1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveDebugVariables analysis. 11 // 12 // Remove all DBG_VALUE instructions referencing virtual registers and replace 13 // them with a data structure tracking where live user variables are kept - in a 14 // virtual register or in a stack slot. 15 // 16 // Allow the data structure to be updated during register allocation when values 17 // are moved between registers and stack slots. Finally emit new DBG_VALUE 18 // instructions after register allocation is complete. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "LiveDebugVariables.h" 23 #include "llvm/ADT/ArrayRef.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/IntervalMap.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/CodeGen/LexicalScopes.h" 32 #include "llvm/CodeGen/LiveInterval.h" 33 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineDominators.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/SlotIndexes.h" 42 #include "llvm/CodeGen/VirtRegMap.h" 43 #include "llvm/IR/DebugInfoMetadata.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/Metadata.h" 47 #include "llvm/MC/MCRegisterInfo.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetInstrInfo.h" 55 #include "llvm/Target/TargetOpcodes.h" 56 #include "llvm/Target/TargetRegisterInfo.h" 57 #include "llvm/Target/TargetSubtargetInfo.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <iterator> 61 #include <memory> 62 #include <utility> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "livedebugvars" 67 68 static cl::opt<bool> 69 EnableLDV("live-debug-variables", cl::init(true), 70 cl::desc("Enable the live debug variables pass"), cl::Hidden); 71 72 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); 73 74 char LiveDebugVariables::ID = 0; 75 76 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE, 77 "Debug Variable Analysis", false, false) 78 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 79 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 80 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE, 81 "Debug Variable Analysis", false, false) 82 83 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { 84 AU.addRequired<MachineDominatorTree>(); 85 AU.addRequiredTransitive<LiveIntervals>(); 86 AU.setPreservesAll(); 87 MachineFunctionPass::getAnalysisUsage(AU); 88 } 89 90 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) { 91 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 92 } 93 94 /// LocMap - Map of where a user value is live, and its location. 95 using LocMap = IntervalMap<SlotIndex, unsigned, 4>; 96 97 namespace { 98 99 class LDVImpl; 100 101 /// UserValue - A user value is a part of a debug info user variable. 102 /// 103 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 104 /// holds part of a user variable. The part is identified by a byte offset. 105 /// 106 /// UserValues are grouped into equivalence classes for easier searching. Two 107 /// user values are related if they refer to the same variable, or if they are 108 /// held by the same virtual register. The equivalence class is the transitive 109 /// closure of that relation. 110 class UserValue { 111 const DILocalVariable *Variable; ///< The debug info variable we are part of. 112 const DIExpression *Expression; ///< Any complex address expression. 113 bool IsIndirect; ///< true if this is a register-indirect+offset value. 114 DebugLoc dl; ///< The debug location for the variable. This is 115 ///< used by dwarf writer to find lexical scope. 116 UserValue *leader; ///< Equivalence class leader. 117 UserValue *next = nullptr; ///< Next value in equivalence class, or null. 118 119 /// Numbered locations referenced by locmap. 120 SmallVector<MachineOperand, 4> locations; 121 122 /// Map of slot indices where this value is live. 123 LocMap locInts; 124 125 /// Set of interval start indexes that have been trimmed to the 126 /// lexical scope. 127 SmallSet<SlotIndex, 2> trimmedDefs; 128 129 /// coalesceLocation - After LocNo was changed, check if it has become 130 /// identical to another location, and coalesce them. This may cause LocNo or 131 /// a later location to be erased, but no earlier location will be erased. 132 void coalesceLocation(unsigned LocNo); 133 134 /// insertDebugValue - Insert a DBG_VALUE into MBB at Idx for LocNo. 135 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx, 136 unsigned LocNo, bool Spilled, LiveIntervals &LIS, 137 const TargetInstrInfo &TII); 138 139 /// splitLocation - Replace OldLocNo ranges with NewRegs ranges where NewRegs 140 /// is live. Returns true if any changes were made. 141 bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 142 LiveIntervals &LIS); 143 144 public: 145 /// UserValue - Create a new UserValue. 