1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveDebugVariables analysis. 11 // 12 // Remove all DBG_VALUE instructions referencing virtual registers and replace 13 // them with a data structure tracking where live user variables are kept - in a 14 // virtual register or in a stack slot. 15 // 16 // Allow the data structure to be updated during register allocation when values 17 // are moved between registers and stack slots. Finally emit new DBG_VALUE 18 // instructions after register allocation is complete. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "LiveDebugVariables.h" 23 #include "llvm/ADT/IntervalMap.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/CodeGen/LexicalScopes.h" 26 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/Passes.h" 32 #include "llvm/CodeGen/VirtRegMap.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DebugInfo.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Target/TargetInstrInfo.h" 41 #include "llvm/Target/TargetMachine.h" 42 #include "llvm/Target/TargetRegisterInfo.h" 43 #include "llvm/Target/TargetSubtargetInfo.h" 44 #include <memory> 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "livedebug" 49 50 static cl::opt<bool> 51 EnableLDV("live-debug-variables", cl::init(true), 52 cl::desc("Enable the live debug variables pass"), cl::Hidden); 53 54 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); 55 char LiveDebugVariables::ID = 0; 56 57 INITIALIZE_PASS_BEGIN(LiveDebugVariables, "livedebugvars", 58 "Debug Variable Analysis", false, false) 59 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 60 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 61 INITIALIZE_PASS_END(LiveDebugVariables, "livedebugvars", 62 "Debug Variable Analysis", false, false) 63 64 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { 65 AU.addRequired<MachineDominatorTree>(); 66 AU.addRequiredTransitive<LiveIntervals>(); 67 AU.setPreservesAll(); 68 MachineFunctionPass::getAnalysisUsage(AU); 69 } 70 71 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID), pImpl(nullptr) { 72 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 73 } 74 75 /// LocMap - Map of where a user value is live, and its location. 76 typedef IntervalMap<SlotIndex, unsigned, 4> LocMap; 77 78 namespace { 79 /// UserValueScopes - Keeps track of lexical scopes associated with a 80 /// user value's source location. 81 class UserValueScopes { 82 DebugLoc DL; 83 LexicalScopes &LS; 84 SmallPtrSet<const MachineBasicBlock *, 4> LBlocks; 85 86 public: 87 UserValueScopes(DebugLoc D, LexicalScopes &L) : DL(D), LS(L) {} 88 89 /// dominates - Return true if current scope dominates at least one machine 90 /// instruction in a given machine basic block. 91 bool dominates(MachineBasicBlock *MBB) { 92 if (LBlocks.empty()) 93 LS.getMachineBasicBlocks(DL, LBlocks); 94 if (LBlocks.count(MBB) != 0 || LS.dominates(DL, MBB)) 95 return true; 96 return false; 97 } 98 }; 99 } // end anonymous namespace 100 101 /// UserValue - A user value is a part of a debug info user variable. 102 /// 103 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 104 /// holds part of a user variable. The part is identified by a byte offset. 105 /// 106 /// UserValues are grouped into equivalence classes for easier searching. Two 107 /// user values are related if they refer to the same variable, or if they are 108 /// held by the same virtual register. The equivalence class is the transitive 109 /// closure of that relation. 110 namespace { 111 class LDVImpl; 112 class UserValue { 113 const MDNode *Variable; ///< The debug info variable we are part of. 114 const MDNode *Expression; ///< Any complex address expression. 115 unsigned offset; ///< Byte offset into variable. 116 bool IsIndirect; ///< true if this is a register-indirect+offset value. 117 DebugLoc dl; ///< The debug location for the variable. This is 118 ///< used by dwarf writer to find lexical scope. 119 UserValue *leader; ///< Equivalence class leader. 120 UserValue *next; ///< Next value in equivalence class, or null. 121 122 /// Numbered locations referenced by locmap. 123 SmallVector<MachineOperand, 4> locations; 124 125 /// Map of slot indices where this value is live. 126 LocMap locInts; 127 128 /// coalesceLocation - After LocNo was changed, check if it has become 129 /// identical to another location, and coalesce them. This may cause LocNo or 130 /// a later location to be erased, but no earlier location will be erased. 