1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the LiveDebugVariables analysis. 10 // 11 // Remove all DBG_VALUE instructions referencing virtual registers and replace 12 // them with a data structure tracking where live user variables are kept - in a 13 // virtual register or in a stack slot. 14 // 15 // Allow the data structure to be updated during register allocation when values 16 // are moved between registers and stack slots. Finally emit new DBG_VALUE 17 // instructions after register allocation is complete. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "LiveDebugVariables.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/IntervalMap.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/CodeGen/LexicalScopes.h" 32 #include "llvm/CodeGen/LiveInterval.h" 33 #include "llvm/CodeGen/LiveIntervals.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineDominators.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/SlotIndexes.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetOpcodes.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/VirtRegMap.h" 47 #include "llvm/Config/llvm-config.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/MC/MCRegisterInfo.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <iterator> 63 #include <memory> 64 #include <utility> 65 66 using namespace llvm; 67 68 #define DEBUG_TYPE "livedebugvars" 69 70 static cl::opt<bool> 71 EnableLDV("live-debug-variables", cl::init(true), 72 cl::desc("Enable the live debug variables pass"), cl::Hidden); 73 74 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); 75 STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted"); 76 77 char LiveDebugVariables::ID = 0; 78 79 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE, 80 "Debug Variable Analysis", false, false) 81 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 82 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 83 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE, 84 "Debug Variable Analysis", false, false) 85 86 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { 87 AU.addRequired<MachineDominatorTree>(); 88 AU.addRequiredTransitive<LiveIntervals>(); 89 AU.setPreservesAll(); 90 MachineFunctionPass::getAnalysisUsage(AU); 91 } 92 93 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) { 94 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 95 } 96 97 enum : unsigned { UndefLocNo = ~0U }; 98 99 /// Describes a debug variable value by location number and expression along 100 /// with some flags about the original usage of the location. 101 class DbgVariableValue { 102 public: 103 DbgVariableValue(unsigned LocNo, bool WasIndirect, 104 const DIExpression &Expression) 105 : LocNo(LocNo), WasIndirect(WasIndirect), Expression(&Expression) { 106 assert(getLocNo() == LocNo && "location truncation"); 107 } 108 109 DbgVariableValue() : LocNo(0), WasIndirect(0) {} 110 111 const DIExpression *getExpression() const { return Expression; } 112 unsigned getLocNo() const { 113 // Fix up the undef location number, which gets truncated. 114 return LocNo == INT_MAX ? UndefLocNo : LocNo; 115 } 116 bool getWasIndirect() const { return WasIndirect; } 117 bool isUndef() const { return getLocNo() == UndefLocNo; } 118 119 DbgVariableValue changeLocNo(unsigned NewLocNo) const { 120 return DbgVariableValue(NewLocNo, WasIndirect, *Expression); 121 } 122 123 friend inline bool operator==(const DbgVariableValue &LHS, 124 const DbgVariableValue &RHS) { 125 return LHS.LocNo == RHS.LocNo && LHS.WasIndirect == RHS.WasIndirect && 126 LHS.Expression == RHS.Expression; 127 } 128 129 friend inline bool operator!=(const DbgVariableValue &LHS, 130 const DbgVariableValue &RHS) { 131 return !(LHS == RHS); 132 } 133 134 private: 135 unsigned LocNo : 31; 136 unsigned WasIndirect : 1; 137 const DIExpression *Expression = nullptr; 138 }; 139 140 /// Map of where a user value is live to that value. 141 using LocMap = IntervalMap<SlotIndex, DbgVariableValue, 4>; 142 143 /// Map of stack slot offsets for spilled locations. 144 /// Non-spilled locations are not added to the map. 145 using SpillOffsetMap = DenseMap<unsigned, unsigned>; 146 147 namespace { 148 149 class LDVImpl; 150 151 /// A user value is a part of a debug info user variable. 152 /// 153 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 154 /// holds part of a user variable. The part is identified by a byte offset. 155 /// 156 /// UserValues are grouped into equivalence classes for easier searching. Two 157 /// user values are related if they refer to the same variable, or if they are 158 /// held by the same virtual register. The equivalence class is the transitive 159 /// closure of that relation. 160 class UserValue { 161 const DILocalVariable *Variable; ///< The debug info variable we are part of. 162 // FIXME: This is only used to get the FragmentInfo that describes the part 163 // of the variable we are a part of. We should just store the FragmentInfo. 164 const DIExpression *Expression; ///< Any complex address expression. 165 DebugLoc dl; ///< The debug location for the variable. This is 166 ///< used by dwarf writer to find lexical scope. 167 UserValue *leader; ///< Equivalence class leader. 168 UserValue *next = nullptr; ///< Next value in equivalence class, or null. 169 170 /// Numbered locations referenced by locmap. 171 SmallVector<MachineOperand, 4> locations; 172 173 /// Map of slot indices where this value is live. 174 LocMap locInts; 175 176 /// Set of interval start indexes that have been trimmed to the 177 /// lexical scope. 178 SmallSet<SlotIndex, 2> trimmedDefs; 179 180 /// Insert a DBG_VALUE into MBB at Idx for DbgValue. 181 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 182 SlotIndex StopIdx, DbgVariableValue DbgValue, 183 bool Spilled, unsigned SpillOffset, LiveIntervals &LIS, 184 const TargetInstrInfo &TII, 185 const TargetRegisterInfo &TRI); 186 187 /// Replace OldLocNo ranges with NewRegs ranges where NewRegs 188 /// is live. Returns true if any changes were made. 189 bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 190 LiveIntervals &LIS); 191 192 public: 193 /// Create a new UserValue. 194 UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L, 195 LocMap::Allocator &alloc) 196 : Variable(var), Expression(expr), dl(std::move(L)), leader(this), 197 locInts(alloc) {} 198 199 /// Get the leader of this value's equivalence class. 200 UserValue *getLeader() { 201 UserValue *l = leader; 202 while (l != l->leader) 203 l = l->leader; 204 return leader = l; 205 } 206 207 /// Return the next UserValue in the equivalence class. 