146 UserValue(const DILocalVariable *var, const DIExpression *expr, bool i, 147 DebugLoc L, LocMap::Allocator &alloc) 148 : Variable(var), Expression(expr), IsIndirect(i), dl(std::move(L)), 149 leader(this), locInts(alloc) {} 150 151 /// getLeader - Get the leader of this value's equivalence class. 152 UserValue *getLeader() { 153 UserValue *l = leader; 154 while (l != l->leader) 155 l = l->leader; 156 return leader = l; 157 } 158 159 /// getNext - Return the next UserValue in the equivalence class. 160 UserValue *getNext() const { return next; } 161 162 /// match - Does this UserValue match the parameters? 163 bool match(const DILocalVariable *Var, const DIExpression *Expr, 164 const DILocation *IA, bool indirect) const { 165 return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA && 166 indirect == IsIndirect; 167 } 168 169 /// merge - Merge equivalence classes. 170 static UserValue *merge(UserValue *L1, UserValue *L2) { 171 L2 = L2->getLeader(); 172 if (!L1) 173 return L2; 174 L1 = L1->getLeader(); 175 if (L1 == L2) 176 return L1; 177 // Splice L2 before L1's members. 178 UserValue *End = L2; 179 while (End->next) { 180 End->leader = L1; 181 End = End->next; 182 } 183 End->leader = L1; 184 End->next = L1->next; 185 L1->next = L2; 186 return L1; 187 } 188 189 /// getLocationNo - Return the location number that matches Loc. 190 unsigned getLocationNo(const MachineOperand &LocMO) { 191 if (LocMO.isReg()) { 192 if (LocMO.getReg() == 0) 193 return ~0u; 194 // For register locations we dont care about use/def and other flags. 195 for (unsigned i = 0, e = locations.size(); i != e; ++i) 196 if (locations[i].isReg() && 197 locations[i].getReg() == LocMO.getReg() && 198 locations[i].getSubReg() == LocMO.getSubReg()) 199 return i; 200 } else 201 for (unsigned i = 0, e = locations.size(); i != e; ++i) 202 if (LocMO.isIdenticalTo(locations[i])) 203 return i; 204 locations.push_back(LocMO); 205 // We are storing a MachineOperand outside a MachineInstr. 206 locations.back().clearParent(); 207 // Don't store def operands. 208 if (locations.back().isReg()) 209 locations.back().setIsUse(); 210 return locations.size() - 1; 211 } 212 213 /// mapVirtRegs - Ensure that all virtual register locations are mapped. 214 void mapVirtRegs(LDVImpl *LDV); 215 216 /// addDef - Add a definition point to this value. 217 void addDef(SlotIndex Idx, const MachineOperand &LocMO) { 218 // Add a singular (Idx,Idx) -> Loc mapping. 219 LocMap::iterator I = locInts.find(Idx); 220 if (!I.valid() || I.start() != Idx) 221 I.insert(Idx, Idx.getNextSlot(), getLocationNo(LocMO)); 222 else 223 // A later DBG_VALUE at the same SlotIndex overrides the old location. 224 I.setValue(getLocationNo(LocMO)); 225 } 226 227 /// extendDef - Extend the current definition as far as possible down. 228 /// Stop when meeting an existing def or when leaving the live 229 /// range of VNI. 230 /// End points where VNI is no longer live are added to Kills. 231 /// @param Idx Starting point for the definition. 232 /// @param LocNo Location number to propagate. 233 /// @param LR Restrict liveness to where LR has the value VNI. May be null. 234 /// @param VNI When LR is not null, this is the value to restrict to. 235 /// @param Kills Append end points of VNI's live range to Kills. 236 /// @param LIS Live intervals analysis. 237 void extendDef(SlotIndex Idx, unsigned LocNo, 238 LiveRange *LR, const VNInfo *VNI, 239 SmallVectorImpl<SlotIndex> *Kills, 240 LiveIntervals &LIS); 241 242 /// addDefsFromCopies - The value in LI/LocNo may be copies to other 243 /// registers. Determine if any of the copies are available at the kill 244 /// points, and add defs if possible. 245 /// @param LI Scan for copies of the value in LI->reg. 246 /// @param LocNo Location number of LI->reg. 247 /// @param Kills Points where the range of LocNo could be extended. 248 /// @param NewDefs Append (Idx, LocNo) of inserted defs here. 249 void addDefsFromCopies(LiveInterval *LI, unsigned LocNo, 250 const SmallVectorImpl<SlotIndex> &Kills, 251 SmallVectorImpl<std::pair<SlotIndex, unsigned>> &NewDefs, 252 MachineRegisterInfo &MRI, 253 LiveIntervals &LIS); 254 255 /// computeIntervals - Compute the live intervals of all locations after 256 /// collecting all their def points. 257 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, 258 LiveIntervals &LIS, LexicalScopes &LS); 259 260 /// splitRegister - Replace OldReg ranges with NewRegs ranges where NewRegs is 261 /// live. Returns true if any changes were made. 262 bool splitRegister(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 263 LiveIntervals &LIS); 264 265 /// rewriteLocations - Rewrite virtual register locations according to the 266 /// provided virtual register map. Record which locations were spilled. 