131 void coalesceLocation(unsigned LocNo); 132 133 /// insertDebugValue - Insert a DBG_VALUE into MBB at Idx for LocNo. 134 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx, unsigned LocNo, 135 LiveIntervals &LIS, const TargetInstrInfo &TII); 136 137 /// splitLocation - Replace OldLocNo ranges with NewRegs ranges where NewRegs 138 /// is live. Returns true if any changes were made. 139 bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 140 LiveIntervals &LIS); 141 142 public: 143 /// UserValue - Create a new UserValue. 144 UserValue(const MDNode *var, const MDNode *expr, unsigned o, bool i, 145 DebugLoc L, LocMap::Allocator &alloc) 146 : Variable(var), Expression(expr), offset(o), IsIndirect(i), dl(L), 147 leader(this), next(nullptr), locInts(alloc) {} 148 149 /// getLeader - Get the leader of this value's equivalence class. 150 UserValue *getLeader() { 151 UserValue *l = leader; 152 while (l != l->leader) 153 l = l->leader; 154 return leader = l; 155 } 156 157 /// getNext - Return the next UserValue in the equivalence class. 158 UserValue *getNext() const { return next; } 159 160 /// match - Does this UserValue match the parameters? 161 bool match(const MDNode *Var, const MDNode *Expr, unsigned Offset, 162 bool indirect) const { 163 return Var == Variable && Expr == Expression && Offset == offset && 164 indirect == IsIndirect; 165 } 166 167 /// merge - Merge equivalence classes. 168 static UserValue *merge(UserValue *L1, UserValue *L2) { 169 L2 = L2->getLeader(); 170 if (!L1) 171 return L2; 172 L1 = L1->getLeader(); 173 if (L1 == L2) 174 return L1; 175 // Splice L2 before L1's members. 176 UserValue *End = L2; 177 while (End->next) 178 End->leader = L1, End = End->next; 179 End->leader = L1; 180 End->next = L1->next; 181 L1->next = L2; 182 return L1; 183 } 184 185 /// getLocationNo - Return the location number that matches Loc. 186 unsigned getLocationNo(const MachineOperand &LocMO) { 187 if (LocMO.isReg()) { 188 if (LocMO.getReg() == 0) 189 return ~0u; 190 // For register locations we dont care about use/def and other flags. 191 for (unsigned i = 0, e = locations.size(); i != e; ++i) 192 if (locations[i].isReg() && 193 locations[i].getReg() == LocMO.getReg() && 194 locations[i].getSubReg() == LocMO.getSubReg()) 195 return i; 196 } else 197 for (unsigned i = 0, e = locations.size(); i != e; ++i) 198 if (LocMO.isIdenticalTo(locations[i])) 199 return i; 200 locations.push_back(LocMO); 201 // We are storing a MachineOperand outside a MachineInstr. 202 locations.back().clearParent(); 203 // Don't store def operands. 204 if (locations.back().isReg()) 205 locations.back().setIsUse(); 206 return locations.size() - 1; 207 } 208 209 /// mapVirtRegs - Ensure that all virtual register locations are mapped. 210 void mapVirtRegs(LDVImpl *LDV); 211 212 /// addDef - Add a definition point to this value. 213 void addDef(SlotIndex Idx, const MachineOperand &LocMO) { 214 // Add a singular (Idx,Idx) -> Loc mapping. 215 LocMap::iterator I = locInts.find(Idx); 216 if (!I.valid() || I.start() != Idx) 217 I.insert(Idx, Idx.getNextSlot(), getLocationNo(LocMO)); 218 else 219 // A later DBG_VALUE at the same SlotIndex overrides the old location. 220 I.setValue(getLocationNo(LocMO)); 221 } 222 223 /// extendDef - Extend the current definition as far as possible down the 224 /// dominator tree. Stop when meeting an existing def or when leaving the live 225 /// range of VNI. 226 /// End points where VNI is no longer live are added to Kills. 227 /// @param Idx Starting point for the definition. 228 /// @param LocNo Location number to propagate. 229 /// @param LR Restrict liveness to where LR has the value VNI. May be null. 230 /// @param VNI When LR is not null, this is the value to restrict to. 231 /// @param Kills Append end points of VNI's live range to Kills. 232 /// @param LIS Live intervals analysis. 233 /// @param MDT Dominator tree. 234 void extendDef(SlotIndex Idx, unsigned LocNo, 235 LiveRange *LR, const VNInfo *VNI, 236 SmallVectorImpl<SlotIndex> *Kills, 237 LiveIntervals &LIS, MachineDominatorTree &MDT, 238 UserValueScopes &UVS); 239 240 /// addDefsFromCopies - The value in LI/LocNo may be copies to other 241 /// registers. Determine if any of the copies are available at the kill 242 /// points, and add defs if possible. 