208 UserValue *getNext() const { return next; } 209 210 /// Does this UserValue match the parameters? 211 bool match(const DILocalVariable *Var, const DIExpression *Expr, 212 const DILocation *IA) const { 213 // FIXME: Handle partially overlapping fragments. 214 // A DBG_VALUE with a fragment which overlaps a previous DBG_VALUE fragment 215 // for the same variable terminates the interval opened by the first. 216 // getUserValue() uses match() to filter DBG_VALUEs into interval maps to 217 // represent these intervals. 218 // Given two _partially_ overlapping fragments match() will always return 219 // false. The DBG_VALUEs will be filtered into separate interval maps and 220 // therefore we do not faithfully represent the original intervals. 221 // See D70121#1849741 for a more detailed explanation and further 222 // discussion. 223 return Var == Variable && 224 Expr->getFragmentInfo() == Expression->getFragmentInfo() && 225 dl->getInlinedAt() == IA; 226 } 227 228 /// Merge equivalence classes. 229 static UserValue *merge(UserValue *L1, UserValue *L2) { 230 L2 = L2->getLeader(); 231 if (!L1) 232 return L2; 233 L1 = L1->getLeader(); 234 if (L1 == L2) 235 return L1; 236 // Splice L2 before L1's members. 237 UserValue *End = L2; 238 while (End->next) { 239 End->leader = L1; 240 End = End->next; 241 } 242 End->leader = L1; 243 End->next = L1->next; 244 L1->next = L2; 245 return L1; 246 } 247 248 /// Return the location number that matches Loc. 249 /// 250 /// For undef values we always return location number UndefLocNo without 251 /// inserting anything in locations. Since locations is a vector and the 252 /// location number is the position in the vector and UndefLocNo is ~0, 253 /// we would need a very big vector to put the value at the right position. 254 unsigned getLocationNo(const MachineOperand &LocMO) { 255 if (LocMO.isReg()) { 256 if (LocMO.getReg() == 0) 257 return UndefLocNo; 258 // For register locations we dont care about use/def and other flags. 259 for (unsigned i = 0, e = locations.size(); i != e; ++i) 260 if (locations[i].isReg() && 261 locations[i].getReg() == LocMO.getReg() && 262 locations[i].getSubReg() == LocMO.getSubReg()) 263 return i; 264 } else 265 for (unsigned i = 0, e = locations.size(); i != e; ++i) 266 if (LocMO.isIdenticalTo(locations[i])) 267 return i; 268 locations.push_back(LocMO); 269 // We are storing a MachineOperand outside a MachineInstr. 270 locations.back().clearParent(); 271 // Don't store def operands. 272 if (locations.back().isReg()) { 273 if (locations.back().isDef()) 274 locations.back().setIsDead(false); 275 locations.back().setIsUse(); 276 } 277 return locations.size() - 1; 278 } 279 280 /// Remove (recycle) a location number. If \p LocNo still is used by the 281 /// locInts nothing is done. 282 void removeLocationIfUnused(unsigned LocNo) { 283 // Bail out if LocNo still is used. 284 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 285 DbgVariableValue DbgValue = I.value(); 286 if (DbgValue.getLocNo() == LocNo) 287 return; 288 } 289 // Remove the entry in the locations vector, and adjust all references to 290 // location numbers above the removed entry. 291 locations.erase(locations.begin() + LocNo); 292 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 293 DbgVariableValue DbgValue = I.value(); 294 if (!DbgValue.isUndef() && DbgValue.getLocNo() > LocNo) 295 I.setValueUnchecked(DbgValue.changeLocNo(DbgValue.getLocNo() - 1)); 296 } 297 } 298 299 /// Ensure that all virtual register locations are mapped. 300 void mapVirtRegs(LDVImpl *LDV); 301 302 /// Add a definition point to this user value. 303 void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect, 304 const DIExpression &Expr) { 305 DbgVariableValue DbgValue(getLocationNo(LocMO), IsIndirect, Expr); 306 // Add a singular (Idx,Idx) -> value mapping. 307 LocMap::iterator I = locInts.find(Idx); 308 if (!I.valid() || I.start() != Idx) 309 I.insert(Idx, Idx.getNextSlot(), DbgValue); 310 else 311 // A later DBG_VALUE at the same SlotIndex overrides the old location. 312 I.setValue(DbgValue); 313 } 314 315 /// Extend the current definition as far as possible down. 316 /// 317 /// Stop when meeting an existing def or when leaving the live 318 /// range of VNI. End points where VNI is no longer live are added to Kills. 319 /// 320 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a 321 /// data-flow analysis to propagate them beyond basic block boundaries. 322 /// 323 /// \param Idx Starting point for the definition. 324 /// \param DbgValue value to propagate. 325 /// \param LR Restrict liveness to where LR has the value VNI. May be null. 326 /// \param VNI When LR is not null, this is the value to restrict to. 327 /// \param [out] Kills Append end points of VNI's live range to Kills. 328 /// \param LIS Live intervals analysis. 329 void extendDef(SlotIndex Idx, DbgVariableValue DbgValue, LiveRange *LR, 330 const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills, 331 LiveIntervals &LIS); 332 333 /// The value in LI may be copies to other registers. Determine if 334 /// any of the copies are available at the kill points, and add defs if 335 /// possible. 336 /// 337 /// \param LI Scan for copies of the value in LI->reg. 338 /// \param DbgValue Location number of LI->reg, and DIExpression. 339 /// \param Kills Points where the range of DbgValue could be extended. 340 /// \param [in,out] NewDefs Append (Idx, DbgValue) of inserted defs here. 341 void addDefsFromCopies( 342 LiveInterval *LI, DbgVariableValue DbgValue, 343 const SmallVectorImpl<SlotIndex> &Kills, 344 SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs, 345 MachineRegisterInfo &MRI, LiveIntervals &LIS); 346 347 /// Compute the live intervals of all locations after collecting all their 348 /// def points. 349 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, 350 LiveIntervals &LIS, LexicalScopes &LS); 351 352 /// Replace OldReg ranges with NewRegs ranges where NewRegs is 353 /// live. Returns true if any changes were made. 354 bool splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, 355 LiveIntervals &LIS); 356 357 /// Rewrite virtual register locations according to the provided virtual 358 /// register map. Record the stack slot offsets for the locations that 359 /// were spilled. 360 void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, 361 const TargetInstrInfo &TII, 362 const TargetRegisterInfo &TRI, 363 SpillOffsetMap &SpillOffsets); 364 365 /// Recreate DBG_VALUE instruction from data structures. 