267 void rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI, 268 BitVector &SpilledLocations); 269 270 /// emitDebugValues - Recreate DBG_VALUE instruction from data structures. 271 void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 272 const TargetInstrInfo &TRI, 273 const BitVector &SpilledLocations); 274 275 /// getDebugLoc - Return DebugLoc of this UserValue. 276 DebugLoc getDebugLoc() { return dl;} 277 278 void print(raw_ostream &, const TargetRegisterInfo *); 279 }; 280 281 /// LDVImpl - Implementation of the LiveDebugVariables pass. 282 class LDVImpl { 283 LiveDebugVariables &pass; 284 LocMap::Allocator allocator; 285 MachineFunction *MF = nullptr; 286 LiveIntervals *LIS; 287 const TargetRegisterInfo *TRI; 288 289 /// Whether emitDebugValues is called. 290 bool EmitDone = false; 291 292 /// Whether the machine function is modified during the pass. 293 bool ModifiedMF = false; 294 295 /// userValues - All allocated UserValue instances. 296 SmallVector<std::unique_ptr<UserValue>, 8> userValues; 297 298 /// Map virtual register to eq class leader. 299 using VRMap = DenseMap<unsigned, UserValue *>; 300 VRMap virtRegToEqClass; 301 302 /// Map user variable to eq class leader. 303 using UVMap = DenseMap<const DILocalVariable *, UserValue *>; 304 UVMap userVarMap; 305 306 /// getUserValue - Find or create a UserValue. 307 UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr, 308 bool IsIndirect, const DebugLoc &DL); 309 310 /// lookupVirtReg - Find the EC leader for VirtReg or null. 311 UserValue *lookupVirtReg(unsigned VirtReg); 312 313 /// handleDebugValue - Add DBG_VALUE instruction to our maps. 314 /// @param MI DBG_VALUE instruction 315 /// @param Idx Last valid SLotIndex before instruction. 316 /// @return True if the DBG_VALUE instruction should be deleted. 317 bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); 318 319 /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding 320 /// a UserValue def for each instruction. 321 /// @param mf MachineFunction to be scanned. 322 /// @return True if any debug values were found. 323 bool collectDebugValues(MachineFunction &mf); 324 325 /// computeIntervals - Compute the live intervals of all user values after 326 /// collecting all their def points. 327 void computeIntervals(); 328 329 public: 330 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} 331 332 bool runOnMachineFunction(MachineFunction &mf); 333 334 /// clear - Release all memory. 335 void clear() { 336 MF = nullptr; 337 userValues.clear(); 338 virtRegToEqClass.clear(); 339 userVarMap.clear(); 340 // Make sure we call emitDebugValues if the machine function was modified. 341 assert((!ModifiedMF || EmitDone) && 342 "Dbg values are not emitted in LDV"); 343 EmitDone = false; 344 ModifiedMF = false; 345 } 346 347 /// mapVirtReg - Map virtual register to an equivalence class. 348 void mapVirtReg(unsigned VirtReg, UserValue *EC); 349 350 /// splitRegister - Replace all references to OldReg with NewRegs. 351 void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs); 352 353 /// emitDebugValues - Recreate DBG_VALUE instruction from data structures. 354 void emitDebugValues(VirtRegMap *VRM); 355 356 void print(raw_ostream&); 357 }; 358 359 } // end anonymous namespace 360 361 #ifndef NDEBUG 362 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, 363 const LLVMContext &Ctx) { 364 if (!DL) 365 return; 366 367 auto *Scope = cast<DIScope>(DL.getScope()); 368 // Omit the directory, because it's likely to be long and uninteresting. 369 CommentOS << Scope->getFilename(); 370 CommentOS << ':' << DL.getLine(); 371 if (DL.getCol() != 0) 372 CommentOS << ':' << DL.getCol(); 373 374 DebugLoc InlinedAtDL = DL.getInlinedAt(); 375 if (!InlinedAtDL) 376 return; 377 378 CommentOS << " @[ "; 379 printDebugLoc(InlinedAtDL, CommentOS, Ctx); 380 CommentOS << " ]"; 381 } 382 383 static void printExtendedName(raw_ostream &OS, const DILocalVariable *V, 384 const DILocation *DL) { 385 const LLVMContext &Ctx = V->getContext(); 386 StringRef Res = V->getName(); 387 if (!Res.empty()) 388 OS << Res << "," << V->getLine(); 389 if (auto *InlinedAt = DL->getInlinedAt()) { 390 if (DebugLoc InlinedAtDL = InlinedAt) { 391 OS << " @["; 392 printDebugLoc(InlinedAtDL, OS, Ctx); 393 OS << "]"; 394 } 395 } 396 } 397 398 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 399 auto *DV = cast<DILocalVariable>(Variable); 400 OS << "!