243 /// @param LI Scan for copies of the value in LI->reg. 244 /// @param LocNo Location number of LI->reg. 245 /// @param Kills Points where the range of LocNo could be extended. 246 /// @param NewDefs Append (Idx, LocNo) of inserted defs here. 247 void addDefsFromCopies(LiveInterval *LI, unsigned LocNo, 248 const SmallVectorImpl<SlotIndex> &Kills, 249 SmallVectorImpl<std::pair<SlotIndex, unsigned> > &NewDefs, 250 MachineRegisterInfo &MRI, 251 LiveIntervals &LIS); 252 253 /// computeIntervals - Compute the live intervals of all locations after 254 /// collecting all their def points. 255 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, 256 LiveIntervals &LIS, MachineDominatorTree &MDT, 257 UserValueScopes &UVS); 258 259 /// splitRegister - Replace OldReg ranges with NewRegs ranges where NewRegs is 260 /// live. Returns true if any changes were made. 261 bool splitRegister(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 262 LiveIntervals &LIS); 263 264 /// rewriteLocations - Rewrite virtual register locations according to the 265 /// provided virtual register map. 266 void rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI); 267 268 /// emitDebugValues - Recreate DBG_VALUE instruction from data structures. 269 void emitDebugValues(VirtRegMap *VRM, 270 LiveIntervals &LIS, const TargetInstrInfo &TRI); 271 272 /// getDebugLoc - Return DebugLoc of this UserValue. 273 DebugLoc getDebugLoc() { return dl;} 274 void print(raw_ostream &, const TargetRegisterInfo *); 275 }; 276 } // namespace 277 278 /// LDVImpl - Implementation of the LiveDebugVariables pass. 279 namespace { 280 class LDVImpl { 281 LiveDebugVariables &pass; 282 LocMap::Allocator allocator; 283 MachineFunction *MF; 284 LiveIntervals *LIS; 285 LexicalScopes LS; 286 MachineDominatorTree *MDT; 287 const TargetRegisterInfo *TRI; 288 289 /// Whether emitDebugValues is called. 290 bool EmitDone; 291 /// Whether the machine function is modified during the pass. 292 bool ModifiedMF; 293 294 /// userValues - All allocated UserValue instances. 295 SmallVector<std::unique_ptr<UserValue>, 8> userValues; 296 297 /// Map virtual register to eq class leader. 298 typedef DenseMap<unsigned, UserValue*> VRMap; 299 VRMap virtRegToEqClass; 300 301 /// Map user variable to eq class leader. 302 typedef DenseMap<const MDNode *, UserValue*> UVMap; 303 UVMap userVarMap; 304 305 /// getUserValue - Find or create a UserValue. 306 UserValue *getUserValue(const MDNode *Var, const MDNode *Expr, 307 unsigned Offset, bool IsIndirect, DebugLoc DL); 308 309 /// lookupVirtReg - Find the EC leader for VirtReg or null. 310 UserValue *lookupVirtReg(unsigned VirtReg); 311 312 /// handleDebugValue - Add DBG_VALUE instruction to our maps. 313 /// @param MI DBG_VALUE instruction 314 /// @param Idx Last valid SLotIndex before instruction. 315 /// @return True if the DBG_VALUE instruction should be deleted. 316 bool handleDebugValue(MachineInstr *MI, SlotIndex Idx); 317 318 /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding 319 /// a UserValue def for each instruction. 320 /// @param mf MachineFunction to be scanned. 321 /// @return True if any debug values were found. 322 bool collectDebugValues(MachineFunction &mf); 323 324 /// computeIntervals - Compute the live intervals of all user values after 325 /// collecting all their def points. 326 void computeIntervals(); 327 328 public: 329 LDVImpl(LiveDebugVariables *ps) 330 : pass(*ps), MF(nullptr), EmitDone(false), ModifiedMF(false) {} 331 bool runOnMachineFunction(MachineFunction &mf); 332 333 /// clear - Release all memory. 334 void clear() { 335 MF = nullptr; 336 userValues.clear(); 337 virtRegToEqClass.clear(); 338 userVarMap.clear(); 339 // Make sure we call emitDebugValues if the machine function was modified. 340 assert((!ModifiedMF || EmitDone) && 341 "Dbg values are not emitted in LDV"); 342 EmitDone = false; 343 ModifiedMF = false; 344 LS.reset(); 345 } 346 347 /// mapVirtReg - Map virtual register to an equivalence class. 348 void mapVirtReg(unsigned VirtReg, UserValue *EC); 349 350 /// splitRegister - Replace all references to OldReg with NewRegs. 351 void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs); 352 353 /// emitDebugValues - Recreate DBG_VALUE instruction from data structures. 