366 void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 367 const TargetInstrInfo &TII, 368 const TargetRegisterInfo &TRI, 369 const SpillOffsetMap &SpillOffsets); 370 371 /// Return DebugLoc of this UserValue. 372 DebugLoc getDebugLoc() { return dl;} 373 374 void print(raw_ostream &, const TargetRegisterInfo *); 375 }; 376 377 /// A user label is a part of a debug info user label. 378 class UserLabel { 379 const DILabel *Label; ///< The debug info label we are part of. 380 DebugLoc dl; ///< The debug location for the label. This is 381 ///< used by dwarf writer to find lexical scope. 382 SlotIndex loc; ///< Slot used by the debug label. 383 384 /// Insert a DBG_LABEL into MBB at Idx. 385 void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, 386 LiveIntervals &LIS, const TargetInstrInfo &TII); 387 388 public: 389 /// Create a new UserLabel. 390 UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx) 391 : Label(label), dl(std::move(L)), loc(Idx) {} 392 393 /// Does this UserLabel match the parameters? 394 bool match(const DILabel *L, const DILocation *IA, 395 const SlotIndex Index) const { 396 return Label == L && dl->getInlinedAt() == IA && loc == Index; 397 } 398 399 /// Recreate DBG_LABEL instruction from data structures. 400 void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII); 401 402 /// Return DebugLoc of this UserLabel. 403 DebugLoc getDebugLoc() { return dl; } 404 405 void print(raw_ostream &, const TargetRegisterInfo *); 406 }; 407 408 /// Implementation of the LiveDebugVariables pass. 409 class LDVImpl { 410 LiveDebugVariables &pass; 411 LocMap::Allocator allocator; 412 MachineFunction *MF = nullptr; 413 LiveIntervals *LIS; 414 const TargetRegisterInfo *TRI; 415 416 /// Whether emitDebugValues is called. 417 bool EmitDone = false; 418 419 /// Whether the machine function is modified during the pass. 420 bool ModifiedMF = false; 421 422 /// All allocated UserValue instances. 423 SmallVector<std::unique_ptr<UserValue>, 8> userValues; 424 425 /// All allocated UserLabel instances. 426 SmallVector<std::unique_ptr<UserLabel>, 2> userLabels; 427 428 /// Map virtual register to eq class leader. 429 using VRMap = DenseMap<unsigned, UserValue *>; 430 VRMap virtRegToEqClass; 431 432 /// Map user variable to eq class leader. 433 using UVMap = DenseMap<const DILocalVariable *, UserValue *>; 434 UVMap userVarMap; 435 436 /// Find or create a UserValue. 437 UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr, 438 const DebugLoc &DL); 439 440 /// Find the EC leader for VirtReg or null. 441 UserValue *lookupVirtReg(unsigned VirtReg); 442 443 /// Add DBG_VALUE instruction to our maps. 444 /// 445 /// \param MI DBG_VALUE instruction 446 /// \param Idx Last valid SLotIndex before instruction. 447 /// 448 /// \returns True if the DBG_VALUE instruction should be deleted. 449 bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); 450 451 /// Add DBG_LABEL instruction to UserLabel. 452 /// 453 /// \param MI DBG_LABEL instruction 454 /// \param Idx Last valid SlotIndex before instruction. 455 /// 456 /// \returns True if the DBG_LABEL instruction should be deleted. 457 bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx); 458 459 /// Collect and erase all DBG_VALUE instructions, adding a UserValue def 460 /// for each instruction. 461 /// 462 /// \param mf MachineFunction to be scanned. 463 /// 464 /// \returns True if any debug values were found. 465 bool collectDebugValues(MachineFunction &mf); 466 467 /// Compute the live intervals of all user values after collecting all 468 /// their def points. 469 void computeIntervals(); 470 471 public: 472 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} 473 474 bool runOnMachineFunction(MachineFunction &mf); 475 476 /// Release all memory. 477 void clear() { 478 MF = nullptr; 479 userValues.clear(); 480 userLabels.clear(); 481 virtRegToEqClass.clear(); 482 userVarMap.clear(); 483 // Make sure we call emitDebugValues if the machine function was modified. 484 assert((!ModifiedMF || EmitDone) && 485 "Dbg values are not emitted in LDV"); 486 EmitDone = false; 487 ModifiedMF = false; 488 } 489 490 /// Map virtual register to an equivalence class. 491 void mapVirtReg(unsigned VirtReg, UserValue *EC); 492 493 /// Replace all references to OldReg with NewRegs. 494 void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs); 495 496 /// Recreate DBG_VALUE instruction from data structures. 497 void emitDebugValues(VirtRegMap *VRM); 498 499 void print(raw_ostream&); 500 }; 501 502 } // end anonymous namespace 503 504 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 505 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, 506 const LLVMContext &Ctx) { 507 if (!DL) 508 return; 509 510 auto *Scope = cast<DIScope>(DL.getScope()); 511 // Omit the directory, because it's likely to be long and uninteresting. 512 CommentOS << Scope->getFilename(); 513 CommentOS << ':' << DL.getLine(); 514 if (DL.getCol() != 0) 515 CommentOS << ':' << DL.getCol(); 516 517 DebugLoc InlinedAtDL = DL.getInlinedAt(); 518 if (!InlinedAtDL) 519 return; 520 521 CommentOS << " @[ "; 522 printDebugLoc(InlinedAtDL, CommentOS, Ctx); 523 CommentOS << " ]"; 524 } 525 526 static void printExtendedName(raw_ostream &OS, const DINode *Node, 527 const DILocation *DL) { 528 const LLVMContext &Ctx = Node->getContext(); 529 StringRef Res; 530 unsigned Line = 0; 531 if (const auto *V = dyn_cast<const DILocalVariable>(Node)) { 532 Res = V->getName(); 533 Line = V->getLine(); 534 } else if (const auto *L = dyn_cast<const DILabel>(Node)) { 535 Res = L->getName(); 536 Line = L->getLine(); 537 } 538 539 if (!Res.empty()) 540 OS << Res << "," << Line; 541 auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr; 542 if (InlinedAt) { 543 if (DebugLoc InlinedAtDL = InlinedAt) { 544 OS << " @["; 545 printDebugLoc(InlinedAtDL, OS, Ctx); 546 OS << "]"; 547 } 548 } 549 } 550 551 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 552 OS << "!\""; 553 printExtendedName(OS, Variable, dl); 554 555 OS << "\"\t"; 556 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 557 OS << " [" << I.start() << ';' << I.stop() << "):"; 558 if (I.value().isUndef()) 559 OS << "undef"; 560 else { 561 OS << I.value().getLocNo(); 562 if (I.value().getWasIndirect()) 563 OS << " ind"; 564 } 565 } 566 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 567 OS << " Loc" << i << '='; 568 locations[i].print(OS, TRI); 569 } 570 OS << '\n'; 571 } 572 573 void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 574 OS << "!