\""; 401 printExtendedName(OS, DV, dl); 402 403 OS << "\"\t"; 404 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 405 OS << " [" << I.start() << ';' << I.stop() << "):"; 406 if (I.value() == ~0u) 407 OS << "undef"; 408 else 409 OS << I.value(); 410 } 411 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 412 OS << " Loc" << i << '='; 413 locations[i].print(OS, TRI); 414 } 415 OS << '\n'; 416 } 417 418 void LDVImpl::print(raw_ostream &OS) { 419 OS << "********** DEBUG VARIABLES **********\n"; 420 for (unsigned i = 0, e = userValues.size(); i != e; ++i) 421 userValues[i]->print(OS, TRI); 422 } 423 #endif 424 425 void UserValue::coalesceLocation(unsigned LocNo) { 426 unsigned KeepLoc = 0; 427 for (unsigned e = locations.size(); KeepLoc != e; ++KeepLoc) { 428 if (KeepLoc == LocNo) 429 continue; 430 if (locations[KeepLoc].isIdenticalTo(locations[LocNo])) 431 break; 432 } 433 // No matches. 434 if (KeepLoc == locations.size()) 435 return; 436 437 // Keep the smaller location, erase the larger one. 438 unsigned EraseLoc = LocNo; 439 if (KeepLoc > EraseLoc) 440 std::swap(KeepLoc, EraseLoc); 441 locations.erase(locations.begin() + EraseLoc); 442 443 // Rewrite values. 444 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 445 unsigned v = I.value(); 446 if (v == EraseLoc) 447 I.setValue(KeepLoc); // Coalesce when possible. 448 else if (v > EraseLoc) 449 I.setValueUnchecked(v-1); // Avoid coalescing with untransformed values. 450 } 451 } 452 453 void UserValue::mapVirtRegs(LDVImpl *LDV) { 454 for (unsigned i = 0, e = locations.size(); i != e; ++i) 455 if (locations[i].isReg() && 456 TargetRegisterInfo::isVirtualRegister(locations[i].getReg())) 457 LDV->mapVirtReg(locations[i].getReg(), this); 458 } 459 460 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var, 461 const DIExpression *Expr, bool IsIndirect, 462 const DebugLoc &DL) { 463 UserValue *&Leader = userVarMap[Var]; 464 if (Leader) { 465 UserValue *UV = Leader->getLeader(); 466 Leader = UV; 467 for (; UV; UV = UV->getNext()) 468 if (UV->match(Var, Expr, DL->getInlinedAt(), IsIndirect)) 469 return UV; 470 } 471 472 userValues.push_back( 473 llvm::make_unique<UserValue>(Var, Expr, IsIndirect, DL, allocator)); 474 UserValue *UV = userValues.back().get(); 475 Leader = UserValue::merge(Leader, UV); 476 return UV; 477 } 478 479 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) { 480 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs"); 481 UserValue *&Leader = virtRegToEqClass[VirtReg]; 482 Leader = UserValue::merge(Leader, EC); 483 } 484 485 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) { 486 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) 487 return UV->getLeader(); 488 return nullptr; 489 } 490 491 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) { 492 // DBG_VALUE loc, offset, variable 493 if (MI.getNumOperands() != 4 || 494 !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) || 495 !MI.getOperand(2).isMetadata()) { 496 DEBUG(dbgs() << "Can't handle " << MI); 497 return false; 498 } 499 500 // Get or create the UserValue for (variable,offset). 501 bool IsIndirect = MI.getOperand(1).isImm(); 502 if (IsIndirect) 503 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); 504 const DILocalVariable *Var = MI.getDebugVariable(); 505 const DIExpression *Expr = MI.getDebugExpression(); 506 //here. 507 UserValue *UV = getUserValue(Var, Expr, IsIndirect, MI.getDebugLoc()); 508 UV->addDef(Idx, MI.getOperand(0)); 509 return true; 510 } 511 512 bool LDVImpl::collectDebugValues(MachineFunction &mf) { 513 bool Changed = false; 514 for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE; 515 ++MFI) { 516 MachineBasicBlock *MBB = &*MFI; 517 for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end(); 518 MBBI != MBBE;) { 519 if (!MBBI->isDebugValue()) { 520 ++MBBI; 521 continue; 522 } 523 // DBG_VALUE has no slot index, use the previous instruction instead. 524 SlotIndex Idx = 525 MBBI == MBB->begin() 526 ? LIS->getMBBStartIdx(MBB) 527 : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); 528 // Handle consecutive DBG_VALUE instructions with the same slot index. 529 do { 530 if (handleDebugValue(*MBBI, Idx)) { 531 MBBI = MBB->erase(MBBI); 532 Changed = true; 533 } else 534 ++MBBI; 535 } while (MBBI != MBBE && MBBI->isDebugValue()); 536 } 537 } 538 return Changed; 539 } 540 541 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a 542 /// data-flow analysis to propagate them beyond basic block boundaries. 543 void UserValue::extendDef(SlotIndex Idx, unsigned LocNo, LiveRange *LR, 544 const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills, 545 LiveIntervals &LIS) { 546 SlotIndex Start = Idx; 547 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 548 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 549 LocMap::iterator I = locInts.find(Start); 550 551 // Limit to VNI's live range. 552 bool ToEnd = true; 553 if (LR && VNI) { 554 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); 555 if (!Segment || Segment->valno != VNI) { 556 if (Kills) 557 Kills->push_back(Start); 558 return; 559 } 560 if (Segment->end < Stop) { 561 Stop = Segment->end; 562 ToEnd = false; 563 } 564 } 565 566 // There could already be a short def at Start. 