354 void emitDebugValues(VirtRegMap *VRM); 355 356 void print(raw_ostream&); 357 }; 358 } // namespace 359 360 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 361 DIVariable DV(Variable); 362 OS << "!\""; 363 DV.printExtendedName(OS); 364 OS << "\"\t"; 365 if (offset) 366 OS << '+' << offset; 367 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 368 OS << " [" << I.start() << ';' << I.stop() << "):"; 369 if (I.value() == ~0u) 370 OS << "undef"; 371 else 372 OS << I.value(); 373 } 374 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 375 OS << " Loc" << i << '='; 376 locations[i].print(OS, TRI); 377 } 378 OS << '\n'; 379 } 380 381 void LDVImpl::print(raw_ostream &OS) { 382 OS << "********** DEBUG VARIABLES **********\n"; 383 for (unsigned i = 0, e = userValues.size(); i != e; ++i) 384 userValues[i]->print(OS, TRI); 385 } 386 387 void UserValue::coalesceLocation(unsigned LocNo) { 388 unsigned KeepLoc = 0; 389 for (unsigned e = locations.size(); KeepLoc != e; ++KeepLoc) { 390 if (KeepLoc == LocNo) 391 continue; 392 if (locations[KeepLoc].isIdenticalTo(locations[LocNo])) 393 break; 394 } 395 // No matches. 396 if (KeepLoc == locations.size()) 397 return; 398 399 // Keep the smaller location, erase the larger one. 400 unsigned EraseLoc = LocNo; 401 if (KeepLoc > EraseLoc) 402 std::swap(KeepLoc, EraseLoc); 403 locations.erase(locations.begin() + EraseLoc); 404 405 // Rewrite values. 406 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 407 unsigned v = I.value(); 408 if (v == EraseLoc) 409 I.setValue(KeepLoc); // Coalesce when possible. 410 else if (v > EraseLoc) 411 I.setValueUnchecked(v-1); // Avoid coalescing with untransformed values. 412 } 413 } 414 415 void UserValue::mapVirtRegs(LDVImpl *LDV) { 416 for (unsigned i = 0, e = locations.size(); i != e; ++i) 417 if (locations[i].isReg() && 418 TargetRegisterInfo::isVirtualRegister(locations[i].getReg())) 419 LDV->mapVirtReg(locations[i].getReg(), this); 420 } 421 422 UserValue *LDVImpl::getUserValue(const MDNode *Var, const MDNode *Expr, 423 unsigned Offset, bool IsIndirect, 424 DebugLoc DL) { 425 UserValue *&Leader = userVarMap[Var]; 426 if (Leader) { 427 UserValue *UV = Leader->getLeader(); 428 Leader = UV; 429 for (; UV; UV = UV->getNext()) 430 if (UV->match(Var, Expr, Offset, IsIndirect)) 431 return UV; 432 } 433 434 userValues.push_back( 435 make_unique<UserValue>(Var, Expr, Offset, IsIndirect, DL, allocator)); 436 UserValue *UV = userValues.back().get(); 437 Leader = UserValue::merge(Leader, UV); 438 return UV; 439 } 440 441 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) { 442 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs"); 443 UserValue *&Leader = virtRegToEqClass[VirtReg]; 444 Leader = UserValue::merge(Leader, EC); 445 } 446 447 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) { 448 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) 449 return UV->getLeader(); 450 return nullptr; 451 } 452 453 bool LDVImpl::handleDebugValue(MachineInstr *MI, SlotIndex Idx) { 454 // DBG_VALUE loc, offset, variable 455 if (MI->getNumOperands() != 4 || 456 !(MI->getOperand(1).isReg() || MI->getOperand(1).isImm()) || 457 !MI->getOperand(2).isMetadata()) { 458 DEBUG(dbgs() << "Can't handle " << *MI); 459 return false; 460 } 461 462 // Get or create the UserValue for (variable,offset). 463 bool IsIndirect = MI->isIndirectDebugValue(); 464 unsigned Offset = IsIndirect ? MI->getOperand(1).getImm() : 0; 465 const MDNode *Var = MI->getDebugVariable(); 466 const MDNode *Expr = MI->getDebugExpression(); 467 //here. 468 UserValue *UV = 469 getUserValue(Var, Expr, Offset, IsIndirect, MI->getDebugLoc()); 470 UV->addDef(Idx, MI->getOperand(0)); 471 return true; 472 } 473 474 bool LDVImpl::collectDebugValues(MachineFunction &mf) { 475 bool Changed = false; 476 for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE; 477 ++MFI) { 478 MachineBasicBlock *MBB = MFI; 479 for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end(); 480 MBBI != MBBE;) { 481 if (!MBBI->isDebugValue()) { 482 ++MBBI; 483 continue; 484 } 485 // DBG_VALUE has no slot index, use the previous instruction instead. 486 SlotIndex Idx = MBBI == MBB->begin() ? 487 LIS->getMBBStartIdx(MBB) : 488 LIS->getInstructionIndex(std::prev(MBBI)).getRegSlot(); 489 // Handle consecutive DBG_VALUE instructions with the same slot index. 