
650   // Limited by the next def.
651   if (I.valid() && I.start() < Stop) {
652     Stop = I.start();
653     ToEnd = false;
654   }
655   // Limited by VNI's live range.
656   else if (!ToEnd && Kills)
657     Kills->push_back(Stop);
658 
659   if (Start < Stop)
660     I.insert(Start, Stop, Loc);
661 }
662 
663 void UserValue::addDefsFromCopies(
664     LiveInterval *LI, unsigned LocNo, bool WasIndirect,
665     const SmallVectorImpl<SlotIndex> &Kills,
666     SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
667     MachineRegisterInfo &MRI, LiveIntervals &LIS) {
668   if (Kills.empty())
669     return;
670   // Don't track copies from physregs, there are too many uses.
671   if (!TargetRegisterInfo::isVirtualRegister(LI->reg))
672     return;
673 
674   // Collect all the (vreg, valno) pairs that are copies of LI.
675   SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues;
676   for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) {
677     MachineInstr *MI = MO.getParent();
678     // Copies of the full value.
679     if (MO.getSubReg() || !MI->isCopy())
680       continue;
681     unsigned DstReg = MI->getOperand(0).getReg();
682 
683     // Don't follow copies to physregs. These are usually setting up call
684     // arguments, and the argument registers are always call clobbered. We are
685     // better off in the source register which could be a callee-saved register,
686     // or it could be spilled.
687     if (!TargetRegisterInfo::isVirtualRegister(DstReg))
688       continue;
689 
690     // Is LocNo extended to reach this copy? If not, another def may be blocking
691     // it, or we are looking at a wrong value of LI.
692     SlotIndex Idx = LIS.getInstructionIndex(*MI);
693     LocMap::iterator I = locInts.find(Idx.getRegSlot(true));
694     if (!I.valid() || I.value().locNo() != LocNo)
695       continue;
696 
697     if (!LIS.hasInterval(DstReg))
698       continue;
699     LiveInterval *DstLI = &LIS.getInterval(DstReg);
700     const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot());
701     assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value");
702     CopyValues.push_back(std::make_pair(DstLI, DstVNI));
703   }
704 
705   if (CopyValues.empty())
706     return;
707 
708   LLVM_DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI
709                     << '\n');
710 
711   // Try to add defs of the copied values for each kill point.
712   for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
713     SlotIndex Idx = Kills[i];
714     for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) {
715       LiveInterval *DstLI = CopyValues[j].first;
716       const VNInfo *DstVNI = CopyValues[j].second;
717       if (DstLI->getVNInfoAt(Idx) != DstVNI)
718         continue;
719       // Check that there isn't already a def at Idx
720       LocMap::iterator I = locInts.find(Idx);
721       if (I.valid() && I.start() <= Idx)
722         continue;
723       LLVM_DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #"
724                         << DstVNI->id << " in " << *DstLI << '\n');
725       MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def);
726       assert(CopyMI && CopyMI->isCopy() && "Bad copy value");
727       unsigned LocNo = getLocationNo(CopyMI->getOperand(0));
728       DbgValueLocation NewLoc(LocNo, WasIndirect);
729       I.insert(Idx, Idx.getNextSlot(), NewLoc);
730       NewDefs.push_back(std::make_pair(Idx, NewLoc));
731       break;
732     }
733   }
734 }
735 
736 void UserValue::computeIntervals(MachineRegisterInfo &MRI,
737                                  const TargetRegisterInfo &TRI,
738                                  LiveIntervals &LIS, LexicalScopes &LS) {
739   SmallVector<std::pair<SlotIndex, DbgValueLocation>, 16> Defs;
740 
741   // Collect all defs to be extended (Skipping undefs).
742   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I)
743     if (!I.value().isUndef())
744       Defs.push_back(std::make_pair(I.start(), I.value()));
745 
746   // Extend all defs, and possibly add new ones along the way.
747   for (unsigned i = 0; i != Defs.size(); ++i) {
748     SlotIndex Idx = Defs[i].first;
749     DbgValueLocation Loc = Defs[i].second;
750     const MachineOperand &LocMO = locations[Loc.locNo()];
751 
752     if (!LocMO.isReg()) {
753       extendDef(Idx, Loc, nullptr, nullptr, nullptr, LIS);
754       continue;
755     }
756 
757     // Register locations are constrained to where the register value is live.