\""; 575 printExtendedName(OS, Label, dl); 576 577 OS << "\"\t"; 578 OS << loc; 579 OS << '\n'; 580 } 581 582 void LDVImpl::print(raw_ostream &OS) { 583 OS << "********** DEBUG VARIABLES **********\n"; 584 for (auto &userValue : userValues) 585 userValue->print(OS, TRI); 586 OS << "********** DEBUG LABELS **********\n"; 587 for (auto &userLabel : userLabels) 588 userLabel->print(OS, TRI); 589 } 590 #endif 591 592 void UserValue::mapVirtRegs(LDVImpl *LDV) { 593 for (unsigned i = 0, e = locations.size(); i != e; ++i) 594 if (locations[i].isReg() && 595 Register::isVirtualRegister(locations[i].getReg())) 596 LDV->mapVirtReg(locations[i].getReg(), this); 597 } 598 599 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var, 600 const DIExpression *Expr, const DebugLoc &DL) { 601 UserValue *&Leader = userVarMap[Var]; 602 if (Leader) { 603 UserValue *UV = Leader->getLeader(); 604 Leader = UV; 605 for (; UV; UV = UV->getNext()) 606 if (UV->match(Var, Expr, DL->getInlinedAt())) 607 return UV; 608 } 609 610 userValues.push_back( 611 std::make_unique<UserValue>(Var, Expr, DL, allocator)); 612 UserValue *UV = userValues.back().get(); 613 Leader = UserValue::merge(Leader, UV); 614 return UV; 615 } 616 617 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) { 618 assert(Register::isVirtualRegister(VirtReg) && "Only map VirtRegs"); 619 UserValue *&Leader = virtRegToEqClass[VirtReg]; 620 Leader = UserValue::merge(Leader, EC); 621 } 622 623 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) { 624 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) 625 return UV->getLeader(); 626 return nullptr; 627 } 628 629 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) { 630 // DBG_VALUE loc, offset, variable 631 if (MI.getNumOperands() != 4 || 632 !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) || 633 !MI.getOperand(2).isMetadata()) { 634 LLVM_DEBUG(dbgs() << "Can't handle " << MI); 635 return false; 636 } 637 638 // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual 639 // register that hasn't been defined yet. If we do not remove those here, then 640 // the re-insertion of the DBG_VALUE instruction after register allocation 641 // will be incorrect. 642 // TODO: If earlier passes are corrected to generate sane debug information 643 // (and if the machine verifier is improved to catch this), then these checks 644 // could be removed or replaced by asserts. 645 bool Discard = false; 646 if (MI.getOperand(0).isReg() && 647 Register::isVirtualRegister(MI.getOperand(0).getReg())) { 648 const Register Reg = MI.getOperand(0).getReg(); 649 if (!LIS->hasInterval(Reg)) { 650 // The DBG_VALUE is described by a virtual register that does not have a 651 // live interval. Discard the DBG_VALUE. 652 Discard = true; 653 LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx 654 << " " << MI); 655 } else { 656 // The DBG_VALUE is only valid if either Reg is live out from Idx, or Reg 657 // is defined dead at Idx (where Idx is the slot index for the instruction 658 // preceding the DBG_VALUE). 659 const LiveInterval &LI = LIS->getInterval(Reg); 660 LiveQueryResult LRQ = LI.Query(Idx); 661 if (!LRQ.valueOutOrDead()) { 662 // We have found a DBG_VALUE with the value in a virtual register that 663 // is not live. Discard the DBG_VALUE. 664 Discard = true; 665 LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx 666 << " " << MI); 667 } 668 } 669 } 670 671 // Get or create the UserValue for (variable,offset) here. 672 bool IsIndirect = MI.getOperand(1).isImm(); 673 if (IsIndirect) 674 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); 675 const DILocalVariable *Var = MI.getDebugVariable(); 676 const DIExpression *Expr = MI.getDebugExpression(); 677 UserValue *UV = 678 getUserValue(Var, Expr, MI.getDebugLoc()); 679 if (!Discard) 680 UV->addDef(Idx, MI.getOperand(0), IsIndirect, *Expr); 681 else { 682 MachineOperand MO = MachineOperand::CreateReg(0U, false); 683 MO.setIsDebug(); 684 UV->addDef(Idx, MO, false, *Expr); 685 } 686 return true; 687 } 688 689 bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) { 690 // DBG_LABEL label 691 if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) { 692 LLVM_DEBUG(dbgs() << "Can't handle " << MI); 693 return false; 694 } 695 696 // Get or create the UserLabel for label here. 697 const DILabel *Label = MI.getDebugLabel(); 698 const DebugLoc &DL = MI.getDebugLoc(); 699 bool Found = false; 700 for (auto const &L : userLabels) { 701 if (L->match(Label, DL->getInlinedAt(), Idx)) { 702 Found = true; 703 break; 704 } 705 } 706 if (!Found) 707 userLabels.push_back(std::make_unique<UserLabel>(Label, DL, Idx)); 708 709 return true; 710 } 711 712 bool LDVImpl::collectDebugValues(MachineFunction &mf) { 713 bool Changed = false; 714 for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE; 715 ++MFI) { 716 MachineBasicBlock *MBB = &*MFI; 717 for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end(); 718 MBBI != MBBE;) { 719 // Use the first debug instruction in the sequence to get a SlotIndex 720 // for following consecutive debug instructions. 721 if (!MBBI->isDebugInstr()) { 722 ++MBBI; 723 continue; 724 } 725 // Debug instructions has no slot index. Use the previous 726 // non-debug instruction's SlotIndex as its SlotIndex. 727 SlotIndex Idx = 728 MBBI == MBB->begin() 729 ? LIS->getMBBStartIdx(MBB) 730 : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); 731 // Handle consecutive debug instructions with the same slot index. 732 do { 733 // Only handle DBG_VALUE in handleDebugValue(). Skip all other 734 // kinds of debug instructions. 735 if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) || 736 (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) { 737 MBBI = MBB->erase(MBBI); 738 Changed = true; 739 } else 740 ++MBBI; 741 } while (MBBI != MBBE && MBBI->isDebugInstr()); 742 } 743 } 744 return Changed; 745 } 746 747 void UserValue::extendDef(SlotIndex Idx, DbgVariableValue DbgValue, LiveRange *LR, 748 const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills, 749 LiveIntervals &LIS) { 750 SlotIndex Start = Idx; 751 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 752 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 753 LocMap::iterator I = locInts.find(Start); 754 755 // Limit to VNI's live range. 