567 if (I.valid() && I.start() <= Start) { 568 // Stop when meeting a different location or an already extended interval. 569 Start = Start.getNextSlot(); 570 if (I.value() != LocNo || I.stop() != Start) 571 return; 572 // This is a one-slot placeholder. Just skip it. 573 ++I; 574 } 575 576 // Limited by the next def. 577 if (I.valid() && I.start() < Stop) { 578 Stop = I.start(); 579 ToEnd = false; 580 } 581 // Limited by VNI's live range. 582 else if (!ToEnd && Kills) 583 Kills->push_back(Stop); 584 585 if (Start < Stop) 586 I.insert(Start, Stop, LocNo); 587 } 588 589 void 590 UserValue::addDefsFromCopies(LiveInterval *LI, unsigned LocNo, 591 const SmallVectorImpl<SlotIndex> &Kills, 592 SmallVectorImpl<std::pair<SlotIndex, unsigned>> &NewDefs, 593 MachineRegisterInfo &MRI, LiveIntervals &LIS) { 594 if (Kills.empty()) 595 return; 596 // Don't track copies from physregs, there are too many uses. 597 if (!TargetRegisterInfo::isVirtualRegister(LI->reg)) 598 return; 599 600 // Collect all the (vreg, valno) pairs that are copies of LI. 601 SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues; 602 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) { 603 MachineInstr *MI = MO.getParent(); 604 // Copies of the full value. 605 if (MO.getSubReg() || !MI->isCopy()) 606 continue; 607 unsigned DstReg = MI->getOperand(0).getReg(); 608 609 // Don't follow copies to physregs. These are usually setting up call 610 // arguments, and the argument registers are always call clobbered. We are 611 // better off in the source register which could be a callee-saved register, 612 // or it could be spilled. 613 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 614 continue; 615 616 // Is LocNo extended to reach this copy? If not, another def may be blocking 617 // it, or we are looking at a wrong value of LI. 618 SlotIndex Idx = LIS.getInstructionIndex(*MI); 619 LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); 620 if (!I.valid() || I.value() != LocNo) 621 continue; 622 623 if (!LIS.hasInterval(DstReg)) 624 continue; 625 LiveInterval *DstLI = &LIS.getInterval(DstReg); 626 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); 627 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); 628 CopyValues.push_back(std::make_pair(DstLI, DstVNI)); 629 } 630 631 if (CopyValues.empty()) 632 return; 633 634 DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI << '\n'); 635 636 // Try to add defs of the copied values for each kill point. 637 for (unsigned i = 0, e = Kills.size(); i != e; ++i) { 638 SlotIndex Idx = Kills[i]; 639 for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) { 640 LiveInterval *DstLI = CopyValues[j].first; 641 const VNInfo *DstVNI = CopyValues[j].second; 642 if (DstLI->getVNInfoAt(Idx) != DstVNI) 643 continue; 644 // Check that there isn't already a def at Idx 645 LocMap::iterator I = locInts.find(Idx); 646 if (I.valid() && I.start() <= Idx) 647 continue; 648 DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #" 649 << DstVNI->id << " in " << *DstLI << '\n'); 650 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); 651 assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); 652 unsigned LocNo = getLocationNo(CopyMI->getOperand(0)); 653 I.insert(Idx, Idx.getNextSlot(), LocNo); 654 NewDefs.push_back(std::make_pair(Idx, LocNo)); 655 break; 656 } 657 } 658 } 659 660 void UserValue::computeIntervals(MachineRegisterInfo &MRI, 661 const TargetRegisterInfo &TRI, 662 LiveIntervals &LIS, LexicalScopes &LS) { 663 SmallVector<std::pair<SlotIndex, unsigned>, 16> Defs; 664 665 // Collect all defs to be extended (Skipping undefs). 666 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 667 if (I.value() != ~0u) 668 Defs.push_back(std::make_pair(I.start(), I.value())); 669 670 // Extend all defs, and possibly add new ones along the way. 671 for (unsigned i = 0; i != Defs.size(); ++i) { 672 SlotIndex Idx = Defs[i].first; 673 unsigned LocNo = Defs[i].second; 674 const MachineOperand &Loc = locations[LocNo]; 675 676 if (!Loc.isReg()) { 677 extendDef(Idx, LocNo, nullptr, nullptr, nullptr, LIS); 678 continue; 679 } 680 681 // Register locations are constrained to where the register value is live. 682 if (TargetRegisterInfo::isVirtualRegister(Loc.getReg())) { 683 LiveInterval *LI = nullptr; 684 const VNInfo *VNI = nullptr; 685 if (LIS.hasInterval(Loc.getReg())) { 686 LI = &LIS.getInterval(Loc.getReg()); 687 VNI = LI->getVNInfoAt(Idx); 688 } 689 SmallVector<SlotIndex, 16> Kills; 690 extendDef(Idx, LocNo, LI, VNI, &Kills, LIS); 691 if (LI) 692 addDefsFromCopies(LI, LocNo, Kills, Defs, MRI, LIS); 693 continue; 694 } 695 696 // For physregs, use the live range of the first regunit as a guide. 