490 do { 491 if (handleDebugValue(MBBI, Idx)) { 492 MBBI = MBB->erase(MBBI); 493 Changed = true; 494 } else 495 ++MBBI; 496 } while (MBBI != MBBE && MBBI->isDebugValue()); 497 } 498 } 499 return Changed; 500 } 501 502 void UserValue::extendDef(SlotIndex Idx, unsigned LocNo, 503 LiveRange *LR, const VNInfo *VNI, 504 SmallVectorImpl<SlotIndex> *Kills, 505 LiveIntervals &LIS, MachineDominatorTree &MDT, 506 UserValueScopes &UVS) { 507 SmallVector<SlotIndex, 16> Todo; 508 Todo.push_back(Idx); 509 do { 510 SlotIndex Start = Todo.pop_back_val(); 511 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 512 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 513 LocMap::iterator I = locInts.find(Start); 514 515 // Limit to VNI's live range. 516 bool ToEnd = true; 517 if (LR && VNI) { 518 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); 519 if (!Segment || Segment->valno != VNI) { 520 if (Kills) 521 Kills->push_back(Start); 522 continue; 523 } 524 if (Segment->end < Stop) 525 Stop = Segment->end, ToEnd = false; 526 } 527 528 // There could already be a short def at Start. 529 if (I.valid() && I.start() <= Start) { 530 // Stop when meeting a different location or an already extended interval. 531 Start = Start.getNextSlot(); 532 if (I.value() != LocNo || I.stop() != Start) 533 continue; 534 // This is a one-slot placeholder. Just skip it. 535 ++I; 536 } 537 538 // Limited by the next def. 539 if (I.valid() && I.start() < Stop) 540 Stop = I.start(), ToEnd = false; 541 // Limited by VNI's live range. 542 else if (!ToEnd && Kills) 543 Kills->push_back(Stop); 544 545 if (Start >= Stop) 546 continue; 547 548 I.insert(Start, Stop, LocNo); 549 550 // If we extended to the MBB end, propagate down the dominator tree. 551 if (!ToEnd) 552 continue; 553 const std::vector<MachineDomTreeNode*> &Children = 554 MDT.getNode(MBB)->getChildren(); 555 for (unsigned i = 0, e = Children.size(); i != e; ++i) { 556 MachineBasicBlock *MBB = Children[i]->getBlock(); 557 if (UVS.dominates(MBB)) 558 Todo.push_back(LIS.getMBBStartIdx(MBB)); 559 } 560 } while (!Todo.empty()); 561 } 562 563 void 564 UserValue::addDefsFromCopies(LiveInterval *LI, unsigned LocNo, 565 const SmallVectorImpl<SlotIndex> &Kills, 566 SmallVectorImpl<std::pair<SlotIndex, unsigned> > &NewDefs, 567 MachineRegisterInfo &MRI, LiveIntervals &LIS) { 568 if (Kills.empty()) 569 return; 570 // Don't track copies from physregs, there are too many uses. 571 if (!TargetRegisterInfo::isVirtualRegister(LI->reg)) 572 return; 573 574 // Collect all the (vreg, valno) pairs that are copies of LI. 575 SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues; 576 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) { 577 MachineInstr *MI = MO.getParent(); 578 // Copies of the full value. 579 if (MO.getSubReg() || !MI->isCopy()) 580 continue; 581 unsigned DstReg = MI->getOperand(0).getReg(); 582 583 // Don't follow copies to physregs. These are usually setting up call 584 // arguments, and the argument registers are always call clobbered. We are 585 // better off in the source register which could be a callee-saved register, 586 // or it could be spilled. 587 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 588 continue; 589 590 // Is LocNo extended to reach this copy? If not, another def may be blocking 591 // it, or we are looking at a wrong value of LI. 592 SlotIndex Idx = LIS.getInstructionIndex(MI); 593 LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); 594 if (!I.valid() || I.value() != LocNo) 595 continue; 596 597 if (!LIS.hasInterval(DstReg)) 598 continue; 599 LiveInterval *DstLI = &LIS.getInterval(DstReg); 600 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); 601 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); 602 CopyValues.push_back(std::make_pair(DstLI, DstVNI)); 603 } 604 605 if (CopyValues.empty()) 606 return; 607 608 DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI << '\n'); 609 610 // Try to add defs of the copied values for each kill point. 