756 bool ToEnd = true; 757 if (LR && VNI) { 758 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); 759 if (!Segment || Segment->valno != VNI) { 760 if (Kills) 761 Kills->push_back(Start); 762 return; 763 } 764 if (Segment->end < Stop) { 765 Stop = Segment->end; 766 ToEnd = false; 767 } 768 } 769 770 // There could already be a short def at Start. 771 if (I.valid() && I.start() <= Start) { 772 // Stop when meeting a different location or an already extended interval. 773 Start = Start.getNextSlot(); 774 if (I.value() != DbgValue || I.stop() != Start) 775 return; 776 // This is a one-slot placeholder. Just skip it. 777 ++I; 778 } 779 780 // Limited by the next def. 781 if (I.valid() && I.start() < Stop) 782 Stop = I.start(); 783 // Limited by VNI's live range. 784 else if (!ToEnd && Kills) 785 Kills->push_back(Stop); 786 787 if (Start < Stop) 788 I.insert(Start, Stop, DbgValue); 789 } 790 791 void UserValue::addDefsFromCopies( 792 LiveInterval *LI, DbgVariableValue DbgValue, 793 const SmallVectorImpl<SlotIndex> &Kills, 794 SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs, 795 MachineRegisterInfo &MRI, LiveIntervals &LIS) { 796 if (Kills.empty()) 797 return; 798 // Don't track copies from physregs, there are too many uses. 799 if (!Register::isVirtualRegister(LI->reg)) 800 return; 801 802 // Collect all the (vreg, valno) pairs that are copies of LI. 803 SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues; 804 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) { 805 MachineInstr *MI = MO.getParent(); 806 // Copies of the full value. 807 if (MO.getSubReg() || !MI->isCopy()) 808 continue; 809 Register DstReg = MI->getOperand(0).getReg(); 810 811 // Don't follow copies to physregs. These are usually setting up call 812 // arguments, and the argument registers are always call clobbered. We are 813 // better off in the source register which could be a callee-saved register, 814 // or it could be spilled. 815 if (!Register::isVirtualRegister(DstReg)) 816 continue; 817 818 // Is the value extended to reach this copy? If not, another def may be 819 // blocking it, or we are looking at a wrong value of LI. 820 SlotIndex Idx = LIS.getInstructionIndex(*MI); 821 LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); 822 if (!I.valid() || I.value() != DbgValue) 823 continue; 824 825 if (!LIS.hasInterval(DstReg)) 826 continue; 827 LiveInterval *DstLI = &LIS.getInterval(DstReg); 828 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); 829 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); 830 CopyValues.push_back(std::make_pair(DstLI, DstVNI)); 831 } 832 833 if (CopyValues.empty()) 834 return; 835 836 LLVM_DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI 837 << '\n'); 838 839 // Try to add defs of the copied values for each kill point. 840 for (unsigned i = 0, e = Kills.size(); i != e; ++i) { 841 SlotIndex Idx = Kills[i]; 842 for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) { 843 LiveInterval *DstLI = CopyValues[j].first; 844 const VNInfo *DstVNI = CopyValues[j].second; 845 if (DstLI->getVNInfoAt(Idx) != DstVNI) 846 continue; 847 // Check that there isn't already a def at Idx 848 LocMap::iterator I = locInts.find(Idx); 849 if (I.valid() && I.start() <= Idx) 850 continue; 851 LLVM_DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #" 852 << DstVNI->id << " in " << *DstLI << '\n'); 853 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); 854 assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); 855 unsigned LocNo = getLocationNo(CopyMI->getOperand(0)); 856 DbgVariableValue NewValue = DbgValue.changeLocNo(LocNo); 857 I.insert(Idx, Idx.getNextSlot(), NewValue); 858 NewDefs.push_back(std::make_pair(Idx, NewValue)); 859 break; 860 } 861 } 862 } 863 864 void UserValue::computeIntervals(MachineRegisterInfo &MRI, 865 const TargetRegisterInfo &TRI, 866 LiveIntervals &LIS, LexicalScopes &LS) { 867 SmallVector<std::pair<SlotIndex, DbgVariableValue>, 16> Defs; 868 869 // Collect all defs to be extended (Skipping undefs). 870 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 871 if (!I.value().isUndef()) 872 Defs.push_back(std::make_pair(I.start(), I.value())); 873 874 // Extend all defs, and possibly add new ones along the way. 875 for (unsigned i = 0; i != Defs.size(); ++i) { 876 SlotIndex Idx = Defs[i].first; 877 DbgVariableValue DbgValue = Defs[i].second; 878 const MachineOperand &LocMO = locations[DbgValue.getLocNo()]; 879 880 if (!LocMO.isReg()) { 881 extendDef(Idx, DbgValue, nullptr, nullptr, nullptr, LIS); 882 continue; 883 } 884 885 // Register locations are constrained to where the register value is live. 886 if (Register::isVirtualRegister(LocMO.getReg())) { 887 LiveInterval *LI = nullptr; 888 const VNInfo *VNI = nullptr; 889 if (LIS.hasInterval(LocMO.getReg())) { 890 LI = &LIS.getInterval(LocMO.getReg()); 891 VNI = LI->getVNInfoAt(Idx); 892 } 893 SmallVector<SlotIndex, 16> Kills; 894 extendDef(Idx, DbgValue, LI, VNI, &Kills, LIS); 895 // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that 896 // if the original location for example is %vreg0:sub_hi, and we find a 897 // full register copy in addDefsFromCopies (at the moment it only handles 898 // full register copies), then we must add the sub1 sub-register index to 899 // the new location. However, that is only possible if the new virtual 900 // register is of the same regclass (or if there is an equivalent 901 // sub-register in that regclass). For now, simply skip handling copies if 902 // a sub-register is involved. 903 if (LI && !LocMO.getSubReg()) 904 addDefsFromCopies(LI, DbgValue, Kills, Defs, MRI, LIS); 905 continue; 906 } 907 908 // For physregs, we only mark the start slot idx. DwarfDebug will see it 909 // as if the DBG_VALUE is valid up until the end of the basic block, or 910 // the next def of the physical register. So we do not need to extend the 911 // range. It might actually happen that the DBG_VALUE is the last use of 912 // the physical register (e.g. if this is an unused input argument to a 913 // function). 914 } 915 916 // The computed intervals may extend beyond the range of the debug 917 // location's lexical scope. In this case, splitting of an interval 918 // can result in an interval outside of the scope being created, 919 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent 920 // this, trim the intervals to the lexical scope. 921 922 LexicalScope *Scope = LS.findLexicalScope(dl); 923 if (!Scope) 924 return; 925 926 SlotIndex PrevEnd; 927 LocMap::iterator I = locInts.begin(); 928 929 // Iterate over the lexical scope ranges. Each time round the loop 930 // we check the intervals for overlap with the end of the previous 931 // range and the start of the next. The first range is handled as 932 // a special case where there is no PrevEnd. 