697 unsigned Unit = *MCRegUnitIterator(Loc.getReg(), &TRI); 698 LiveRange *LR = &LIS.getRegUnit(Unit); 699 const VNInfo *VNI = LR->getVNInfoAt(Idx); 700 // Don't track copies from physregs, it is too expensive. 701 extendDef(Idx, LocNo, LR, VNI, nullptr, LIS); 702 } 703 704 // Erase all the undefs. 705 for (LocMap::iterator I = locInts.begin(); I.valid();) 706 if (I.value() == ~0u) 707 I.erase(); 708 else 709 ++I; 710 711 // The computed intervals may extend beyond the range of the debug 712 // location's lexical scope. In this case, splitting of an interval 713 // can result in an interval outside of the scope being created, 714 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent 715 // this, trim the intervals to the lexical scope. 716 717 LexicalScope *Scope = LS.findLexicalScope(dl); 718 if (!Scope) 719 return; 720 721 SlotIndex PrevEnd; 722 LocMap::iterator I = locInts.begin(); 723 724 // Iterate over the lexical scope ranges. Each time round the loop 725 // we check the intervals for overlap with the end of the previous 726 // range and the start of the next. The first range is handled as 727 // a special case where there is no PrevEnd. 728 for (const InsnRange &Range : Scope->getRanges()) { 729 SlotIndex RStart = LIS.getInstructionIndex(*Range.first); 730 SlotIndex REnd = LIS.getInstructionIndex(*Range.second); 731 732 // At the start of each iteration I has been advanced so that 733 // I.stop() >= PrevEnd. Check for overlap. 734 if (PrevEnd && I.start() < PrevEnd) { 735 SlotIndex IStop = I.stop(); 736 unsigned LocNo = I.value(); 737 738 // Stop overlaps previous end - trim the end of the interval to 739 // the scope range. 740 I.setStopUnchecked(PrevEnd); 741 ++I; 742 743 // If the interval also overlaps the start of the "next" (i.e. 744 // current) range create a new interval for the remainder (which 745 // may be further trimmed). 746 if (RStart < IStop) 747 I.insert(RStart, IStop, LocNo); 748 } 749 750 // Advance I so that I.stop() >= RStart, and check for overlap. 751 I.advanceTo(RStart); 752 if (!I.valid()) 753 return; 754 755 if (I.start() < RStart) { 756 // Interval start overlaps range - trim to the scope range. 757 I.setStartUnchecked(RStart); 758 // Remember that this interval was trimmed. 759 trimmedDefs.insert(RStart); 760 } 761 762 // The end of a lexical scope range is the last instruction in the 763 // range. To convert to an interval we need the index of the 764 // instruction after it. 765 REnd = REnd.getNextIndex(); 766 767 // Advance I to first interval outside current range. 768 I.advanceTo(REnd); 769 if (!I.valid()) 770 return; 771 772 PrevEnd = REnd; 773 } 774 775 // Check for overlap with end of final range. 776 if (PrevEnd && I.start() < PrevEnd) 777 I.setStopUnchecked(PrevEnd); 778 } 779 780 void LDVImpl::computeIntervals() { 781 LexicalScopes LS; 782 LS.initialize(*MF); 783 784 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 785 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS); 786 userValues[i]->mapVirtRegs(this); 787 } 788 } 789 790 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) { 791 clear(); 792 MF = &mf; 793 LIS = &pass.getAnalysis<LiveIntervals>(); 794 TRI = mf.getSubtarget().getRegisterInfo(); 795 DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 796 << mf.getName() << " **********\n"); 797 798 bool Changed = collectDebugValues(mf); 799 computeIntervals(); 800 DEBUG(print(dbgs())); 801 ModifiedMF = Changed; 802 return Changed; 803 } 804 805 static void removeDebugValues(MachineFunction &mf) { 806 for (MachineBasicBlock &MBB : mf) { 807 for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) { 808 if (!MBBI->isDebugValue()) { 809 ++MBBI; 810 continue; 811 } 812 MBBI = MBB.erase(MBBI); 813 } 814 } 815 } 816 817 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { 818 if (!EnableLDV) 819 return false; 820 if (!mf.getFunction()->getSubprogram()) { 821 removeDebugValues(mf); 822 return false; 823 } 824 if (!pImpl) 825 pImpl = new LDVImpl(this); 826 return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf); 827 } 828 829 void LiveDebugVariables::releaseMemory() { 830 if (pImpl) 831 static_cast<LDVImpl*>(pImpl)->clear(); 832 } 833 834 LiveDebugVariables::~LiveDebugVariables() { 835 if (pImpl) 836 delete static_cast<LDVImpl*>(pImpl); 837 } 838 839 //===----------------------------------------------------------------------===// 840 // Live Range Splitting 841 //===----------------------------------------------------------------------===// 842 843 bool 844 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 845 LiveIntervals& LIS) { 846 DEBUG({ 847 dbgs() << "Splitting Loc" << OldLocNo << '\t'; 848 print(dbgs(), nullptr); 849 }); 850 bool DidChange = false; 851 LocMap::iterator LocMapI; 852 LocMapI.setMap(locInts); 853 for (unsigned i = 0; i != NewRegs.size(); ++i) { 854 LiveInterval *LI = &LIS.getInterval(NewRegs[i]); 855 if (LI->empty()) 856 continue; 857 858 // Don't allocate the new LocNo until it is needed. 