758     if (TargetRegisterInfo::isVirtualRegister(LocMO.getReg())) {
759       LiveInterval *LI = nullptr;
760       const VNInfo *VNI = nullptr;
761       if (LIS.hasInterval(LocMO.getReg())) {
762         LI = &LIS.getInterval(LocMO.getReg());
763         VNI = LI->getVNInfoAt(Idx);
764       }
765       SmallVector<SlotIndex, 16> Kills;
766       extendDef(Idx, Loc, LI, VNI, &Kills, LIS);
767       // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that
768       // if the original location for example is %vreg0:sub_hi, and we find a
769       // full register copy in addDefsFromCopies (at the moment it only handles
770       // full register copies), then we must add the sub1 sub-register index to
771       // the new location. However, that is only possible if the new virtual
772       // register is of the same regclass (or if there is an equivalent
773       // sub-register in that regclass). For now, simply skip handling copies if
774       // a sub-register is involved.
775       if (LI && !LocMO.getSubReg())
776         addDefsFromCopies(LI, Loc.locNo(), Loc.wasIndirect(), Kills, Defs, MRI,
777                           LIS);
778       continue;
779     }
780 
781     // For physregs, we only mark the start slot idx. DwarfDebug will see it
782     // as if the DBG_VALUE is valid up until the end of the basic block, or
783     // the next def of the physical register. So we do not need to extend the
784     // range. It might actually happen that the DBG_VALUE is the last use of
785     // the physical register (e.g. if this is an unused input argument to a
786     // function).
787   }
788 
789   // The computed intervals may extend beyond the range of the debug
790   // location's lexical scope. In this case, splitting of an interval
791   // can result in an interval outside of the scope being created,
792   // causing extra unnecessary DBG_VALUEs to be emitted. To prevent
793   // this, trim the intervals to the lexical scope.
794 
795   LexicalScope *Scope = LS.findLexicalScope(dl);
796   if (!Scope)
797     return;
798 
799   SlotIndex PrevEnd;
800   LocMap::iterator I = locInts.begin();
801 
802   // Iterate over the lexical scope ranges. Each time round the loop
803   // we check the intervals for overlap with the end of the previous
804   // range and the start of the next. The first range is handled as
805   // a special case where there is no PrevEnd.
806   for (const InsnRange &Range : Scope->getRanges()) {
807     SlotIndex RStart = LIS.getInstructionIndex(*Range.first);
808     SlotIndex REnd = LIS.getInstructionIndex(*Range.second);
809 
810     // At the start of each iteration I has been advanced so that
811     // I.stop() >= PrevEnd. Check for overlap.
812     if (PrevEnd && I.start() < PrevEnd) {
813       SlotIndex IStop = I.stop();
814       DbgValueLocation Loc = I.value();
815 
816       // Stop overlaps previous end - trim the end of the interval to
817       // the scope range.
818       I.setStopUnchecked(PrevEnd);
819       ++I;
820 
821       // If the interval also overlaps the start of the "next" (i.e.
822       // current) range create a new interval for the remainder (which
823       // may be further trimmed).
824       if (RStart < IStop)
825         I.insert(RStart, IStop, Loc);
826     }
827 
828     // Advance I so that I.stop() >= RStart, and check for overlap.
829     I.advanceTo(RStart);
830     if (!I.valid())
831       return;
832 
833     if (I.start() < RStart) {
834       // Interval start overlaps range - trim to the scope range.
835       I.setStartUnchecked(RStart);
836       // Remember that this interval was trimmed.
837       trimmedDefs.insert(RStart);
838     }
839 
840     // The end of a lexical scope range is the last instruction in the
841     // range. To convert to an interval we need the index of the
842     // instruction after it.
843     REnd = REnd.getNextIndex();
844 
845     // Advance I to first interval outside current range.
846     I.advanceTo(REnd);
847     if (!I.valid())
848       return;
849 
850     PrevEnd = REnd;
851   }
852 
853   // Check for overlap with end of final range.