611 for (unsigned i = 0, e = Kills.size(); i != e; ++i) { 612 SlotIndex Idx = Kills[i]; 613 for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) { 614 LiveInterval *DstLI = CopyValues[j].first; 615 const VNInfo *DstVNI = CopyValues[j].second; 616 if (DstLI->getVNInfoAt(Idx) != DstVNI) 617 continue; 618 // Check that there isn't already a def at Idx 619 LocMap::iterator I = locInts.find(Idx); 620 if (I.valid() && I.start() <= Idx) 621 continue; 622 DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #" 623 << DstVNI->id << " in " << *DstLI << '\n'); 624 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); 625 assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); 626 unsigned LocNo = getLocationNo(CopyMI->getOperand(0)); 627 I.insert(Idx, Idx.getNextSlot(), LocNo); 628 NewDefs.push_back(std::make_pair(Idx, LocNo)); 629 break; 630 } 631 } 632 } 633 634 void 635 UserValue::computeIntervals(MachineRegisterInfo &MRI, 636 const TargetRegisterInfo &TRI, 637 LiveIntervals &LIS, 638 MachineDominatorTree &MDT, 639 UserValueScopes &UVS) { 640 SmallVector<std::pair<SlotIndex, unsigned>, 16> Defs; 641 642 // Collect all defs to be extended (Skipping undefs). 643 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 644 if (I.value() != ~0u) 645 Defs.push_back(std::make_pair(I.start(), I.value())); 646 647 // Extend all defs, and possibly add new ones along the way. 648 for (unsigned i = 0; i != Defs.size(); ++i) { 649 SlotIndex Idx = Defs[i].first; 650 unsigned LocNo = Defs[i].second; 651 const MachineOperand &Loc = locations[LocNo]; 652 653 if (!Loc.isReg()) { 654 extendDef(Idx, LocNo, nullptr, nullptr, nullptr, LIS, MDT, UVS); 655 continue; 656 } 657 658 // Register locations are constrained to where the register value is live. 659 if (TargetRegisterInfo::isVirtualRegister(Loc.getReg())) { 660 LiveInterval *LI = nullptr; 661 const VNInfo *VNI = nullptr; 662 if (LIS.hasInterval(Loc.getReg())) { 663 LI = &LIS.getInterval(Loc.getReg()); 664 VNI = LI->getVNInfoAt(Idx); 665 } 666 SmallVector<SlotIndex, 16> Kills; 667 extendDef(Idx, LocNo, LI, VNI, &Kills, LIS, MDT, UVS); 668 if (LI) 669 addDefsFromCopies(LI, LocNo, Kills, Defs, MRI, LIS); 670 continue; 671 } 672 673 // For physregs, use the live range of the first regunit as a guide. 674 unsigned Unit = *MCRegUnitIterator(Loc.getReg(), &TRI); 675 LiveRange *LR = &LIS.getRegUnit(Unit); 676 const VNInfo *VNI = LR->getVNInfoAt(Idx); 677 // Don't track copies from physregs, it is too expensive. 678 extendDef(Idx, LocNo, LR, VNI, nullptr, LIS, MDT, UVS); 679 } 680 681 // Finally, erase all the undefs. 682 for (LocMap::iterator I = locInts.begin(); I.valid();) 683 if (I.value() == ~0u) 684 I.erase(); 685 else 686 ++I; 687 } 688 689 void LDVImpl::computeIntervals() { 690 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 691 UserValueScopes UVS(userValues[i]->getDebugLoc(), LS); 692 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, *MDT, UVS); 693 userValues[i]->mapVirtRegs(this); 694 } 695 } 696 697 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) { 698 clear(); 699 MF = &mf; 700 LIS = &pass.getAnalysis<LiveIntervals>(); 701 MDT = &pass.getAnalysis<MachineDominatorTree>(); 702 TRI = mf.getSubtarget().getRegisterInfo(); 703 LS.initialize(mf); 704 DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 705 << mf.getName() << " **********\n"); 706 707 bool Changed = collectDebugValues(mf); 708 computeIntervals(); 709 DEBUG(print(dbgs())); 710 ModifiedMF = Changed; 711 return Changed; 712 } 713 714 static void removeDebugValues(MachineFunction &mf) { 715 for (MachineBasicBlock &MBB : mf) { 716 for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) { 717 if (!MBBI->isDebugValue()) { 718 ++MBBI; 719 continue; 720 } 721 MBBI = MBB.erase(MBBI); 722 } 723 } 724 } 725 726 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { 727 if (!EnableLDV) 728 return false; 729 if (!FunctionDIs.count(mf.getFunction())) { 730 removeDebugValues(mf); 731 return false; 732 } 733 if (!pImpl) 734 pImpl = new LDVImpl(this); 735 return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf); 736 } 737 738 void LiveDebugVariables::releaseMemory() { 739 if (pImpl) 740 static_cast<LDVImpl*>(pImpl)->clear(); 741 } 742 743 LiveDebugVariables::~LiveDebugVariables() { 744 if (pImpl) 745 delete static_cast<LDVImpl*>(pImpl); 746 } 747 748 //===----------------------------------------------------------------------===// 749 // Live Range Splitting 750 //===----------------------------------------------------------------------===// 751 752 bool 753 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 754 LiveIntervals& LIS) { 755 DEBUG({ 756 dbgs() << "Splitting Loc" << OldLocNo << '\t'; 757 print(dbgs(), nullptr); 758 }); 759 bool DidChange = false; 760 LocMap::iterator LocMapI; 761 LocMapI.setMap(locInts); 762 for (unsigned i = 0; i != NewRegs.size(); ++i) { 763 LiveInterval *LI = &LIS.getInterval(NewRegs[i]); 764 if (LI->empty()) 765 continue; 766 767 // Don't allocate the new LocNo until it is needed. 