933 for (const InsnRange &Range : Scope->getRanges()) { 934 SlotIndex RStart = LIS.getInstructionIndex(*Range.first); 935 SlotIndex REnd = LIS.getInstructionIndex(*Range.second); 936 937 // Variable locations at the first instruction of a block should be 938 // based on the block's SlotIndex, not the first instruction's index. 939 if (Range.first == Range.first->getParent()->begin()) 940 RStart = LIS.getSlotIndexes()->getIndexBefore(*Range.first); 941 942 // At the start of each iteration I has been advanced so that 943 // I.stop() >= PrevEnd. Check for overlap. 944 if (PrevEnd && I.start() < PrevEnd) { 945 SlotIndex IStop = I.stop(); 946 DbgVariableValue DbgValue = I.value(); 947 948 // Stop overlaps previous end - trim the end of the interval to 949 // the scope range. 950 I.setStopUnchecked(PrevEnd); 951 ++I; 952 953 // If the interval also overlaps the start of the "next" (i.e. 954 // current) range create a new interval for the remainder (which 955 // may be further trimmed). 956 if (RStart < IStop) 957 I.insert(RStart, IStop, DbgValue); 958 } 959 960 // Advance I so that I.stop() >= RStart, and check for overlap. 961 I.advanceTo(RStart); 962 if (!I.valid()) 963 return; 964 965 if (I.start() < RStart) { 966 // Interval start overlaps range - trim to the scope range. 967 I.setStartUnchecked(RStart); 968 // Remember that this interval was trimmed. 969 trimmedDefs.insert(RStart); 970 } 971 972 // The end of a lexical scope range is the last instruction in the 973 // range. To convert to an interval we need the index of the 974 // instruction after it. 975 REnd = REnd.getNextIndex(); 976 977 // Advance I to first interval outside current range. 978 I.advanceTo(REnd); 979 if (!I.valid()) 980 return; 981 982 PrevEnd = REnd; 983 } 984 985 // Check for overlap with end of final range. 986 if (PrevEnd && I.start() < PrevEnd) 987 I.setStopUnchecked(PrevEnd); 988 } 989 990 void LDVImpl::computeIntervals() { 991 LexicalScopes LS; 992 LS.initialize(*MF); 993 994 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 995 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS); 996 userValues[i]->mapVirtRegs(this); 997 } 998 } 999 1000 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) { 1001 clear(); 1002 MF = &mf; 1003 LIS = &pass.getAnalysis<LiveIntervals>(); 1004 TRI = mf.getSubtarget().getRegisterInfo(); 1005 LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 1006 << mf.getName() << " **********\n"); 1007 1008 bool Changed = collectDebugValues(mf); 1009 computeIntervals(); 1010 LLVM_DEBUG(print(dbgs())); 1011 ModifiedMF = Changed; 1012 return Changed; 1013 } 1014 1015 static void removeDebugValues(MachineFunction &mf) { 1016 for (MachineBasicBlock &MBB : mf) { 1017 for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) { 1018 if (!MBBI->isDebugValue()) { 1019 ++MBBI; 1020 continue; 1021 } 1022 MBBI = MBB.erase(MBBI); 1023 } 1024 } 1025 } 1026 1027 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { 1028 if (!EnableLDV) 1029 return false; 1030 if (!mf.getFunction().getSubprogram()) { 1031 removeDebugValues(mf); 1032 return false; 1033 } 1034 if (!pImpl) 1035 pImpl = new LDVImpl(this); 1036 return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf); 1037 } 1038 1039 void LiveDebugVariables::releaseMemory() { 1040 if (pImpl) 1041 static_cast<LDVImpl*>(pImpl)->clear(); 1042 } 1043 1044 LiveDebugVariables::~LiveDebugVariables() { 1045 if (pImpl) 1046 delete static_cast<LDVImpl*>(pImpl); 1047 } 1048 1049 //===----------------------------------------------------------------------===// 1050 // Live Range Splitting 1051 //===----------------------------------------------------------------------===// 1052 1053 bool 1054 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 1055 LiveIntervals& LIS) { 1056 LLVM_DEBUG({ 1057 dbgs() << "Splitting Loc" << OldLocNo << '\t'; 1058 print(dbgs(), nullptr); 1059 }); 1060 bool DidChange = false; 1061 LocMap::iterator LocMapI; 1062 LocMapI.setMap(locInts); 1063 for (unsigned i = 0; i != NewRegs.size(); ++i) { 1064 LiveInterval *LI = &LIS.getInterval(NewRegs[i]); 1065 if (LI->empty()) 1066 continue; 1067 1068 // Don't allocate the new LocNo until it is needed. 1069 unsigned NewLocNo = UndefLocNo; 1070 1071 // Iterate over the overlaps between locInts and LI. 1072 LocMapI.find(LI->beginIndex()); 1073 if (!LocMapI.valid()) 1074 continue; 1075 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); 1076 LiveInterval::iterator LIE = LI->end(); 1077 while (LocMapI.valid() && LII != LIE) { 1078 // At this point, we know that LocMapI.stop() > LII->start. 1079 LII = LI->advanceTo(LII, LocMapI.start()); 1080 if (LII == LIE) 1081 break; 1082 1083 // Now LII->end > LocMapI.start(). Do we have an overlap? 1084 if (LocMapI.value().getLocNo() == OldLocNo && 1085 LII->start < LocMapI.stop()) { 1086 // Overlapping correct location. Allocate NewLocNo now. 1087 if (NewLocNo == UndefLocNo) { 1088 MachineOperand MO = MachineOperand::CreateReg(LI->reg, false); 1089 MO.setSubReg(locations[OldLocNo].getSubReg()); 1090 NewLocNo = getLocationNo(MO); 1091 DidChange = true; 1092 } 1093 1094 SlotIndex LStart = LocMapI.start(); 1095 SlotIndex LStop = LocMapI.stop(); 1096 DbgVariableValue OldDbgValue = LocMapI.value(); 1097 1098 // Trim LocMapI down to the LII overlap. 1099 if (LStart < LII->start) 1100 LocMapI.setStartUnchecked(LII->start); 1101 if (LStop > LII->end) 1102 LocMapI.setStopUnchecked(LII->end); 1103 1104 // Change the value in the overlap. This may trigger coalescing. 1105 LocMapI.setValue(OldDbgValue.changeLocNo(NewLocNo)); 1106 1107 // Re-insert any removed OldDbgValue ranges. 1108 if (LStart < LocMapI.start()) { 1109 LocMapI.insert(LStart, LocMapI.start(), OldDbgValue); 1110 ++LocMapI; 1111 assert(LocMapI.valid() && "Unexpected coalescing"); 1112 } 1113 if (LStop > LocMapI.stop()) { 1114 ++LocMapI; 1115 LocMapI.insert(LII->end, LStop, OldDbgValue); 1116 --LocMapI; 1117 } 1118 } 1119 1120 // Advance to the next overlap. 