854   if (PrevEnd && I.start() < PrevEnd)
855     I.setStopUnchecked(PrevEnd);
856 }
857 
858 void LDVImpl::computeIntervals() {
859   LexicalScopes LS;
860   LS.initialize(*MF);
861 
862   for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
863     userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS);
864     userValues[i]->mapVirtRegs(this);
865   }
866 }
867 
868 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) {
869   clear();
870   MF = &mf;
871   LIS = &pass.getAnalysis<LiveIntervals>();
872   TRI = mf.getSubtarget().getRegisterInfo();
873   LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
874                     << mf.getName() << " **********\n");
875 
876   bool Changed = collectDebugValues(mf);
877   computeIntervals();
878   LLVM_DEBUG(print(dbgs()));
879   ModifiedMF = Changed;
880   return Changed;
881 }
882 
883 static void removeDebugValues(MachineFunction &mf) {
884   for (MachineBasicBlock &MBB : mf) {
885     for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) {
886       if (!MBBI->isDebugValue()) {
887         ++MBBI;
888         continue;
889       }
890       MBBI = MBB.erase(MBBI);
891     }
892   }
893 }
894 
895 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
896   if (!EnableLDV)
897     return false;
898   if (!mf.getFunction().getSubprogram()) {
899     removeDebugValues(mf);
900     return false;
901   }
902   if (!pImpl)
903     pImpl = new LDVImpl(this);
904   return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf);
905 }
906 
907 void LiveDebugVariables::releaseMemory() {
908   if (pImpl)
909     static_cast<LDVImpl*>(pImpl)->clear();
910 }
911 
912 LiveDebugVariables::~LiveDebugVariables() {
913   if (pImpl)
914     delete static_cast<LDVImpl*>(pImpl);
915 }
916 
917 //===----------------------------------------------------------------------===//
918 //                           Live Range Splitting
919 //===----------------------------------------------------------------------===//
920 
921 bool
922 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
923                          LiveIntervals& LIS) {
924   LLVM_DEBUG({
925     dbgs() << "Splitting Loc" << OldLocNo << '\t';
926     print(dbgs(), nullptr);
927   });
928   bool DidChange = false;
929   LocMap::iterator LocMapI;
930   LocMapI.setMap(locInts);
931   for (unsigned i = 0; i != NewRegs.size(); ++i) {
932     LiveInterval *LI = &LIS.getInterval(NewRegs[i]);
933     if (LI->empty())
934       continue;
935 
936     // Don't allocate the new LocNo until it is needed.
937     unsigned NewLocNo = UndefLocNo;
938 
939     // Iterate over the overlaps between locInts and LI.
940     LocMapI.find(LI->beginIndex());
941     if (!LocMapI.valid())
942       continue;
943     LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start());
944     LiveInterval::iterator LIE = LI->end();
945     while (LocMapI.valid() && LII != LIE) {
946       // At this point, we know that LocMapI.stop() > LII->start.
947       LII = LI->advanceTo(LII, LocMapI.start());
948       if (LII == LIE)
949         break;
950 
951       // Now LII->end > LocMapI.start(). Do we have an overlap?
952       if (LocMapI.value().locNo() == OldLocNo && LII->start < LocMapI.stop()) {
953         // Overlapping correct location. Allocate NewLocNo now.
954         if (NewLocNo == UndefLocNo) {
955           MachineOperand MO = MachineOperand::CreateReg(LI->reg, false);
956           MO.setSubReg(locations[OldLocNo].getSubReg());
957           NewLocNo = getLocationNo(MO);
958           DidChange = true;
959         }
960 
961         SlotIndex LStart = LocMapI.start();
962         SlotIndex LStop  = LocMapI.stop();
963         DbgValueLocation OldLoc = LocMapI.value();
964 
965         // Trim LocMapI down to the LII overlap.
966         if (LStart < LII->start)
967           LocMapI.setStartUnchecked(LII->start);
968         if (LStop > LII->end)
969           LocMapI.setStopUnchecked(LII->end);
970 
971         // Change the value in the overlap. This may trigger coalescing.
972         LocMapI.setValue(OldLoc.changeLocNo(NewLocNo));
973 
974         // Re-insert any removed OldLocNo ranges.
975         if (LStart < LocMapI.start()) {
976           LocMapI.insert(LStart, LocMapI.start(), OldLoc);
977           ++LocMapI;
978           assert(LocMapI.valid() && "Unexpected coalescing");
979         }
980         if (LStop > LocMapI.stop()) {
981           ++LocMapI;
982           LocMapI.insert(LII->end, LStop, OldLoc);
983           --LocMapI;
984         }
985       }
986 
987       // Advance to the next overlap.