859 unsigned NewLocNo = ~0u; 860 861 // Iterate over the overlaps between locInts and LI. 862 LocMapI.find(LI->beginIndex()); 863 if (!LocMapI.valid()) 864 continue; 865 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); 866 LiveInterval::iterator LIE = LI->end(); 867 while (LocMapI.valid() && LII != LIE) { 868 // At this point, we know that LocMapI.stop() > LII->start. 869 LII = LI->advanceTo(LII, LocMapI.start()); 870 if (LII == LIE) 871 break; 872 873 // Now LII->end > LocMapI.start(). Do we have an overlap? 874 if (LocMapI.value() == OldLocNo && LII->start < LocMapI.stop()) { 875 // Overlapping correct location. Allocate NewLocNo now. 876 if (NewLocNo == ~0u) { 877 MachineOperand MO = MachineOperand::CreateReg(LI->reg, false); 878 MO.setSubReg(locations[OldLocNo].getSubReg()); 879 NewLocNo = getLocationNo(MO); 880 DidChange = true; 881 } 882 883 SlotIndex LStart = LocMapI.start(); 884 SlotIndex LStop = LocMapI.stop(); 885 886 // Trim LocMapI down to the LII overlap. 887 if (LStart < LII->start) 888 LocMapI.setStartUnchecked(LII->start); 889 if (LStop > LII->end) 890 LocMapI.setStopUnchecked(LII->end); 891 892 // Change the value in the overlap. This may trigger coalescing. 893 LocMapI.setValue(NewLocNo); 894 895 // Re-insert any removed OldLocNo ranges. 896 if (LStart < LocMapI.start()) { 897 LocMapI.insert(LStart, LocMapI.start(), OldLocNo); 898 ++LocMapI; 899 assert(LocMapI.valid() && "Unexpected coalescing"); 900 } 901 if (LStop > LocMapI.stop()) { 902 ++LocMapI; 903 LocMapI.insert(LII->end, LStop, OldLocNo); 904 --LocMapI; 905 } 906 } 907 908 // Advance to the next overlap. 909 if (LII->end < LocMapI.stop()) { 910 if (++LII == LIE) 911 break; 912 LocMapI.advanceTo(LII->start); 913 } else { 914 ++LocMapI; 915 if (!LocMapI.valid()) 916 break; 917 LII = LI->advanceTo(LII, LocMapI.start()); 918 } 919 } 920 } 921 922 // Finally, remove any remaining OldLocNo intervals and OldLocNo itself. 923 locations.erase(locations.begin() + OldLocNo); 924 LocMapI.goToBegin(); 925 while (LocMapI.valid()) { 926 unsigned v = LocMapI.value(); 927 if (v == OldLocNo) { 928 DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';' 929 << LocMapI.stop() << ")\n"); 930 LocMapI.erase(); 931 } else { 932 if (v > OldLocNo) 933 LocMapI.setValueUnchecked(v-1); 934 ++LocMapI; 935 } 936 } 937 938 DEBUG({dbgs() << "Split result: \t"; print(dbgs(), nullptr);}); 939 return DidChange; 940 } 941 942 bool 943 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, 944 LiveIntervals &LIS) { 945 bool DidChange = false; 946 // Split locations referring to OldReg. Iterate backwards so splitLocation can 947 // safely erase unused locations. 948 for (unsigned i = locations.size(); i ; --i) { 949 unsigned LocNo = i-1; 950 const MachineOperand *Loc = &locations[LocNo]; 951 if (!Loc->isReg() || Loc->getReg() != OldReg) 952 continue; 953 DidChange |= splitLocation(LocNo, NewRegs, LIS); 954 } 955 return DidChange; 956 } 957 958 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) { 959 bool DidChange = false; 960 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) 961 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); 962 963 if (!DidChange) 964 return; 965 966 // Map all of the new virtual registers. 967 UserValue *UV = lookupVirtReg(OldReg); 968 for (unsigned i = 0; i != NewRegs.size(); ++i) 969 mapVirtReg(NewRegs[i], UV); 970 } 971 972 void LiveDebugVariables:: 973 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) { 974 if (pImpl) 975 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); 976 } 977 978 void UserValue::rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI, 979 BitVector &SpilledLocations) { 980 SpilledLocations.resize(locations.size()); 981 982 // Iterate over locations in reverse makes it easier to handle coalescing. 983 for (unsigned i = locations.size(); i ; --i) { 984 unsigned LocNo = i-1; 985 MachineOperand &Loc = locations[LocNo]; 986 // Only virtual registers are rewritten. 987 if (!Loc.isReg() || !Loc.getReg() || 988 !TargetRegisterInfo::isVirtualRegister(Loc.getReg())) 989 continue; 990 unsigned VirtReg = Loc.getReg(); 991 if (VRM.isAssignedReg(VirtReg) && 992 TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) { 993 // This can create a %noreg operand in rare cases when the sub-register 994 // index is no longer available. That means the user value is in a 995 // non-existent sub-register, and %noreg is exactly what we want. 996 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); 997 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { 998 // FIXME: Translate SubIdx to a stackslot offset. 