1121 if (LII->end < LocMapI.stop()) { 1122 if (++LII == LIE) 1123 break; 1124 LocMapI.advanceTo(LII->start); 1125 } else { 1126 ++LocMapI; 1127 if (!LocMapI.valid()) 1128 break; 1129 LII = LI->advanceTo(LII, LocMapI.start()); 1130 } 1131 } 1132 } 1133 1134 // Finally, remove OldLocNo unless it is still used by some interval in the 1135 // locInts map. One case when OldLocNo still is in use is when the register 1136 // has been spilled. In such situations the spilled register is kept as a 1137 // location until rewriteLocations is called (VirtRegMap is mapping the old 1138 // register to the spill slot). So for a while we can have locations that map 1139 // to virtual registers that have been removed from both the MachineFunction 1140 // and from LiveIntervals. 1141 // 1142 // We may also just be using the location for a value with a different 1143 // expression. 1144 removeLocationIfUnused(OldLocNo); 1145 1146 LLVM_DEBUG({ 1147 dbgs() << "Split result: \t"; 1148 print(dbgs(), nullptr); 1149 }); 1150 return DidChange; 1151 } 1152 1153 bool 1154 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, 1155 LiveIntervals &LIS) { 1156 bool DidChange = false; 1157 // Split locations referring to OldReg. Iterate backwards so splitLocation can 1158 // safely erase unused locations. 1159 for (unsigned i = locations.size(); i ; --i) { 1160 unsigned LocNo = i-1; 1161 const MachineOperand *Loc = &locations[LocNo]; 1162 if (!Loc->isReg() || Loc->getReg() != OldReg) 1163 continue; 1164 DidChange |= splitLocation(LocNo, NewRegs, LIS); 1165 } 1166 return DidChange; 1167 } 1168 1169 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) { 1170 bool DidChange = false; 1171 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) 1172 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); 1173 1174 if (!DidChange) 1175 return; 1176 1177 // Map all of the new virtual registers. 1178 UserValue *UV = lookupVirtReg(OldReg); 1179 for (unsigned i = 0; i != NewRegs.size(); ++i) 1180 mapVirtReg(NewRegs[i], UV); 1181 } 1182 1183 void LiveDebugVariables:: 1184 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) { 1185 if (pImpl) 1186 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); 1187 } 1188 1189 void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, 1190 const TargetInstrInfo &TII, 1191 const TargetRegisterInfo &TRI, 1192 SpillOffsetMap &SpillOffsets) { 1193 // Build a set of new locations with new numbers so we can coalesce our 1194 // IntervalMap if two vreg intervals collapse to the same physical location. 1195 // Use MapVector instead of SetVector because MapVector::insert returns the 1196 // position of the previously or newly inserted element. The boolean value 1197 // tracks if the location was produced by a spill. 1198 // FIXME: This will be problematic if we ever support direct and indirect 1199 // frame index locations, i.e. expressing both variables in memory and 1200 // 'int x, *px = &x'. The "spilled" bit must become part of the location. 1201 MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations; 1202 SmallVector<unsigned, 4> LocNoMap(locations.size()); 1203 for (unsigned I = 0, E = locations.size(); I != E; ++I) { 1204 bool Spilled = false; 1205 unsigned SpillOffset = 0; 1206 MachineOperand Loc = locations[I]; 1207 // Only virtual registers are rewritten. 1208 if (Loc.isReg() && Loc.getReg() && 1209 Register::isVirtualRegister(Loc.getReg())) { 1210 Register VirtReg = Loc.getReg(); 1211 if (VRM.isAssignedReg(VirtReg) && 1212 Register::isPhysicalRegister(VRM.getPhys(VirtReg))) { 1213 // This can create a %noreg operand in rare cases when the sub-register 1214 // index is no longer available. That means the user value is in a 1215 // non-existent sub-register, and %noreg is exactly what we want. 1216 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); 1217 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { 1218 // Retrieve the stack slot offset. 1219 unsigned SpillSize; 1220 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1221 const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg); 1222 bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize, 1223 SpillOffset, MF); 1224 1225 // FIXME: Invalidate the location if the offset couldn't be calculated. 1226 (void)Success; 1227 1228 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); 1229 Spilled = true; 1230 } else { 1231 Loc.setReg(0); 1232 Loc.setSubReg(0); 1233 } 1234 } 1235 1236 // Insert this location if it doesn't already exist and record a mapping 1237 // from the old number to the new number. 1238 auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}}); 1239 unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first); 1240 LocNoMap[I] = NewLocNo; 1241 } 1242 1243 // Rewrite the locations and record the stack slot offsets for spills. 1244 locations.clear(); 1245 SpillOffsets.clear(); 1246 for (auto &Pair : NewLocations) { 1247 bool Spilled; 1248 unsigned SpillOffset; 1249 std::tie(Spilled, SpillOffset) = Pair.second; 1250 locations.push_back(Pair.first); 1251 if (Spilled) { 1252 unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair); 1253 SpillOffsets[NewLocNo] = SpillOffset; 1254 } 1255 } 1256 1257 // Update the interval map, but only coalesce left, since intervals to the 1258 // right use the old location numbers. This should merge two contiguous 1259 // DBG_VALUE intervals with different vregs that were allocated to the same 1260 // physical register. 1261 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 1262 DbgVariableValue DbgValue = I.value(); 1263 // Undef values don't exist in locations (and thus not in LocNoMap either) 1264 // so skip over them. See getLocationNo(). 1265 if (DbgValue.isUndef()) 1266 continue; 1267 unsigned NewLocNo = LocNoMap[DbgValue.getLocNo()]; 1268 I.setValueUnchecked(DbgValue.changeLocNo(NewLocNo)); 1269 I.setStart(I.start()); 1270 } 1271 } 1272 1273 /// Find an iterator for inserting a DBG_VALUE instruction. 1274 static MachineBasicBlock::iterator 1275 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, 1276 LiveIntervals &LIS) { 1277 SlotIndex Start = LIS.getMBBStartIdx(MBB); 1278 Idx = Idx.getBaseIndex(); 1279 1280 // Try to find an insert location by going backwards from Idx. 1281 MachineInstr *MI; 1282 while (!(MI = LIS.getInstructionFromIndex(Idx))) { 1283 // We've reached the beginning of MBB. 1284 if (Idx == Start) { 1285 MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 1286 return I; 1287 } 1288 Idx = Idx.getPrevIndex(); 1289 } 1290 1291 // Don't insert anything after the first terminator, though. 1292 return MI->isTerminator() ? MBB->getFirstTerminator() : 1293 std::next(MachineBasicBlock::iterator(MI)); 1294 } 1295 1296 /// Find an iterator for inserting the next DBG_VALUE instruction 1297 /// (or end if no more insert locations found). 