988       if (LII->end < LocMapI.stop()) {
989         if (++LII == LIE)
990           break;
991         LocMapI.advanceTo(LII->start);
992       } else {
993         ++LocMapI;
994         if (!LocMapI.valid())
995           break;
996         LII = LI->advanceTo(LII, LocMapI.start());
997       }
998     }
999   }
1000 
1001   // Finally, remove any remaining OldLocNo intervals and OldLocNo itself.
1002   locations.erase(locations.begin() + OldLocNo);
1003   LocMapI.goToBegin();
1004   while (LocMapI.valid()) {
1005     DbgValueLocation v = LocMapI.value();
1006     if (v.locNo() == OldLocNo) {
1007       LLVM_DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';'
1008                         << LocMapI.stop() << ")\n");
1009       LocMapI.erase();
1010     } else {
1011       // Undef values always have location number UndefLocNo, so don't change
1012       // locNo in that case. See getLocationNo().
1013       if (!v.isUndef() && v.locNo() > OldLocNo)
1014         LocMapI.setValueUnchecked(v.changeLocNo(v.locNo() - 1));
1015       ++LocMapI;
1016     }
1017   }
1018 
1019   LLVM_DEBUG({
1020     dbgs() << "Split result: \t";
1021     print(dbgs(), nullptr);
1022   });
1023   return DidChange;
1024 }
1025 
1026 bool
1027 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
1028                          LiveIntervals &LIS) {
1029   bool DidChange = false;
1030   // Split locations referring to OldReg. Iterate backwards so splitLocation can
1031   // safely erase unused locations.
1032   for (unsigned i = locations.size(); i ; --i) {
1033     unsigned LocNo = i-1;
1034     const MachineOperand *Loc = &locations[LocNo];
1035     if (!Loc->isReg() || Loc->getReg() != OldReg)
1036       continue;
1037     DidChange |= splitLocation(LocNo, NewRegs, LIS);
1038   }
1039   return DidChange;
1040 }
1041 
1042 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) {
1043   bool DidChange = false;
1044   for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext())
1045     DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS);
1046 
1047   if (!DidChange)
1048     return;
1049 
1050   // Map all of the new virtual registers.
1051   UserValue *UV = lookupVirtReg(OldReg);
1052   for (unsigned i = 0; i != NewRegs.size(); ++i)
1053     mapVirtReg(NewRegs[i], UV);
1054 }
1055 
1056 void LiveDebugVariables::
1057 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) {
1058   if (pImpl)
1059     static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs);
1060 }
1061 
1062 void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
1063                                  const TargetInstrInfo &TII,
1064                                  const TargetRegisterInfo &TRI,
1065                                  SpillOffsetMap &SpillOffsets) {
1066   // Build a set of new locations with new numbers so we can coalesce our
1067   // IntervalMap if two vreg intervals collapse to the same physical location.
1068   // Use MapVector instead of SetVector because MapVector::insert returns the
1069   // position of the previously or newly inserted element. The boolean value
1070   // tracks if the location was produced by a spill.
1071   // FIXME: This will be problematic if we ever support direct and indirect
1072   // frame index locations, i.e. expressing both variables in memory and
1073   // 'int x, *px = &x'. The "spilled" bit must become part of the location.
1074   MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations;
1075   SmallVector<unsigned, 4> LocNoMap(locations.size());
1076   for (unsigned I = 0, E = locations.size(); I != E; ++I) {
1077     bool Spilled = false;
1078     unsigned SpillOffset = 0;
1079     MachineOperand Loc = locations[I];
1080     // Only virtual registers are rewritten.
1081     if (Loc.isReg() && Loc.getReg() &&
1082         TargetRegisterInfo::isVirtualRegister(Loc.getReg())) {
1083       unsigned VirtReg = Loc.getReg();
1084       if (VRM.isAssignedReg(VirtReg) &&
1085           TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) {
1086         // This can create a %noreg operand in rare cases when the sub-register
1087         // index is no longer available. That means the user value is in a
1088         // non-existent sub-register, and %noreg is exactly what we want.
1089         Loc.substPhysReg(VRM.getPhys(VirtReg), TRI);
1090       } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) {
1091         // Retrieve the stack slot offset.