768 unsigned NewLocNo = ~0u; 769 770 // Iterate over the overlaps between locInts and LI. 771 LocMapI.find(LI->beginIndex()); 772 if (!LocMapI.valid()) 773 continue; 774 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); 775 LiveInterval::iterator LIE = LI->end(); 776 while (LocMapI.valid() && LII != LIE) { 777 // At this point, we know that LocMapI.stop() > LII->start. 778 LII = LI->advanceTo(LII, LocMapI.start()); 779 if (LII == LIE) 780 break; 781 782 // Now LII->end > LocMapI.start(). Do we have an overlap? 783 if (LocMapI.value() == OldLocNo && LII->start < LocMapI.stop()) { 784 // Overlapping correct location. Allocate NewLocNo now. 785 if (NewLocNo == ~0u) { 786 MachineOperand MO = MachineOperand::CreateReg(LI->reg, false); 787 MO.setSubReg(locations[OldLocNo].getSubReg()); 788 NewLocNo = getLocationNo(MO); 789 DidChange = true; 790 } 791 792 SlotIndex LStart = LocMapI.start(); 793 SlotIndex LStop = LocMapI.stop(); 794 795 // Trim LocMapI down to the LII overlap. 796 if (LStart < LII->start) 797 LocMapI.setStartUnchecked(LII->start); 798 if (LStop > LII->end) 799 LocMapI.setStopUnchecked(LII->end); 800 801 // Change the value in the overlap. This may trigger coalescing. 802 LocMapI.setValue(NewLocNo); 803 804 // Re-insert any removed OldLocNo ranges. 805 if (LStart < LocMapI.start()) { 806 LocMapI.insert(LStart, LocMapI.start(), OldLocNo); 807 ++LocMapI; 808 assert(LocMapI.valid() && "Unexpected coalescing"); 809 } 810 if (LStop > LocMapI.stop()) { 811 ++LocMapI; 812 LocMapI.insert(LII->end, LStop, OldLocNo); 813 --LocMapI; 814 } 815 } 816 817 // Advance to the next overlap. 818 if (LII->end < LocMapI.stop()) { 819 if (++LII == LIE) 820 break; 821 LocMapI.advanceTo(LII->start); 822 } else { 823 ++LocMapI; 824 if (!LocMapI.valid()) 825 break; 826 LII = LI->advanceTo(LII, LocMapI.start()); 827 } 828 } 829 } 830 831 // Finally, remove any remaining OldLocNo intervals and OldLocNo itself. 832 locations.erase(locations.begin() + OldLocNo); 833 LocMapI.goToBegin(); 834 while (LocMapI.valid()) { 835 unsigned v = LocMapI.value(); 836 if (v == OldLocNo) { 837 DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';' 838 << LocMapI.stop() << ")\n"); 839 LocMapI.erase(); 840 } else { 841 if (v > OldLocNo) 842 LocMapI.setValueUnchecked(v-1); 843 ++LocMapI; 844 } 845 } 846 847 DEBUG({dbgs() << "Split result: \t"; print(dbgs(), nullptr);}); 848 return DidChange; 849 } 850 851 bool 852 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, 853 LiveIntervals &LIS) { 854 bool DidChange = false; 855 // Split locations referring to OldReg. Iterate backwards so splitLocation can 856 // safely erase unused locations. 857 for (unsigned i = locations.size(); i ; --i) { 858 unsigned LocNo = i-1; 859 const MachineOperand *Loc = &locations[LocNo]; 860 if (!Loc->isReg() || Loc->getReg() != OldReg) 861 continue; 862 DidChange |= splitLocation(LocNo, NewRegs, LIS); 863 } 864 return DidChange; 865 } 866 867 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) { 868 bool DidChange = false; 869 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) 870 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); 871 872 if (!DidChange) 873 return; 874 875 // Map all of the new virtual registers. 876 UserValue *UV = lookupVirtReg(OldReg); 877 for (unsigned i = 0; i != NewRegs.size(); ++i) 878 mapVirtReg(NewRegs[i], UV); 879 } 880 881 void LiveDebugVariables:: 882 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) { 883 if (pImpl) 884 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); 885 } 886 887 void 888 UserValue::rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI) { 889 // Iterate over locations in reverse makes it easier to handle coalescing. 890 for (unsigned i = locations.size(); i ; --i) { 891 unsigned LocNo = i-1; 892 MachineOperand &Loc = locations[LocNo]; 893 // Only virtual registers are rewritten. 