1298 static MachineBasicBlock::iterator 1299 findNextInsertLocation(MachineBasicBlock *MBB, 1300 MachineBasicBlock::iterator I, 1301 SlotIndex StopIdx, MachineOperand &LocMO, 1302 LiveIntervals &LIS, 1303 const TargetRegisterInfo &TRI) { 1304 if (!LocMO.isReg()) 1305 return MBB->instr_end(); 1306 Register Reg = LocMO.getReg(); 1307 1308 // Find the next instruction in the MBB that define the register Reg. 1309 while (I != MBB->end() && !I->isTerminator()) { 1310 if (!LIS.isNotInMIMap(*I) && 1311 SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I))) 1312 break; 1313 if (I->definesRegister(Reg, &TRI)) 1314 // The insert location is directly after the instruction/bundle. 1315 return std::next(I); 1316 ++I; 1317 } 1318 return MBB->end(); 1319 } 1320 1321 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 1322 SlotIndex StopIdx, DbgVariableValue DbgValue, 1323 bool Spilled, unsigned SpillOffset, 1324 LiveIntervals &LIS, const TargetInstrInfo &TII, 1325 const TargetRegisterInfo &TRI) { 1326 SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB); 1327 // Only search within the current MBB. 1328 StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx; 1329 MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS); 1330 // Undef values don't exist in locations so create new "noreg" register MOs 1331 // for them. See getLocationNo(). 1332 MachineOperand MO = 1333 !DbgValue.isUndef() 1334 ? locations[DbgValue.getLocNo()] 1335 : MachineOperand::CreateReg( 1336 /* Reg */ 0, /* isDef */ false, /* isImp */ false, 1337 /* isKill */ false, /* isDead */ false, 1338 /* isUndef */ false, /* isEarlyClobber */ false, 1339 /* SubReg */ 0, /* isDebug */ true); 1340 1341 ++NumInsertedDebugValues; 1342 1343 assert(cast<DILocalVariable>(Variable) 1344 ->isValidLocationForIntrinsic(getDebugLoc()) && 1345 "Expected inlined-at fields to agree"); 1346 1347 // If the location was spilled, the new DBG_VALUE will be indirect. If the 1348 // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate 1349 // that the original virtual register was a pointer. Also, add the stack slot 1350 // offset for the spilled register to the expression. 1351 const DIExpression *Expr = DbgValue.getExpression(); 1352 uint8_t DIExprFlags = DIExpression::ApplyOffset; 1353 bool IsIndirect = DbgValue.getWasIndirect(); 1354 if (Spilled) { 1355 if (IsIndirect) 1356 DIExprFlags |= DIExpression::DerefAfter; 1357 Expr = 1358 DIExpression::prepend(Expr, DIExprFlags, SpillOffset); 1359 IsIndirect = true; 1360 } 1361 1362 assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index"); 1363 1364 do { 1365 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE), 1366 IsIndirect, MO, Variable, Expr); 1367 1368 // Continue and insert DBG_VALUES after every redefinition of register 1369 // associated with the debug value within the range 1370 I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI); 1371 } while (I != MBB->end()); 1372 } 1373 1374 void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, 1375 LiveIntervals &LIS, 1376 const TargetInstrInfo &TII) { 1377 MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS); 1378 ++NumInsertedDebugLabels; 1379 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL)) 1380 .addMetadata(Label); 1381 } 1382 1383 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 1384 const TargetInstrInfo &TII, 1385 const TargetRegisterInfo &TRI, 1386 const SpillOffsetMap &SpillOffsets) { 1387 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); 1388 1389 for (LocMap::const_iterator I = locInts.begin(); I.valid();) { 1390 SlotIndex Start = I.start(); 1391 SlotIndex Stop = I.stop(); 1392 DbgVariableValue DbgValue = I.value(); 1393 auto SpillIt = !DbgValue.isUndef() ? SpillOffsets.find(DbgValue.getLocNo()) 1394 : SpillOffsets.end(); 1395 bool Spilled = SpillIt != SpillOffsets.end(); 1396 unsigned SpillOffset = Spilled ? SpillIt->second : 0; 1397 1398 // If the interval start was trimmed to the lexical scope insert the 1399 // DBG_VALUE at the previous index (otherwise it appears after the 1400 // first instruction in the range). 1401 if (trimmedDefs.count(Start)) 1402 Start = Start.getPrevIndex(); 1403 1404 LLVM_DEBUG(dbgs() << "\t[" << Start << ';' << Stop 1405 << "):" << DbgValue.getLocNo()); 1406 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1407 SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); 1408 1409 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1410 insertDebugValue(&*MBB, Start, Stop, DbgValue, Spilled, SpillOffset, LIS, 1411 TII, TRI); 1412 // This interval may span multiple basic blocks. 1413 // Insert a DBG_VALUE into each one. 1414 while (Stop > MBBEnd) { 1415 // Move to the next block. 1416 Start = MBBEnd; 1417 if (++MBB == MFEnd) 1418 break; 1419 MBBEnd = LIS.getMBBEndIdx(&*MBB); 1420 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1421 insertDebugValue(&*MBB, Start, Stop, DbgValue, Spilled, SpillOffset, LIS, 1422 TII, TRI); 1423 } 1424 LLVM_DEBUG(dbgs() << '\n'); 1425 if (MBB == MFEnd) 1426 break; 1427 1428 ++I; 1429 } 1430 } 1431 1432 void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII) { 1433 LLVM_DEBUG(dbgs() << "\t" << loc); 1434 MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator(); 1435 1436 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB)); 1437 insertDebugLabel(&*MBB, loc, LIS, TII); 1438 1439 LLVM_DEBUG(dbgs() << '\n'); 1440 } 1441 1442 void LDVImpl::emitDebugValues(VirtRegMap *VRM) { 1443 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); 1444 if (!MF) 1445 return; 1446 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1447 SpillOffsetMap SpillOffsets; 1448 for (auto &userValue : userValues) { 1449 LLVM_DEBUG(userValue->print(dbgs(), TRI)); 1450 userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets); 1451 userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets); 1452 } 1453 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n"); 1454 for (auto &userLabel : userLabels) { 1455 LLVM_DEBUG(userLabel->print(dbgs(), TRI)); 1456 userLabel->emitDebugLabel(*LIS, *TII); 1457 } 1458 EmitDone = true; 1459 } 1460 1461 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { 1462 if (pImpl) 1463 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); 1464 } 1465 1466 bool LiveDebugVariables::doInitialization(Module &M) { 1467 return Pass::doInitialization(M); 1468 } 1469 1470 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1471 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { 1472 if (pImpl) 1473 static_cast<LDVImpl*>(pImpl)->print(dbgs()); 1474 } 1475 #endif 1476