999 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); 1000 SpilledLocations.set(LocNo); 1001 } else { 1002 Loc.setReg(0); 1003 Loc.setSubReg(0); 1004 } 1005 coalesceLocation(LocNo); 1006 } 1007 } 1008 1009 /// findInsertLocation - Find an iterator for inserting a DBG_VALUE 1010 /// instruction. 1011 static MachineBasicBlock::iterator 1012 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, 1013 LiveIntervals &LIS) { 1014 SlotIndex Start = LIS.getMBBStartIdx(MBB); 1015 Idx = Idx.getBaseIndex(); 1016 1017 // Try to find an insert location by going backwards from Idx. 1018 MachineInstr *MI; 1019 while (!(MI = LIS.getInstructionFromIndex(Idx))) { 1020 // We've reached the beginning of MBB. 1021 if (Idx == Start) { 1022 MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 1023 return I; 1024 } 1025 Idx = Idx.getPrevIndex(); 1026 } 1027 1028 // Don't insert anything after the first terminator, though. 1029 return MI->isTerminator() ? MBB->getFirstTerminator() : 1030 std::next(MachineBasicBlock::iterator(MI)); 1031 } 1032 1033 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx, 1034 unsigned LocNo, bool Spilled, 1035 LiveIntervals &LIS, 1036 const TargetInstrInfo &TII) { 1037 MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS); 1038 MachineOperand &Loc = locations[LocNo]; 1039 ++NumInsertedDebugValues; 1040 1041 assert(cast<DILocalVariable>(Variable) 1042 ->isValidLocationForIntrinsic(getDebugLoc()) && 1043 "Expected inlined-at fields to agree"); 1044 1045 // If the location was spilled, the new DBG_VALUE will be indirect. If the 1046 // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate 1047 // that the original virtual register was a pointer. 1048 bool NewIndirect = IsIndirect || Spilled; 1049 const DIExpression *Expr = Expression; 1050 if (Spilled && IsIndirect) 1051 Expr = DIExpression::prepend(Expr, DIExpression::WithDeref); 1052 1053 MachineInstrBuilder MIB = 1054 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE)) 1055 .add(Loc); 1056 if (NewIndirect) 1057 MIB.addImm(0U); 1058 else 1059 MIB.addReg(0U, RegState::Debug); 1060 MIB.addMetadata(Variable).addMetadata(Expr); 1061 } 1062 1063 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 1064 const TargetInstrInfo &TII, 1065 const BitVector &SpilledLocations) { 1066 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); 1067 1068 for (LocMap::const_iterator I = locInts.begin(); I.valid();) { 1069 SlotIndex Start = I.start(); 1070 SlotIndex Stop = I.stop(); 1071 unsigned LocNo = I.value(); 1072 bool Spilled = LocNo != ~0U ? SpilledLocations.test(LocNo) : false; 1073 1074 // If the interval start was trimmed to the lexical scope insert the 1075 // DBG_VALUE at the previous index (otherwise it appears after the 1076 // first instruction in the range). 1077 if (trimmedDefs.count(Start)) 1078 Start = Start.getPrevIndex(); 1079 1080 DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << LocNo); 1081 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1082 SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); 1083 1084 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd); 1085 insertDebugValue(&*MBB, Start, LocNo, Spilled, LIS, TII); 1086 // This interval may span multiple basic blocks. 1087 // Insert a DBG_VALUE into each one. 1088 while(Stop > MBBEnd) { 1089 // Move to the next block. 1090 Start = MBBEnd; 1091 if (++MBB == MFEnd) 1092 break; 1093 MBBEnd = LIS.getMBBEndIdx(&*MBB); 1094 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd); 1095 insertDebugValue(&*MBB, Start, LocNo, Spilled, LIS, TII); 1096 } 1097 DEBUG(dbgs() << '\n'); 1098 if (MBB == MFEnd) 1099 break; 1100 1101 ++I; 1102 } 1103 } 1104 1105 void LDVImpl::emitDebugValues(VirtRegMap *VRM) { 1106 DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); 1107 if (!MF) 1108 return; 1109 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1110 BitVector SpilledLocations; 1111 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 1112 DEBUG(userValues[i]->print(dbgs(), TRI)); 1113 userValues[i]->rewriteLocations(*VRM, *TRI, SpilledLocations); 1114 userValues[i]->emitDebugValues(VRM, *LIS, *TII, SpilledLocations); 1115 } 1116 EmitDone = true; 1117 } 1118 1119 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { 1120 if (pImpl) 1121 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); 1122 } 1123 1124 bool LiveDebugVariables::doInitialization(Module &M) { 1125 return Pass::doInitialization(M); 1126 } 1127 1128 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1129 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { 1130 if (pImpl) 1131 static_cast<LDVImpl*>(pImpl)->print(dbgs()); 1132 } 1133 #endif 1134