1092         unsigned SpillSize;
1093         const MachineRegisterInfo &MRI = MF.getRegInfo();
1094         const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg);
1095         bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize,
1096                                              SpillOffset, MF);
1097 
1098         // FIXME: Invalidate the location if the offset couldn't be calculated.
1099         (void)Success;
1100 
1101         Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg));
1102         Spilled = true;
1103       } else {
1104         Loc.setReg(0);
1105         Loc.setSubReg(0);
1106       }
1107     }
1108 
1109     // Insert this location if it doesn't already exist and record a mapping
1110     // from the old number to the new number.
1111     auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}});
1112     unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first);
1113     LocNoMap[I] = NewLocNo;
1114   }
1115 
1116   // Rewrite the locations and record the stack slot offsets for spills.
1117   locations.clear();
1118   SpillOffsets.clear();
1119   for (auto &Pair : NewLocations) {
1120     bool Spilled;
1121     unsigned SpillOffset;
1122     std::tie(Spilled, SpillOffset) = Pair.second;
1123     locations.push_back(Pair.first);
1124     if (Spilled) {
1125       unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair);
1126       SpillOffsets[NewLocNo] = SpillOffset;
1127     }
1128   }
1129 
1130   // Update the interval map, but only coalesce left, since intervals to the
1131   // right use the old location numbers. This should merge two contiguous
1132   // DBG_VALUE intervals with different vregs that were allocated to the same
1133   // physical register.
1134   for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
1135     DbgValueLocation Loc = I.value();
1136     // Undef values don't exist in locations (and thus not in LocNoMap either)
1137     // so skip over them. See getLocationNo().
1138     if (Loc.isUndef())
1139       continue;
1140     unsigned NewLocNo = LocNoMap[Loc.locNo()];
1141     I.setValueUnchecked(Loc.changeLocNo(NewLocNo));
1142     I.setStart(I.start());
1143   }
1144 }
1145 
1146 /// Find an iterator for inserting a DBG_VALUE instruction.
1147 static MachineBasicBlock::iterator
1148 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx,
1149                    LiveIntervals &LIS) {
1150   SlotIndex Start = LIS.getMBBStartIdx(MBB);
1151   Idx = Idx.getBaseIndex();
1152 
1153   // Try to find an insert location by going backwards from Idx.
1154   MachineInstr *MI;
1155   while (!(MI = LIS.getInstructionFromIndex(Idx))) {
1156     // We've reached the beginning of MBB.
1157     if (Idx == Start) {
1158       MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
1159       return I;
1160     }
1161     Idx = Idx.getPrevIndex();
1162   }
1163 
1164   // Don't insert anything after the first terminator, though.
1165   return MI->isTerminator() ? MBB->getFirstTerminator() :
1166                               std::next(MachineBasicBlock::iterator(MI));
1167 }
1168 
1169 /// Find an iterator for inserting the next DBG_VALUE instruction
1170 /// (or end if no more insert locations found).
1171 static MachineBasicBlock::iterator
1172 findNextInsertLocation(MachineBasicBlock *MBB,
1173                        MachineBasicBlock::iterator I,
1174                        SlotIndex StopIdx, MachineOperand &LocMO,
1175                        LiveIntervals &LIS,
1176                        const TargetRegisterInfo &TRI) {
1177   if (!LocMO.isReg())
1178     return MBB->instr_end();
1179   unsigned Reg = LocMO.getReg();
1180 
1181   // Find the next instruction in the MBB that define the register Reg.
1182   while (I != MBB->end() && !I->isTerminator()) {
1183     if (!LIS.isNotInMIMap(*I) &&
1184         SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I)))
1185       break;
1186     if (I->definesRegister(Reg, &TRI))
1187       // The insert location is directly after the instruction/bundle.
1188       return std::next(I);
1189     ++I;
1190   }
1191   return MBB->end();
1192 }
1193 
1194 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
1195                                  SlotIndex StopIdx, DbgValueLocation Loc,
1196                                  bool Spilled, unsigned SpillOffset,
1197                                  LiveIntervals &LIS, const TargetInstrInfo &TII,
1198                                  const TargetRegisterInfo &TRI) {
1199   SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB);
1200   // Only search within the current MBB.
1201   StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx;
1202   MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS);
1203   // Undef values don't exist in locations so create new "noreg" register MOs
1204   // for them. See getLocationNo().