894 if (!Loc.isReg() || !Loc.getReg() || 895 !TargetRegisterInfo::isVirtualRegister(Loc.getReg())) 896 continue; 897 unsigned VirtReg = Loc.getReg(); 898 if (VRM.isAssignedReg(VirtReg) && 899 TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) { 900 // This can create a %noreg operand in rare cases when the sub-register 901 // index is no longer available. That means the user value is in a 902 // non-existent sub-register, and %noreg is exactly what we want. 903 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); 904 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { 905 // FIXME: Translate SubIdx to a stackslot offset. 906 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); 907 } else { 908 Loc.setReg(0); 909 Loc.setSubReg(0); 910 } 911 coalesceLocation(LocNo); 912 } 913 } 914 915 /// findInsertLocation - Find an iterator for inserting a DBG_VALUE 916 /// instruction. 917 static MachineBasicBlock::iterator 918 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, 919 LiveIntervals &LIS) { 920 SlotIndex Start = LIS.getMBBStartIdx(MBB); 921 Idx = Idx.getBaseIndex(); 922 923 // Try to find an insert location by going backwards from Idx. 924 MachineInstr *MI; 925 while (!(MI = LIS.getInstructionFromIndex(Idx))) { 926 // We've reached the beginning of MBB. 927 if (Idx == Start) { 928 MachineBasicBlock::iterator I = MBB->SkipPHIsAndLabels(MBB->begin()); 929 return I; 930 } 931 Idx = Idx.getPrevIndex(); 932 } 933 934 // Don't insert anything after the first terminator, though. 935 return MI->isTerminator() ? MBB->getFirstTerminator() : 936 std::next(MachineBasicBlock::iterator(MI)); 937 } 938 939 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx, 940 unsigned LocNo, 941 LiveIntervals &LIS, 942 const TargetInstrInfo &TII) { 943 MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS); 944 MachineOperand &Loc = locations[LocNo]; 945 ++NumInsertedDebugValues; 946 947 assert(DIVariable(Variable)->isValidLocationForIntrinsic(getDebugLoc()) && 948 "Expected inlined-at fields to agree"); 949 if (Loc.isReg()) 950 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE), 951 IsIndirect, Loc.getReg(), offset, Variable, Expression); 952 else 953 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE)) 954 .addOperand(Loc) 955 .addImm(offset) 956 .addMetadata(Variable) 957 .addMetadata(Expression); 958 } 959 960 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 961 const TargetInstrInfo &TII) { 962 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); 963 964 for (LocMap::const_iterator I = locInts.begin(); I.valid();) { 965 SlotIndex Start = I.start(); 966 SlotIndex Stop = I.stop(); 967 unsigned LocNo = I.value(); 968 DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << LocNo); 969 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start); 970 SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB); 971 972 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd); 973 insertDebugValue(MBB, Start, LocNo, LIS, TII); 974 // This interval may span multiple basic blocks. 975 // Insert a DBG_VALUE into each one. 976 while(Stop > MBBEnd) { 977 // Move to the next block. 978 Start = MBBEnd; 979 if (++MBB == MFEnd) 980 break; 981 MBBEnd = LIS.getMBBEndIdx(MBB); 982 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd); 983 insertDebugValue(MBB, Start, LocNo, LIS, TII); 984 } 985 DEBUG(dbgs() << '\n'); 986 if (MBB == MFEnd) 987 break; 988 989 ++I; 990 } 991 } 992 993 void LDVImpl::emitDebugValues(VirtRegMap *VRM) { 994 DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); 995 if (!MF) 996 return; 997 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 998 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 999 DEBUG(userValues[i]->print(dbgs(), TRI)); 1000 userValues[i]->rewriteLocations(*VRM, *TRI); 1001 userValues[i]->emitDebugValues(VRM, *LIS, *TII); 1002 } 1003 EmitDone = true; 1004 } 1005 1006 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { 1007 if (pImpl) 1008 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); 1009 } 1010 1011 bool LiveDebugVariables::doInitialization(Module &M) { 1012 FunctionDIs = makeSubprogramMap(M); 1013 return Pass::doInitialization(M); 1014 } 1015 1016 #ifndef NDEBUG 1017 void LiveDebugVariables::dump() { 1018 if (pImpl) 1019 static_cast<LDVImpl*>(pImpl)->print(dbgs()); 1020 } 1021 #endif 1022