1205   MachineOperand MO = !Loc.isUndef() ?
1206     locations[Loc.locNo()] :
1207     MachineOperand::CreateReg(/* Reg */ 0, /* isDef */ false, /* isImp */ false,
1208                               /* isKill */ false, /* isDead */ false,
1209                               /* isUndef */ false, /* isEarlyClobber */ false,
1210                               /* SubReg */ 0, /* isDebug */ true);
1211 
1212   ++NumInsertedDebugValues;
1213 
1214   assert(cast<DILocalVariable>(Variable)
1215              ->isValidLocationForIntrinsic(getDebugLoc()) &&
1216          "Expected inlined-at fields to agree");
1217 
1218   // If the location was spilled, the new DBG_VALUE will be indirect. If the
1219   // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate
1220   // that the original virtual register was a pointer. Also, add the stack slot
1221   // offset for the spilled register to the expression.
1222   const DIExpression *Expr = Expression;
1223   bool IsIndirect = Loc.wasIndirect();
1224   if (Spilled) {
1225     auto Deref = IsIndirect ? DIExpression::WithDeref : DIExpression::NoDeref;
1226     Expr =
1227         DIExpression::prepend(Expr, DIExpression::NoDeref, SpillOffset, Deref);
1228     IsIndirect = true;
1229   }
1230 
1231   assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index");
1232 
1233   do {
1234     BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE),
1235             IsIndirect, MO, Variable, Expr);
1236 
1237     // Continue and insert DBG_VALUES after every redefinition of register
1238     // associated with the debug value within the range
1239     I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI);
1240   } while (I != MBB->end());
1241 }
1242 
1243 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
1244                                 const TargetInstrInfo &TII,
1245                                 const TargetRegisterInfo &TRI,
1246                                 const SpillOffsetMap &SpillOffsets) {
1247   MachineFunction::iterator MFEnd = VRM->getMachineFunction().end();
1248 
1249   for (LocMap::const_iterator I = locInts.begin(); I.valid();) {
1250     SlotIndex Start = I.start();
1251     SlotIndex Stop = I.stop();
1252     DbgValueLocation Loc = I.value();
1253     auto SpillIt =
1254         !Loc.isUndef() ? SpillOffsets.find(Loc.locNo()) : SpillOffsets.end();
1255     bool Spilled = SpillIt != SpillOffsets.end();
1256     unsigned SpillOffset = Spilled ? SpillIt->second : 0;
1257 
1258     // If the interval start was trimmed to the lexical scope insert the
1259     // DBG_VALUE at the previous index (otherwise it appears after the
1260     // first instruction in the range).
1261     if (trimmedDefs.count(Start))
1262       Start = Start.getPrevIndex();
1263 
1264     LLVM_DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << Loc.locNo());
1265     MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1266     SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB);
1267 
1268     LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1269     insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, SpillOffset, LIS, TII,
1270                      TRI);
1271     // This interval may span multiple basic blocks.
1272     // Insert a DBG_VALUE into each one.
1273     while (Stop > MBBEnd) {
1274       // Move to the next block.
1275       Start = MBBEnd;
1276       if (++MBB == MFEnd)
1277         break;
1278       MBBEnd = LIS.getMBBEndIdx(&*MBB);
1279       LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1280       insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, SpillOffset, LIS, TII,
1281                        TRI);
1282     }
1283     LLVM_DEBUG(dbgs() << '\n');
1284     if (MBB == MFEnd)
1285       break;
1286 
1287     ++I;
1288   }
1289 }
1290 
1291 void LDVImpl::emitDebugValues(VirtRegMap *VRM) {
1292   LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
1293   if (!MF)
1294     return;
1295   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1296   SpillOffsetMap SpillOffsets;
1297   for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
1298     LLVM_DEBUG(userValues[i]->print(dbgs(), TRI));
1299     userValues[i]->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets);
1300     userValues[i]->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets);
1301   }
1302   EmitDone = true;
1303 }
1304 
1305 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) {
1306   if (pImpl)
1307     static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM);
1308 }
1309 
1310 bool LiveDebugVariables::doInitialization(Module &M) {
1311   return Pass::doInitialization(M);
1312 }
1313 
1314 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1315 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const {
1316   if (pImpl)
1317     static_cast<LDVImpl*>(pImpl)->print(dbgs());
1318 }
1319 #endif
1320